The Cpg Island of the Novel Tumor Suppressor Gene RASSF1A Is Intensely Methylated in Primary Small Cell Lung Carcinomas

Total Page:16

File Type:pdf, Size:1020Kb

The Cpg Island of the Novel Tumor Suppressor Gene RASSF1A Is Intensely Methylated in Primary Small Cell Lung Carcinomas Oncogene (2001) 20, 3563 ± 3567 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc SHORT REPORTS The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas Reinhard Dammann1, Takashi Takahashi2 and Gerd P Pfeifer*,1 1Department of Biology, Beckman Research Institute, City of Hope Cancer Center, Duarte, California 91010, USA; 2Division of Molecular Oncology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan Loss of heterozygosity at 3p21.3 occurs in more than genes include the RB gene (13q), the p53 gene (17p), 90% of small cell lung carcinomas (SCLCs). The Ras and the p16 CDK inhibitor gene (9p). association domain family 1 (RASSF1) gene cloned from Allelic loss at 3p21 is an early event in lung tumor the lung tumor suppressor locus 3p21.3 consists of two pathogenesis, occurs at the stage of hyperplasia/ major alternative transcripts, RASSF1A and RASSF1C. metaplasia (Sundaresan et al., 1992; Hung et al., Epigenetic inactivation of isoform A (RASSF1A) was 1995; Thiberville et al., 1995; Wistuba et al., 1999), observed in 40% of primary non-small cell lung and as such may be critically involved in tumor carcinomas and in several tumor cell lines. Transfection initiation. Cross-sectional examination of individual of RASSF1A suppressed the growth of lung cancer cells NSCLC tumors showed that all portions of the tumor in vitro and in nude mice. Here we have analysed the shared concordant LOH at 3p despite morphological methylation status of the CpG island promoters of diversity (Yatabe et al., 2000). RASSF1A and RASSF1C in primary SCLCs. In 22 of Homozygous deletions at 3p21.3 have been described 28 SCLCs (=79%) the promoter of RASSF1A was in several cancer cell lines and in primary lung tumors highly methylated at all CpG sites analysed. None of the (Killary et al., 1992; Yamakawa et al., 1993; Wei et al., SCLCs showed evidence for methylation of the CpG 1996; Kok et al., 1997; Todd et al., 1997). Recently, a island of RASSF1C. The results suggest that hyper- region of minimum homozygous deletion was nar- methylation of the CpG island promoter of the rowed to 120 kb using several lung cancer and a breast RASSF1A gene is associated with SCLC pathogenesis. cancer cell line (Sekido et al., 1998). Until now, several Oncogene (2001) 20, 3563 ± 3567. genes located in the 3p21.3-deleted chromosomal region have been isolated as candidates for tumor Keywords: RASSF1; methylation; CpG island; tumor suppressor genes. However, none of the genes located suppressor gene; small cell lung cancer; 3p21 within the 3p21.3 homozygous deletion area was found to be mutated in more than 5 ± 10% of lung tumors (Lerman and Minna, 2000). This supports the assump- Introduction tion that the putative 3p21.3 tumor suppressor gene is inactivated by mechanisms other than mutation of the Lung cancer currently is the leading cause of cancer coding sequence. death in the United States with more than 150 000 Transcriptional silencing by hypermethylation of deaths annually attributed to this disease (Wingo et al., CpG islands containing the promoter regions of tumor 1999). Lung cancers are broadly classi®ed into two suppressor genes is becoming recognized as a common groups: small cell lung cancer (SCLC) and non-small mechanism (Baylin et al., 1998; Jones and Laird, 1999; cell lung cancer (NSCLC), the latter being divided into Baylin and Herman, 2000). Recent studies have the major histological subtypes adenocarcinoma, demonstrated that the CpG islands in the RB, p16, squamous cell carcinoma, and large cell carcinoma. VHL, APC, MLH1,andBRCA1 genes are frequently Losses of heterozygosity (LOH) on chromosome arms methylated in a variety of human cancers, but are 3p, 9p, 13q and 17p are among the most frequent usually methylation-free in the corresponding normal alterations in lung tumors (Whang-Peng et al., 1982; tissues (Baylin et al., 1998; Jones and Laird, 1999; Yokota et al., 1987; Naylor et al., 1987; Hibi et al., Baylin and Herman, 2000). CpG islands that are 1992; Kohno and Yokota, 1999; Girard et al., 2000). hypermethylated in lung cancer include those of the However, only a limited number of tumor suppressor p16 gene (Shapiro et al., 1995; Otterson et al., 1995; genes have been identi®ed as potential targets for Merlo et al., 1995; Belinsky et al., 1998), the DNA chromosomal deletion events in these tumors. These repair gene MGMT (Palmisano et al., 2000), the death- associated protein kinase (Tang et al., 2000), and DMBT1, a candidate tumor suppressor gene located at 10q25.3 ± 26.1 (Wu et al., 1999). Inactivation of tumor *Correspondence: GP Pfeifer Received 5 January 2001; revised 27 February 2001; accepted 15 suppressor genes due to hypermethylation may play an March 2001 important role in carcinogenesis. RASSF1A methylation in lung cancer R Dammann et al 3564 In previous work we have cloned and characterized the Ras association domain family 1A gene (RASS- F1A) located within the 120 kb 3p21.3 minimal homozygous deletion region and found that this gene is epigenetically inactivated in 40% of primary non- small cell lung cancers (Dammann et al., 2000). The RASSF1 protein is 55% homologous to the mamma- lian Ras eector Nore1 (Vavvas et al., 1998). Re- expression of RASSF1A in A549 lung cancer cells reduced colony formation, suppressed anchorage-in- dependent growth and inhibited tumor formation in nude mice (Dammann et al., 2000). In the present study we have investigated the methylation status of the RASSF1A gene in primary SCLC samples. Previously, we have observed that all 17 of the 17 analysed SCLC cell lines had lost the expression of RASSF1A and silencing of RASSF1A correlated with hypermethylation of the CpG island promoter sequence (Dammann et al., 2000). However, cell lines are known to have unusually high frequencies of CpG island methylation (Antequera et al., 1990; Jones et al., 1990), which makes an analysis of primary tumors a necessity. To analyse the RASSF1 gene in primary SCLCs, we determined the methylation status of the two CpG islands, in which the alternative RASSF1A and RASSF1C transcripts initiate. We used bisul®te sequencing of genomic DNA (Clark et al., 1994) to determine the methylation status of CpG dinucleo- tides. We analysed 16 CpGs in a 205 bp fragment containing three Sp1 consensus binding sites and the putative transcription and translation initiation sites of RASSF1A. All guanines present after bisul®te sequen- cing in Figure 1 are derived from methylated cytosines on the complementary strand. In Figure 1, one SCLC cell line (H345) shows complete methylation of the Figure 1 Methylation analysis of the RASSF1A gene in primary small cell lung carcinomas. Sequences of PCR products from sequence analysed. Further, we analysed the methyla- bisul®te-treated DNA for the CpG island spanning the RASSF1A tion status of the RASSF1A promoter in 28 primary promoter were obtained from dierent cancer and normal non-microdissected SCLC samples. Of the 28 samples samples. Methylated cytosines appear as a G signal in the analysed, 22 (=79%) were methylated in the complementary strand (bold Gs). The sequence is shown before and after bisul®te conversion at the top. The position of a TaqI promoter region of RASSF1A. Five matching normal restriction site is underlined. Two Sp1 consensus sites are boxed. tissue samples were available. Several examples, The data shown were obtained by direct sequencing of PCR including two matching tumor and normal tissues, products from bisul®te-treated DNA or from PCR products are shown in Figure 1. One of the normal tissue subcloned into plasmids (two primary tumors and matched samples was methylated, but to a lower degree than normal tissue controls). Small cell lung carcinomas and the corresponding normal lung tissues were obtained from the Aichi the corresponding tumor (25% versus 80%). The Cancer Center Research Institute and the City of Hope National other four normal matching tissue samples were Medical Center. DNA was isolated from tumors, and the unmethylated. In Figure 1, ®ve methylated primary methylation status of the RASSF1A promoter region was small cell lung carcinomas are shown. We estimated determined by a bisul®te genomic sequencing protocol (Clark et al., 1994; Dammann et al., 2000). DNA sequences were ampli®ed from the sequence scans of the uncloned PCR by mixing 100 ng of bisul®te-treated DNA with primers MU379 products that the tumor samples SC-1, SC-3, and (5'-GTTTTGGTAGTTTAATGAGTTTAGGTTTTTT) and SC-7 showed more than 80% bisul®te modi®cation- ML730 (5'-ACCCTCTTCCTCTAACACAATAAAACTAACC) resistant cytosines at all CpGs analysed. In total, more in 100 mMl reaction buer containing 200 mM of each dNTP and than 75% of the SCLC samples that were methylated Taq polymerase (Roche Diagnostics Corp.; Indianapolis, IN, USA) and incubating at 958C for 15 s, 558C for 15 s and 748C for contained more than 60% bisul®te-resistant cytosines 30 s, for 20 cycles. A semi-nested PCR was performed using 1/50 at all CpG sequences. This high level of methylation of the initially ampli®ed products and an internal primer ML561 indicates that a large fraction of the tumor cell (5'-CCCCACAATCCCTACACCCAAAT) and primer MU379 population has the promoter of RASSF1A methylated. with similar conditions as described for the preceding PCR ampli®cation, but for 30 cycles. PCR products were initially Since LOH at 3p21.3 occurs in almost 100% of all sequenced directly to obtain average methylation levels and were SCLC tumors (Whang-Peng et al., 1982; Naylor et al., then subcloned for con®rmation 1987; Hibi et al., 1992; Kok et al., 1997; Wistuba et Oncogene RASSF1A methylation in lung cancer R Dammann et al 3565 al., 2000; Girard et al., 2000; Lindblad-Toh et al., 2000), the remaining allele is silenced by methylation.
Recommended publications
  • 1847.Full-Text.Pdf
    Published OnlineFirst January 29, 2016; DOI: 10.1158/0008-5472.CAN-15-1752 Cancer Molecular and Cellular Pathobiology Research RASSF1A Directly Antagonizes RhoA Activity through the Assembly of a Smurf1-Mediated Destruction Complex to Suppress Tumorigenesis Min-Goo Lee, Seong-In Jeong, Kyung-Phil Ko, Soon-Ki Park, Byung-Kyu Ryu, Ick-Young Kim, Jeong-Kook Kim, and Sung-Gil Chi Abstract RASSF1A is a tumor suppressor implicated in many tumorigenic as Rhotekin. As predicted on this basis, RASSF1A competed with processes; however, the basis for its tumor suppressor functions are Rhotekin to bind RhoA and to block its activation. RASSF1A not fully understood. Here we show that RASSF1A is a novel mutants unable to bind RhoA or Smurf1 failed to suppress antagonist of protumorigenic RhoA activity. Direct interaction RhoA-induced tumor cell proliferation, drug resistance, epitheli- between the C-terminal amino acids (256–277) of RASSF1A and al–mesenchymal transition, migration, invasion, and metastasis. active GTP-RhoA was critical for this antagonism. In addition, Clinically, expression levels of RASSF1A and RhoA were inversely interaction between the N-terminal amino acids (69-82) of correlated in many types of primary and metastatic tumors and RASSF1A and the ubiquitin E3 ligase Smad ubiquitination regu- tumor cell lines. Collectively, our findings showed how RASSF1A latory factor 1 (Smurf1) disrupted GTPase activity by facilitating may suppress tumorigenesis by intrinsically inhibiting the tumor- Smurf1-mediated ubiquitination of GTP-RhoA. We noted that the promoting activity of RhoA, thereby illuminating the potential RhoA-binding domain of RASSF1A displayed high sequence mechanistic consequences of RASSF1A inactivation in many can- homology with Rho-binding motifs in other RhoA effectors, such cers.
    [Show full text]
  • MAP1S Antibody Rabbit Polyclonal Antibody Catalog # ALS16470
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 MAP1S Antibody Rabbit Polyclonal Antibody Catalog # ALS16470 Specification MAP1S Antibody - Product Information Application IHC Primary Accession Q66K74 Reactivity Human Host Rabbit Clonality Polyclonal Calculated MW 112kDa KDa MAP1S Antibody - Additional Information Gene ID 55201 Human Kidney: Formalin-Fixed, Paraffin-Embedded (FFPE) Other Names Microtubule-associated protein 1S, MAP-1S, BPY2-interacting protein 1, Microtubule-associated protein 8, Variable charge Y chromosome 2-interacting protein 1, VCY2-interacting protein 1, VCY2IP-1, MAP1S heavy chain, MAP1S light chain, MAP1S, BPY2IP1, C19orf5, MAP8, VCY2IP1 Target/Specificity Human MAP1S Reconstitution & Storage Human Testis: Formalin-Fixed, Aliquot and store at -20°C or -80°C. Avoid Paraffin-Embedded (FFPE) freeze-thaw cycles. Precautions MAP1S Antibody - Background MAP1S Antibody is for research use only and not for use in diagnostic or therapeutic Microtubule-associated protein that mediates procedures. aggregation of mitochondria resulting in cell death and genomic destruction (MAGD). Plays a role in anchoring the microtubule organizing MAP1S Antibody - Protein Information center to the centrosomes. Binds to DNA. Plays a role in apoptosis. Involved in the formation of microtubule bundles (By similarity). Name MAP1S Synonyms BPY2IP1, C19orf5, MAP8, MAP1S Antibody - References VCY2IP1 Wong E.Y.,et al.Biol. Reprod. Function 70:775-784(2004). Microtubule-associated protein that Ding J.,et al.Biochem. Biophys. Res. Commun. mediates aggregation of mitochondria 339:172-179(2006). resulting in cell death and genomic Ota T.,et al.Nat. Genet. 36:40-45(2004). Page 1/2 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 destruction (MAGD).
    [Show full text]
  • Microtubule-Associated Protein 1B, a Growth-Associated and Phosphorylated Scaffold Protein Beat M
    Brain Research Bulletin 71 (2007) 541–558 Review Microtubule-associated protein 1B, a growth-associated and phosphorylated scaffold protein Beat M. Riederer a,b,∗ a D´epartement de Biologie Cellulaire et de Morphologie (DBCM), Universit´e de Lausanne, 9 rue du Bugnon, CH-1005 Lausanne, Switzerland b Centre des Neurosciences Psychiatriques (CNP), Hˆopital Psychiatrique, 1008 Prilly, Switzerland Received 20 October 2006; accepted 28 November 2006 Available online 27 December 2006 Abstract Microtubule-associated protein 1B, MAP1B, is one of the major growth associated and cytoskeletal proteins in neuronal and glial cells. It is present as a full length protein or may be fragmented into a heavy chain and a light chain. It is essential to stabilize microtubules during the elongation of dendrites and neurites and is involved in the dynamics of morphological structures such as microtubules, microfilaments and growth cones. MAP1B function is modulated by phosphorylation and influences microtubule stability, microfilaments and growth cone motility. Considering its large size, several interactions with a variety of other proteins have been reported and there is increasing evidence that MAP1B plays a crucial role in the stability of the cytoskeleton and may have other cellular functions. Here we review molecular and functional aspects of this protein, evoke its role as a scaffold protein and have a look at several pathologies where the protein may be involved. © 2006 Elsevier Inc. All rights reserved. Keywords: Microtubules; Actin; Cytoskeleton; Scaffold;
    [Show full text]
  • RASSF6; the Putative Tumor Suppressor of the RASSF Family
    Review RASSF6; the Putative Tumor Suppressor of the RASSF Family Hiroaki Iwasa 1, Xinliang Jiang 2 and Yutaka Hata 1,2,* Received: 2 November 2015; Accepted: 1 December 2015; Published: 9 December 2015 Academic Editor: Reinhard Dammann 1 Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; [email protected] 2 Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5803-5164; Fax: +81-3-5803-0121 Abstract: Humans have 10 genes that belong to the Ras association (RA) domain family (RASSF). Among them, RASSF7 to RASSF10 have the RA domain in the N-terminal region and are called the N-RASSF proteins. In contradistinction to them, RASSF1 to RASSF6 are referred to as the C-RASSF proteins. The C-RASSF proteins have the RA domain in the middle region and the Salvador/RASSF/Hippo domain in the C-terminal region. RASSF6 additionally harbors the PSD-95/Discs large/ZO-1 (PDZ)-binding motif. Expression of RASSF6 is epigenetically suppressed in human cancers and is generally regarded as a tumor suppressor. RASSF6 induces caspase-dependent and -independent apoptosis. RASSF6 interacts with mammalian Ste20-like kinases (homologs of Drosophila Hippo) and cross-talks with the Hippo pathway. RASSF6 binds MDM2 and regulates p53 expression. The interactions with Ras and Modulator of apoptosis 1 (MOAP1) are also suggested by heterologous protein-protein interaction experiments. RASSF6 regulates apoptosis and cell cycle through these protein-protein interactions, and is implicated in the NF-κB and JNK signaling pathways.
    [Show full text]
  • RASSF1A-LATS1 Signalling Stabilises Replication Forks by Restricting CDK2
    RASSF1A-LATS1 signalling stabilises replication forks by restricting CDK2-mediated phosphorylation of BRCA2 Dafni-Eleftheria Pefani1, Robert Latusek1, Isabel Pires1, Anna M. Grawenda1, Karen S. Yee1, Garth Hamilton1, Louise van der Weyden2, Fumiko Esashi3, Ester M. Hammond1 and Eric O’Neill1* 1CRUK/MRC Oxford Institute, Dept. of Oncology, University of Oxford, Oxford, OX3 7DQ, UK. 2The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK. 3Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK. Email: [email protected] Tel. 0044 (0) 1865 617321 *corresponding author Word Count: 3,470 Figures 7: comprising 23 panels Supplementary Figures 7: comprising 22 panels Supplementary Figure with uncropped blots 1 Genomic instability is a key hallmark of cancer leading to tumour heterogeneity and therapeutic resistance. BRCA2 has a fundamental role in error-free DNA repair but additionally sustains genome integrity by promoting RAD51 nucleofilament formation at stalled replication forks. CDK2 phosphorylates BRCA2 (pS3291-BRCA2) to limit stabilising contacts with polymerised RAD51, however, how replication stress modulates CDK2 activity and whether loss of pS3291-BRCA2 regulation results in genomic instability of tumours is not known. Here we demonstrate that the hippo pathway kinase LATS1 interacts with CDK2 in response to genotoxic stress to constrain pS3291-BRCA2 and support RAD51 nucleofilaments, thereby maintaining genomic fidelity during replication stalling. We also show that LATS1 forms part of an ATR mediated response to replication stress that requires the tumour suppressor RASSF1A. Importantly, perturbation of the ATR-RASSF1A-LATS1 signalling axis leads to genomic defects associated with loss of BRCA2 function and contributes to genomic instability and ‘BRCA-ness’ in lung cancers.
    [Show full text]
  • Inter-Species Differences in Response to Hypoxia in Ipsc-Derived Cardiomyocytes from Humans and Chimpanzees
    bioRxiv preprint doi: https://doi.org/10.1101/382895; this version posted August 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Inter-species differences in response to hypoxia in iPSC-derived cardiomyocytes from humans and chimpanzees Michelle C. Ward1* and Yoav Gilad1,2* 1Department of Medicine, University of Chicago, Chicago, IL, USA 2Department of Human Genetics, University of Chicago, Chicago, IL, USA *Correspondence should be addressed to M.C.W ([email protected]), and Y.G ([email protected]). 1 bioRxiv preprint doi: https://doi.org/10.1101/382895; this version posted August 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Despite anatomical similarities, there appear to be differences in susceptibility to cardiovascular disease between primates. For example, humans are prone to ischemia-induced myocardial infarction unlike chimpanzees, which tend to suffer from fibrotic disease. However, it is challenging to determine the relative contributions of genetic and environmental effects to complex disease phenotypes within and between primates. The ability to differentiate cardiomyocytes from induced pluripotent stem cells (iPSCs), now allows for direct inter-species comparisons of the gene regulatory response to disease-relevant perturbations. A consequence of ischemia is oxygen deprivation.
    [Show full text]
  • RASSF1C, an Isoform of the Tumor Suppressor RASSF1A, Promotes the Accumulation of B-Catenin by Interacting with Btrcp
    Research Article RASSF1C, an Isoform of the Tumor Suppressor RASSF1A, Promotes the Accumulation of B-Catenin by Interacting with BTrCP Emilie Estrabaud,1 Irina Lassot,1 Guillaume Blot,1 Erwann Le Rouzic,1 Vale´rie Tanchou,3 Eric Quemeneur,3 Laurent Daviet,2 Florence Margottin-Goguet,1 and Richard Benarous1 1Institut Cochin, De´partementMaladies Infectieuses; Institut National de la Sante et de la Recherche Medicale, U567; Centre National de la Recherche Scientifique, UMR 8104; Universite´Paris Descartes, Faculte´deMe´decine Rene´Descartes, UMR-S 8104; 2Hybrigenics, Paris, France; and 3CEA Valrhoˆ, DSV, DIEP, SBTN, BP 17171, Bagnols sur Ce`zecedex, France Abstract small-cell lung, breast, kidney, nasopharyngeal, prostate, and The Ras-association domain family 1 (RASSF1) gene has seven hepatocellular carcinoma, and retinoblastoma (reviewed in ref. 4). different isoforms; isoform A is a tumor-suppressor gene In contrast, the expression of another isoform of RASSF1, RASSF1C, (RASSF1A). The promoter of RASSF1A is inactivated in many has been shown not to be affected, and no epigenetic inactivation cancers, whereas the expression of another major isoform, of the RASSF1C promoter has been reported in these tumors (3, 4). RASSF1C, is not affected. Here, we show that RASSF1C, but not RASSF1A null mice that still express RASSF1C had a higher RASSF1A, interacts with BTrCP. Binding of RASSF1C to BTrCP incidence of spontaneous tumorigenesis and a lower survival rate than wild-type mice (5). The mechanism of action of RASSF1A at involves serine 18 and serine 19 of the SS18GYXS19 motif present in RASSF1C but not in RASSF1A. This motif is the molecular level remains poorly understood.
    [Show full text]
  • RASSF5 Inhibits Growth and Invasion and Induces Apoptosis in Osteosarcoma Cells Through Activation of MST1/LATS1 Signaling
    ONCOLOGY REPORTS 32: 1505-1512, 2014 RASSF5 inhibits growth and invasion and induces apoptosis in osteosarcoma cells through activation of MST1/LATS1 signaling XU-HUI ZHOU1, CHAO-QUN YANG1, CHENG-LIN ZHANG1, YANG GAO1, HONG-BIN YUAN2 and CE WANG1 Departments of 1Orthopedic Surgery and 2Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China Received May 13, 2014; Accepted July 9, 2014 DOI: 10.3892/or.2014.3387 Abstract. Ras association (RalGDS/AF-6) domain family tumor suppressor in OS cells through activation of the MST1/ member RASSF5 has been implicated in a variety of key LATS1 pathway. biological processes, including cell proliferation, cell cycle regulation and apoptosis. It is believed to play an important Introduction role in tumorigenesis as a tumor suppressor in a number of malignancies. Yet, little is known concerning the function and Osteosarcoma (OS), originating from bone as an aggres- underlying mechanisms of RASSF5 in human osteosarcoma sive bone tumor, is an infrequent but the most common and (OS). The expression of RASSF5 was examined by immu- destructive primary bone tumor in children and adolescents. nohistochemical assay using a tissue microarray in 45 cases It is the second highest cause of cancer-related mortality, of OS tissues. A gain-of-function approach was used to mainly due to the development of often fatal metastasis (1). In observe the effects of lentiviral vector-mediated overexpres- the past few decades, surgical resection therapy has resulted sion of RASSF5 (Lv-RASSF5) on cell growth, invasion and in the poor prognosis of OS patients. With the application apoptosis, respectively, as indicated by MTT, Transwell and of neoadjuvant chemotherapy in OS, the five-year survival flow cytometry assays, and the expression levels of mamma- rate has significantly increased (2,3).
    [Show full text]
  • Rassf Family of Tumor Suppressor Polypeptides
    Rassf Family of Tumor Suppressor Polypeptides The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Avruch, Joseph, Ramnik Xavier, Nabeel Bardeesy, Xian-feng Zhang, Maria Praskova, Dawang Zhou, and Fan Xia. 2008. “Rassf Family of Tumor Suppressor Polypeptides.” Journal of Biological Chemistry 284 (17): 11001–5. https://doi.org/10.1074/jbc.r800073200. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41483004 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA MINIREVIEW This paper is available online at www.jbc.org THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 284, NO. 17, pp. 11001–11005, April 24, 2009 © 2009 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A. Rassf Family of Tumor Rassf1A expression inhibits proliferation and tumor growth in * nude mice. Most persuasively, specific knock-outs of the exon Suppressor Polypeptides encoding the unique N terminus of Rassf1A result in increased Published, JBC Papers in Press, December 17, 2008, DOI 10.1074/jbc.R800073200 numbers of tumors in older mice, specifically lymphomas, lung ‡§¶1 ¶ʈ ¶‡‡ Joseph Avruch , Ramnik Xavier **, Nabeel Bardeesy , tumors, and gastrointestinal tumors (7, 8); increased numbers Xian-feng Zhang‡§¶, Maria Praskova‡§¶, Dawang Zhou‡§¶, and
    [Show full text]
  • Chromosome 3P and Breast Cancer
    B.J Hum Jochimsen Genet et(2002) al.: Stetteria 47:453–459 hydrogenophila © Jpn Soc Hum Genet and Springer-Verlag4600/453 2002 MINIREVIEW Qifeng Yang · Goro Yoshimura · Ichiro Mori Takeo Sakurai · Kennichi Kakudo Chromosome 3p and breast cancer Received: April 30, 2002 / Accepted: May 27, 2002 Abstract Solid tumors in humans are now believed to are now believed to develop through a multistep process develop through a multistep process that activates that activates oncogenes and inactivates tumor suppressor oncogenes and inactivates tumor suppressor genes. Loss of genes (Lopez-Otin and Diamandis 1998). Inactivation of a heterozygosity at chromosomes 3p25, 3p22–24, 3p21.3, tumor suppressor gene (TSG) often involves mutation of 3p21.2–21.3, 3p14.2, 3p14.3, and 3p12 has been reported in one allele and loss or replacement of a chromosomal seg- breast cancers. Retinoid acid receptor 2 (3p24), thyroid ment containing another allele. Loss of heterozygosity hormone receptor 1 (3p24.3), Ras association domain fam- (LOH) has been found on chromosomes 1p, 1q, 3p, 6q, 7p, ily 1A (3p21.3), and the fragile histidine triad gene (3p14.2) 11q, 13q, 16q, 17p, 17q, 18p, 18q, and 22q in breast cancer have been considered as tumor suppressor genes (TSGs) for (Smith et al. 1993; Callahan et al. 1992; Sato et al. 1990; breast cancers. Epigenetic change may play an important Hirano et al. 2001a); the commonly deleted regions include role for the inactivation of these TSGs. Screens for pro- 3p, 6q, 7p, 11q, 16q, and 17p (Smith et al. 1993; Hirano et al. moter hypermethylation may be able to identify other TSGs 2001a).
    [Show full text]
  • Resistance to Targeted Therapy and RASSF1A Loss in Melanoma: What Are We Missing?
    International Journal of Molecular Sciences Review Resistance to Targeted Therapy and RASSF1A Loss in Melanoma: What Are We Missing? Stephanie McKenna and Lucía García-Gutiérrez * Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; [email protected] * Correspondence: [email protected] Abstract: Melanoma is one of the most aggressive forms of skin cancer and is therapeutically challenging, considering its high mutation rate. Following the development of therapies to target BRAF, the most frequently found mutation in melanoma, promising therapeutic responses were observed. While mono- and combination therapies to target the MAPK cascade did induce a therapeutic response in BRAF-mutated melanomas, the development of resistance to MAPK-targeted therapies remains a challenge for a high proportion of patients. Resistance mechanisms are varied and can be categorised as intrinsic, acquired, and adaptive. RASSF1A is a tumour suppressor that plays an integral role in the maintenance of cellular homeostasis as a central signalling hub. RASSF1A tumour suppressor activity is commonly lost in melanoma, mainly by aberrant promoter hypermethylation. RASSF1A loss could be associated with several mechanisms of resistance to MAPK inhibition considering that most of the signalling pathways that RASSF1A controls are found to be altered targeted therapy resistant melanomas. Herein, we discuss resistance mechanisms in detail and the potential role for RASSF1A reactivation to re-sensitise BRAF mutant melanomas to therapy. Citation: McKenna, S.; García-Gutiérrez, L. Resistance to Keywords: melanoma; targeted therapy; tumour suppressor; RASSF1A; resistance; DNA methylation Targeted Therapy and RASSF1A Loss in Melanoma: What Are We Missing? Int. J. Mol. Sci.
    [Show full text]
  • Differential Activity of the KRAS Oncogene by Method of Activation: Implications for Signaling and Therapeutic Intervention
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2012 Differential Activity of the KRAS Oncogene by Method of Activation: Implications for Signaling and Therapeutic Intervention Nathan Ihle Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Medicine and Health Sciences Commons, Molecular Biology Commons, and the Systems Biology Commons Recommended Citation Ihle, Nathan, "Differential Activity of the KRAS Oncogene by Method of Activation: Implications for Signaling and Therapeutic Intervention" (2012). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 314. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/314 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. Differential Activity of the KRAS Oncogene by Method of Activation: Implications for Signaling and Therapeutic Intervention A DISSERTATION Presented to the Faculty of The University of Texas Health Science Center at Houston and The University of Texas M. D. Anderson Cancer Center Graduate School of Biomedical Sciences in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By Nathan Ihle, B.S.
    [Show full text]