From Bombelli's Imaginary Number, Steinmetz's Phasor Domain To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
About the Phasor Pathways in Analogical Amplitude Modulations
About the Phasor Pathways in Analogical Amplitude Modulations H.M. de Oliveira1, F.D. Nunes1 ABSTRACT Phasor diagrams have long been used in Physics and Engineering. In telecommunications, this is particularly useful to clarify how the modulations work. This paper addresses rotating phasor pathways derived from different standard Amplitude Modulation Systems (e.g. A3E, H3E, J3E, C3F). A cornucopia of algebraic curves is then derived assuming a single tone or a double tone modulation signal. The ratio of the frequency of the tone modulator (fm) and carrier frequency (fc) is considered in two distinct cases, namely: fm/fc<1 and fm/fc 1. The geometric figures are some sort of Lissajours figures. Different shapes appear looking like epicycloids (including cardioids), rhodonea curves, Lemniscates, folium of Descartes or Lamé curves. The role played by the modulation index is elucidated in each case. Keyterms: Phasor diagram, AM, VSB, Circular harmonics, algebraic curves, geometric figures. 1. Introduction Classical analogical modulations are a nearly exhausted subject, a century after its introduction. The first approach to the subject typically relies on the case of transmission of a single tone (for the sake of simplicity) and establishes the corresponding phasor diagram. This furnishes a straightforward interpretation, which is quite valuable, especially with regard to illustrating the effects of the modulation index, overmodulation effects, and afterward, distinctions between AM and NBFM. Often this presentation is rather naïf. Nice applets do exist to help the understanding of the phasor diagram [1- 4]. However ... Without further target, unpretentiously, we start a deeper investigating the dynamic phasor diagram with the aim of building applets or animations that illustrates the temporal variation of the magnitude of the amplitude modulated phasor. -
Correspondence Between Phasor Transforms and Frequency Response Function in Rlc Circuits
CORRESPONDENCE BETWEEN PHASOR TRANSFORMS AND FREQUENCY RESPONSE FUNCTION IN RLC CIRCUITS Hassan Mohamed Abdelalim Abdalla Polytechnic Department of Engineering and Architecture, University of Studies of Udine, 33100 Udine, Italy. E-mail: [email protected] Abstract: The analysis of RLC circuits is usually made by considering phasor transforms of sinusoidal signals (characterized by constant amplitude, period and phase) that allow the calculation of the AC steady state of RLC circuits by solving simple algebraic equations. In this paper I try to show that phasor representation of RLC circuits is analogue to consider the frequency response function (commonly designated by FRF) of the total impedance of the circuit. In this way I derive accurate expressions for the resonance and anti-resonance frequencies and their corresponding values of impedances of the parallel and series RLC circuits respectively, notwithstanding the presence of damping effects. Keywords: Laplace transforms, phasors, Frequency response function, RLC circuits. 1. Introduction and mathematical background RLC circuits have many applications as oscillator circuits described by a second-order differential equation. The three circuit elements, resistor R, inductor L and capacitor C can be combined in different manners. All three elements in series or in parallel are the simplest and most straightforward to analyze. RLC circuits are analyzed mathematically in the phasor domain instead of solving differential equations in the time domain. Generally, a time-dependent sinusoidal function is expressed in the following way è [1]: () (1.1) where is the amplitude, is the angular frequency and is the initial phase of . () = sin ( + ) The medium value of is given by: () () (1.2) 1 2 = |()| = where is the period of the sinusoidal function . -
The Natures of Numbers in and Around Bombelli's L
THE NATURES OF NUMBERS IN AND AROUND BOMBELLI’S L’ALGEBRA ROY WAGNER Abstract. The purpose of this paper is to analyse the mathematical practices leading to Rafael Bombelli’s L’algebra (1572). The context for the analysis is the Italian algebra practiced by abbacus masters and Re- naissance mathematicians of the 14th–16th centuries. We will focus here on the semiotic aspects of algebraic practices and on the organisation of knowledge. Our purpose is to show how symbols that stand for under- determined meanings combine with shifting principles of organisation to change the character of algebra. 1. Introduction 1.1. Scope and methodology. In the year 1572 Rafael Bombelli’s L’algebra came out in print. This book, which covers arithmetic, algebra and geom- etry, is best known for one major feat: the first recorded use of roots of negative numbers to find a real solution of a real problem. The purpose of this paper is to understand the semiotic processes that enabled this and other, less ‘heroic’ achievements laid out in Bombelli’s work. The context for my analysis of Bombelli’s work is the vernacular abba- cus1 tradition spanning across two centuries, from a time where almost all problems that are done in the abbacus way reduce to the rule of three2 to the Renaissance solution of the cubic and quartic equations, and from the abbacus masters, who taught elementary mathematics to merchant children, through to humanist scholars. My purpose is to track down sign Part of the research for this paper was conducted while visiting Boston University’s Center for the Philosophy of Science, the Max Planck Institute for the History of Science and the Edelstein Center for the History and Philosophy of Science, Technology and Medicine. -
Complex Numbers and Phasor Technique
RaoApp-Av3.qxd 12/18/03 5:44 PM Page 779 APPENDIX A Complex Numbers and Phasor Technique In this appendix, we discuss a mathematical technique known as the phasor technique, pertinent to operations involving sinusoidally time-varying quanti- ties.The technique simplifies the solution of a differential equation in which the steady-state response for a sinusoidally time-varying excitation is to be deter- mined, by reducing the differential equation to an algebraic equation involving phasors. A phasor is a complex number or a complex variable. We first review complex numbers and associated operations. A complex number has two parts: a real part and an imaginary part. Imag- inary numbers are square roots of negative real numbers. To introduce the con- cept of an imaginary number, we define 2-1 = j (A.1a) or ;j 2 =-1 (A.1b) 1 2 Thus, j5 is the positive square root of -25, -j10 is the negative square root of -100, and so on.A complex number is written in the form a + jb, where a is the real part and b is the imaginary part. Examples are 3 + j4 -4 + j1 -2 - j2 2 - j3 A complex number is represented graphically in a complex plane by using Rectangular two orthogonal axes, corresponding to the real and imaginary parts, as shown in form Fig.A.1, in which are plotted the numbers just listed. Since the set of orthogonal axes resembles the rectangular coordinate axes, the representation a + jb is 1 2 known as the rectangular form. 779 RaoApp-Av3.qxd 12/18/03 5:44 PM Page 780 780 Appendix A Complex Numbers and Phasor Technique Imaginary (3 ϩ j4) 4 (Ϫ4 ϩ j1) 1 Ϫ2 2 Ϫ 4 0 3 Real Ϫ2 (Ϫ2 Ϫj2) Ϫ3 Ϫ FIGURE A.1 (2 j3) Graphical representation of complex numbers in rectangular form. -
Lesson 1: Representation of Ac Voltages and Currents1
1/22/2016 Lesson 1: Phasors and Complex Arithmetic ET 332b Ac Motors, Generators and Power Systems lesson1_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Write time equations that represent sinusoidal voltages and currents found in power systems. Explain the difference between peak and RMS electrical quantities. Write phasor representations of sinusoidal time equations. Perform calculations using both polar and rectangular forms of complex numbers. lesson1_et332b.pptx 2 1 1/22/2016 Ac Analysis Techniques Time function representation of ac signals Time functions give representation of sign instantaneous values v(t) Vmax sin(t v ) Voltage drops e(t) Emax sin(t e ) Source voltages Currents i(t) Imax sin(t i ) Where Vmax = maximum ( peak) value of voltage Emax = maximum (peak) value of source voltage Imax = maximum (peak) value of current v, e, i = phase shift of voltage or current = frequency in rad/sec Note: =2pf lesson1_et332b.pptx 3 Ac Signal Representations Ac power system calculations use effective values of time waveforms (RMS values) Therefore: V E I V max E max I max RMS 2 RMS 2 RMS 2 1 Where 0.707 2 So RMS quantities can be expressed as: VRMS 0.707Vmax ERMS 0.707Emax IRMS 0.707Imax lesson1_et332b.pptx 4 2 1/22/2016 Ac Signal Representations Ac power systems calculations use phasors to represent time functions Phasor use complex numbers to represent the important information from the time functions (magnitude and phase angle) in vector form. Phasor Notation I I V VRMS RMS or or I I V VRMS RMS Where: VRMS, IRMS = RMS magnitude of voltages and currents = phase shift in degrees for voltages and currents lesson1_et332b.pptx 5 Ac Signal Representations Time to phasor conversion examples, Note all signal must be the same frequency Time function-voltage Find RMS magnitude v(t) 170sin(377t 30 ) VRMS 0.707170 120.2 V Phasor V 120.230 V Time function-current Find RMS magnitude i(t) 25sin(377t 20 ) IRMS 0.70725 17.7 A Phasor I 17.7 20 A Phase shift can be given in either radians or degrees. -
Waveguide Propagation
NTNU Institutt for elektronikk og telekommunikasjon Januar 2006 Waveguide propagation Helge Engan Contents 1 Introduction ........................................................................................................................ 2 2 Propagation in waveguides, general relations .................................................................... 2 2.1 TEM waves ................................................................................................................ 7 2.2 TE waves .................................................................................................................... 9 2.3 TM waves ................................................................................................................. 14 3 TE modes in metallic waveguides ................................................................................... 14 3.1 TE modes in a parallel-plate waveguide .................................................................. 14 3.1.1 Mathematical analysis ...................................................................................... 15 3.1.2 Physical interpretation ..................................................................................... 17 3.1.3 Velocities ......................................................................................................... 19 3.1.4 Fields ................................................................................................................ 21 3.2 TE modes in rectangular waveguides ..................................................................... -
Chapter 16 Waves I
Chapter 16 Waves I In this chapter we will start the discussion on wave phenomena. We will study the following topics: Types of waves Amplitude, phase, frequency, period, propagation speed of a wave Mechanical waves propagating along a stretched string Wave equation Principle of superposition of waves Wave interference Standing waves, resonance (16 – 1) A wave is defined as a disturbance that is self-sustained and propagates in space with a constant speed Waves can be classified in the following three categories: 1. Mechanical waves. These involve motions that are governed by Newton’s laws and can exist only within a material medium such as air, water, rock, etc. Common examples are: sound waves, seismic waves, etc. 2. Electromagnetic waves. These waves involve propagating disturbances in the electric and magnetic field governed by Maxwell’s equations. They do not require a material medium in which to propagate but they travel through vacuum. Common examples are: radio waves of all types, visible, infra-red, and ultra- violet light, x-rays, gamma rays. All electromagnetic waves propagate in vacuum with the same speed c = 300,000 km/s 3. Matter waves. All microscopic particles such as electrons, protons, neutrons, atoms etc have a wave associated with them governed by Schroedinger’s equation. (16 – 2) Transverse and Longitudinal waves (16 – 3) Waves can be divided into the following two categories depending on the orientation of the disturbance with r respect to the wave propagation velocity v. If the disturbance associated with a particular wave is perpendicular to the wave propagation velocity, this wave is called "transverse ". -
A Comparative Study on Phasor and Frequency Measurement Techniques in Power Systems
A Comparative Study on Phasor and Frequency Measurement Techniques in Power Systems Aravinth Sridharan Vaskar Sarkar Department of Electrical Engineering Department of Electrical Engineering Indian Institute of Technology Hyderabad Indian Institute of Technology Hyderabad E-mail: [email protected] E-mail: [email protected] Abstract—The objective of this paper is to make a comparative to slow function like expansion planning. Hence, the real- study on different phasor and frequency measurement algorithms time measurement of power system quantities is helpful in available for power systems. The dynamic nature of the power improving the reliability of the power system network. With system signals has made the estimation of frequency and phasors difficult. Over the years, many digital algorithms have been an increase in the usage of power electronic devices and other developed to overcome these difficulties and to provide accurate nonlinear components, there is an increase in the harmonic real-time frequency and phasor measurements. In this paper, four contamination in power systems. It is, therefore, essential for different algorithms for frequency estimation and three different utilities to seek and depend on reliable models for accurate algorithms for phasor estimation are studied and compared. A estimation of phasor and frequency. Supervisory Control and case study is performed by considering a three-phase voltage signal with time-varying amplitude and frequency to verify the Data Acquisition (SCADA) is an existing real-time monitoring effectiveness of these estimation algorithms. and control system that is available for power systems. Due Index Terms—Amplitude, complex valued least squares, dis- to high latency in data flow and slower estimation techniques crete fourier transform, frequency, phase angle, phase locked used, the real-time dynamic variations in power system quan- loop, phasor, polynomial fitting, prony, smart discrete fourier tities are not observed by SCADA. -
Renaissance Europe the 1500’S and Beyond
Renaissance Europe The 1500’s and Beyond • The Italian algebraists and their work on solutions to cubic and quartic polynomials is probably the most exciting story from the 1500’s. Even if some of it was made up. • But, there are a few things we should talk about before moving on to the (mathematically) exciting periods of the 1600’s and 1700’s. The Abacists vs Traditionalists • Dear Professor: You keep on using that word. I do not think it means what you think it means. • Abacists were abacists in the sense of Liber Abaci, that is, they used the Islamic tradition of decimal numbers and algorithms, and eschewed counting boards in favor of pencil and paper. The Abacists vs Traditionalists • The Abacists won, but it took a while. • “But what if you were stranded on a desert island without paper? Then you’d wish you’d studied how to use a counting board……” Rafael Bombelli • Rafael Bombelli (1526‐ 1572) • His family had been out of favor with local leaders. • Lived in Bologna and was tutored by an engineer/architect. • Worked as a hydraulic engineer, draining wetlands. Rafael Bombelli • While waiting for a certain project to recommence, decided to write an algebra book. • Published in three volumes (two volumes of geometry that were to follow were not published) Rafael Bombelli • Wrote down rules for negative numbers: • Plus times plus makes plus Minus times minus makes plus Plus times minus makes minus Minus times plus makes minus Plus 8 times plus 8 makes plus 64 Minus 5 times minus 6 makes plus 30 Minus 4 times plus 5 makes minus 20 Plus 5 times minus 4 makes minus 20 Rafael Bombelli • Wrote down rules for computing with complex numbers: • Plus of minus times plus of minus makes minus [+√‐n . -
A Short History of Complex Numbers
A Short History of Complex Numbers Orlando Merino University of Rhode Island January, 2006 Abstract This is a compilation of historical information from various sources, about the number i = √ 1. The information has been put together for students of Complex Analysis who − are curious about the origins of the subject, since most books on Complex Variables have no historical information (one exception is Visual Complex Analysis, by T. Needham). A fact that is surprising to many (at least to me!) is that complex numbers arose from the need to solve cubic equations, and not (as it is commonly believed) quadratic equations. These notes track the development of complex numbers in history, and give evidence that supports the above statement. 1. Al-Khwarizmi (780-850) in his Algebra has solution to quadratic equations of various types. Solutions agree with is learned today at school, restricted to positive solutions [9] Proofs are geometric based. Sources seem to be greek and hindu mathematics. According to G. J. Toomer, quoted by Van der Waerden, Under the caliph al-Ma’mun (reigned 813-833) al-Khwarizmi became a member of the “House of Wisdom” (Dar al-Hikma), a kind of academy of scientists set up at Baghdad, probably by Caliph Harun al-Rashid, but owing its preeminence to the interest of al-Ma’mun, a great patron of learning and scientific investigation. It was for al-Ma’mun that Al-Khwarizmi composed his astronomical treatise, and his Algebra also is dedicated to that ruler 2. The methods of algebra known to the arabs were introduced in Italy by the Latin transla- tion of the algebra of al-Khwarizmi by Gerard of Cremona (1114-1187), and by the work of Leonardo da Pisa (Fibonacci)(1170-1250). -
1 Study on the Evolution of Cubic Equation Solving *Dr. Rajeev
Study On The Evolution Of Cubic Equation Solving *Dr. Rajeev Kumar and **Vinod Kumar *Associate Professor, Department of Mathematics, OPJS University, Churu, Rajasthan (India) **Research Scholar, Department of Mathematics, OPJS University, Churu, Rajasthan (India) Email: [email protected] Abstract: Cardano investigated del Ferro's papers and found that he had discovered the solution to the cubic before Tartaglia. Anxious to publish the solutions to the cubic, and not wanting to betray Tartaglia, Cardano used the fact that del Ferro had discovered the solution first to evade his promise of secrecy. Although Cardano expanded on his Islamic predecessors by including the possibility of negative solutions, he was still not able to find all the possible solutions to cubic equations. Rafael Bombelli continued to expand on, and refine, the work of Cardano. Bombelli wrote a book that contained a logical progression from linear to quadratic to cubic equations. He also included the idea that it seemed possible to take the square root of a negative number, something that is encountered when using Cardano's formula for some cubic equations. He used notation that was a stepping stone toward the notation currently used in algebra. For example, Bombelli began writing R.Sq. to represent the square root. Bombelli also noted that it was possible to take the cube root of numbers that were negatives. He noted that this required a, different set of rules for these new numbers, which he called "plus of plus" and "minus of minus" (Katz, 1998). In modern terms, Bombelli had begun working with imaginary numbers. [Kumar, R. and Kumar, V. -
Notes on the Phasor Diagram Method
Notes on the Phasor Diagram Method To determine the intensity of a 2-slits interfernce (or 2 -"point"source interference), one needs to add two sinusoidal waves with a relative phase. Etot (t) = E1(t) + E2 (t) = E cos(ωt +φ) + E cos(ωt), where the relative phase is due to the path length difference. According to your textbook, Etot (t) can be represented by a single sinusoidal wave, i.e. Etot (t) = Ep cos(ωt +δ ). Your texbook proceeded immediately to show you how to determine Ep using the "Phasor Diagram" method (as a recipe). What I would like to do: (1) Derive (tediously) E cos(ωt +φ) + E cos(ωt) = Ep cos(ωt +δ ) using trig. identities and deduce Epand δ. (2) Show you the easy way to find Epand δ using Phasor Diagram. (3) Show you the mathematical justification of the Phasor Diagram method using Euler's identity: eiθ = cosθ + isinθ Analysis of interference of 2 point sources. At an arbitrary point P, the combined electric fields is that emited by source 1 and source 2: P r1 r1 r2 Ep (t) = E cos(ωt + 2π ) + E cos(ωt + 2π ) λ λ r (We have assumed that the two sources have the same amplitude, 2 which is not exactly true because one source is slightly further than the other source) Rewrite the expression to show explicitly the relative phase: r (r − r ) r E (t) = E cos(ωt + 2π 2 + 2π 1 2 ) + E cos(ωt + 2π 2 ) p λ λ λ r The common phase 2π 2 can be absorbed in starting time of your clock) λ ⇒ Ep (t) = E cos(ωt +φ) + E cos(ωt), where (r − r ) φ = 2π 1 2 is relative phase difference due to path length difference.