HAZEL M. PRICHARD Department of Earth Sciences, Open University, Milton Keynes, Buekinghamshire, U.K

Total Page:16

File Type:pdf, Size:1020Kb

HAZEL M. PRICHARD Department of Earth Sciences, Open University, Milton Keynes, Buekinghamshire, U.K Canadian Mineralogist Vol. 26, pp. 979-990 (1988) PLATINUM AND PALLADIUM MINERALS FROM TWO PGE-RICH LOCALITIES IN THE SHETLAND OPHIOLITE COMPLEX HAZEL M. PRICHARD Department of Earth Sciences, Open University, Milton Keynes, Buekinghamshire, U.K. MK7 6AA MAHMUD TARKIAN Mineralogiseh-Petrographisehes Institut, Grindelallee48, 2000 Hamburg 13, West Germany ABSTRACT INTRODUCTION The mineralogy of Pt- and Pd-bearing platinum-group Traditionally, the PGM considered typical of minerals (POM), which form a varied assemblage previ- ously un described from other ophiolite complexes, is ophiolite complexes are Os-, Ir- and Ru-bearing recorded from two localities in the Shetland ophiolite, Scot- (Constantinides et al. 1979, Talkington 1981, land. In order of abundance the minerals include sperry- Prichard et al. 1981, Legendre 1982, Auge 1985) and lite, mertieite or stibiopalladinite, Pt-Pd-Cu-Au alloys, are associated with chromitites. Pt and Pd com- hongshiite, genkinite and potarite. All six platinum-group pounds may be more common; for example, sper- elements (POE) form major components of minerals in the rylite has been described from northern Tibet (Yu Shetland ophiolite complex. The different POM occur in & Chou 1979), and one sperrylite grain has been ten- association with "each other. Textural evidence indicates that tatively identified from the Josephine peridotite Ru- and Os-bearing POM formed early and were followed by Ir, Pd-, Rh- and, finally, Pt-bearing POM. The con- (Stockman & Hlava 1984). Chang et al. (1973) have reported the presence of sperrylite and stibiopal- centration of all six POE could be magmatic, but much of the POE mineralogy, except for laurite in the center of ladinite in ophiolites in northwestern China. Recent- chromite grains, has been modified by subsequent processes. ly, a much more diverse assemblage of PGM, includ- During POM formation, the environment became more ing Pt- and Pd-bearing minerals (Neary et al. 1984, antimony- and arsenic-rich, which finally led to the for- Prichard et al. 1984, 1986, Gunn et at. 1985) has been mation of low-temperature alteration minerals. discovered in the Shetland ophiolite complex. These PGM are reminiscent of those found in stratiform Keywords: platinum-group minerals, Shetland, ophiolite, complexes such as the Bushve1d and Stillwater. sperrylite, mertieite, stibiopalladinite, hongshiite, The Shetland mafic and ultramafic complex, genkinite, potarite, Scotland. which lies in the northeast of Scotland, on the is- lands of Unst and Fetlar, was first described as an SOMMAIRE ophiolite complex by Garson & Plant (1973) and sub- Les mineraux du groupe du platine enrichis en Pt et Pd, sequently by Flinn et al. (1979), Gass et al. (1962) decouverts a deux endroits dans Ie massif ophiolitique de and Prichard (1985). The complex is of Caledonian Shetland, en Ecosse, definissent un assemblage varie jamais origin and corresponds to the lower part of a typi- decrit auparavant dans de tels massifs. Dans I'ordre de leur cal ophiolite suite. The PGE are concentrated within abondance, ce sont sperrylite, mertieite ou stibiopalladi- the mantle sequence. They occur in chromite-rich nite, alii ages de Pt-Pd-Cu-Au, hongshiite, genkinite et samples located in two separate lenses of dunite potarite. Les six elements du groupe du platine constituent within harzburgite at Cliff and Harold's Grave (Gass des composants majeurs de ces mineraux dans Ie massif de et at. 1982). The first aim of this paper is to describe Shetland. lis sont associes. Les textures indiquent que les mineraux porteurs de Ru et de as ont ete formes a un stade these Pt- and Pd-bearing minerals, all of which are precoce, et ont ete suivis par des mineraux porteurs de Ir, unusual in an ophiolite complex. The mineralogy of Pd et Rh, et, ala toute fin, Pt. La concentration des six the Os-, Ir-, Ru- and Rh-bearing PGM from Cliff elements pourrait etre magmatique, mais la grande partie and Harold's Grave are described elsewhere (Tarki- des assemblages de mineraux observes aurait ete modifiee an & Prichard 1987). Secondly, the relative sequence par des processus tardifs, sauf dans Ie cas de la laurite pie- of formation of the PGM is examined, and their gen- gee au centre des cristaux de chromite. Au cours de Ia for- esis discussed. mation de ces mineraux, Ie milieu s'est enrichi en antimoine et en arsenic, ce qui a eventuellement mene ala formation THE PGM ASSEMBLAGE AT CLIFF de mineraux d'alteration stables a basses temperatures. AND HAROLD'S GRAVE (Traduit par Ia Redaction) Mots-eMs: mineraux du groupe du platine, Shetland, ophio- The PGM species and relative abundance at Cliff lite, sperrylite, mertieite, stibiopalladinite, hongshiite, and Harold's Grave are summarized in Table 1. Both genkinite, potarite, Ecosse. localities contain PGM in which all six PGE occur 979 980 THE CANADIAN MINERALOGIST TABLE 1. FREQUENCY AND SIZE OF PGM FROM CLIFF AND HAROLD'S GRAVE as well as synthetic PbSb and PbBiTe, were used as standards. Corrections were applied using the com- puter program PAP. It was possible to analyze quan- Cliff Harold's No.ofgrains Av..SI18 Standard Grav. meaaxlld ~ devllltionof titatively minerals with a diameter of greater than avaragaalz8 5 JLm. Many of the PGM are less than 5 JLmin diameter f1 Sperrylite Most 37 11 x4 t8.4x:l:2.9 and commonly form composite grains with abundant abundant inclusions of different PGM, so that it was not Genkinite 2 grains 8x2and 12x4 always possible to obtain quantitative analytical data. Hongshiile 1 grain 1 grain 6x2and 5,. In these cases, single-element scans have been used Pt.Pd-Cu alloy 1 grain 6,5 Pt-Pd.Au-Cu 4 grains 2,2 t 1.8xt 1.0 to demonstrate the complexity of the composite fJI PGM and to provide qualitative data. A back- Mertieiteor Slibiopalladinile Abundant 2 grains 26 9,. t7.8x:t 1.4 scattered electron image defines the surface outline Poterita 1 grain 1 3,2 Au Pd alloy 5 grains 5 3,3 :to.5x:tO.5 of the different PGM in such composite grains. The Bh outline of the single-element scan does not always Holllngworth;t" Moderately Moderately common common 11 x7 :1:8.2x:l:2.7 exactly match the outline of the mineral of which Rh, Sb, S 1 grain 2 grains 4x3, 4x2and it forms a part: extension of the PGM below the sur- 3'2 Rh,NI,Sb 1 grain face of the section, beneath surrounding minerals, 6'2 or the presence of hidden PGM also at a shallow h Irersile Moderately depth within the composite grain may contribute an common Common 27.10 :t:33x:t 11.5 Ir,Sb, S 1 grain 6,6 additional signal to the scan. !!II In the following section we describe the Pt- and Laurfte Rare Common 33 13x 10 :t:14.1 x:!: 15.5 Ruthenieo Pd-bearing PGM and give compositions. For the rare penllandite Common Common 30x 10 :I:15.6x:t:4.5 PGM, their characteristics are described using Qi Native 1 grain Common 50 3,2 :i:1.5 x:t: 0.5 reflected-light microscopy; where no quantitative analysis was possible, records of single-element scans are used. MINERALOGY as major components. However, sperrylite is the Sperrylite, PtAs2 most abundant PGM at Cliff; it has not been found at Harold's Grave. Similarly, mertieite or stibiopal- The Shetland sperrylite is anhedral (Fig. Ic), but ladinite is the second most abundant PGM.at Cliff some grains have adjacent euhedral crystal edges but has been encountered at Harold's Grave only as meeting at 120°. Crystals commonly show cleavage two grains measuring 2 by 3 JLm.The average maxi- in two directions at 120° (Fig. la). Sperrylite inter- mum and minimum diameters and standard devia- grown with chlorite has a zig-zag shape (Fig. lb). tions, of the PGM, as exposed on the polished thin The composition of the sperrylite is rather constant; sections, are given in Table I. The range of sizes is typical compositions are given in Table 2. quite variable. For example, sperrylite ranges from 2 x I JLmto 85 x 45 JLm,and laurite from I x I Genkinite, (Pt,Pd)4Sb3 JLm to 250 x 200 JLm. In contrast, the abundant grains of native osmium have been observed not to Genkinite has been located in two chromite-rich have dimensions greater than 5 JLm.It is not always rocks from Harold's Grave. In one it forms part of possible to accurately measure all PGM, as many are a composite cluster of minerals (Fig. 2), whereas in present in irregular shapes and contain inclusions. the other it is situated in a cluster of PGM but is iso- Hongshiite (Fig. 3) may be present as a single rela- lated from them by silicate matrix. In both cases the tively large crystal that encloses a Ni-Cu alloy. genkinite forms irregular crystals with dimensions of approximately 12 x 4 JLmand 8 x 2 JLm. The optical properties of the genkinite are given in Table TECHNIQUES 3. A typical composition is Pt 41.86, Rh 8.23, Pd 7.01, Ni 3.41, Sb 38.96, total 99.47 wt.OJo,giving a The PGM were studied using both reflected- and formula of (Pt2.o4Rho.76Pdo.62Nio.ssh3.97Sb3.o3' transmitted-light microscopy. Analyses of the PGM Genkinite has been described only three times previ- were obtained using a Cameca Camebax Microbeam ously (Tarkian & Stumpfll975, Cabri et al. 1977, CD wavelength-dispersion electron microprobe at the 1981); this paper reports the fourth occurrence, in University of Hamburg. The analytical conditions this case from a chromite-rich lithology from an were 15 kV and 15 nA. Pure metals, FeS2,FeAsS, ophiolitic environment.
Recommended publications
  • Podiform Chromite Deposits—Database and Grade and Tonnage Models
    Podiform Chromite Deposits—Database and Grade and Tonnage Models Scientific Investigations Report 2012–5157 U.S. Department of the Interior U.S. Geological Survey COVER View of the abandoned Chrome Concentrating Company mill, opened in 1917, near the No. 5 chromite mine in Del Puerto Canyon, Stanislaus County, California (USGS photograph by Dan Mosier, 1972). Insets show (upper right) specimen of massive chromite ore from the Pillikin mine, El Dorado County, California, and (lower left) specimen showing disseminated layers of chromite in dunite from the No. 5 mine, Stanislaus County, California (USGS photographs by Dan Mosier, 2012). Podiform Chromite Deposits—Database and Grade and Tonnage Models By Dan L. Mosier, Donald A. Singer, Barry C. Moring, and John P. Galloway Scientific Investigations Report 2012-5157 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 This report and any updates to it are available online at: http://pubs.usgs.gov/sir/2012/5157/ For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Mosier, D.L., Singer, D.A., Moring, B.C., and Galloway, J.P., 2012, Podiform chromite deposits—database and grade and tonnage models: U.S.
    [Show full text]
  • Chapter 9 Gold-Rich Porphyry Deposits: Descriptive and Genetic Models and Their Role in Exploration and Discovery
    SEG Reviews Vol. 13, 2000, p. 315–345 Chapter 9 Gold-Rich Porphyry Deposits: Descriptive and Genetic Models and Their Role in Exploration and Discovery RICHARD H. SILLITOE 27 West Hill Park, Highgate Village, London N6 6ND, England Abstract Gold-rich porphyry deposits worldwide conform well to a generalized descriptive model. This model incorporates six main facies of hydrothermal alteration and mineralization, which are zoned upward and outward with respect to composite porphyry stocks of cylindrical form atop much larger parent plutons. This intrusive environment and its overlying advanced argillic lithocap span roughly 4 km vertically, an interval over which profound changes in the style and mineralogy of gold and associated copper miner- alization are observed. The model predicts a number of geologic attributes to be expected in association with superior gold-rich porphyry deposits. Most features of the descriptive model are adequately ex- plained by a genetic model that has developed progressively over the last century. This model is domi- nated by the consequences of the release and focused ascent of metalliferous fluid resulting from crys- tallization of the parent pluton. Within the porphyry system, gold- and copper-bearing brine and acidic volatiles interact in a complex manner with the stock, its wall rocks, and ambient meteoric and connate fluids. Although several processes involved in the evolution of gold-rich porphyry deposits remain to be fully clarified, the fundamental issues have been resolved to the satisfaction of most investigators. Explo- ration for gold-rich porphyry deposits worldwide involves geologic, geochemical, and geophysical work but generally employs the descriptive model in an unsophisticated manner and the genetic model hardly at all.
    [Show full text]
  • Geological Investigations in the Bird River Sill, Southeastern Manitoba (Part of NTS 52L5): Geology and Preliminary Geochemical Results by C.A
    GS-19 Geological investigations in the Bird River Sill, southeastern Manitoba (part of NTS 52L5): geology and preliminary geochemical results by C.A. Mealin1 Mealin, C.A. 2006: Geological investigations in the Bird River Sill, southeastern Manitoba (part of NTS 52L5): geology and preliminary geochemical results; in Report of Activities 2006, Manitoba Science, Technology, Energy and Mines, Manitoba Geological Survey, p. 214–225. Summary and gravitational differentiation. In 2005, this study was initiated to examine the Bird Theyer (1985) identified unusual River Sill (BRS), a mafic-ultramafic layered intrusion cooling conditions requiring several magma pulses and located in the Bird River greenstone belt in southeastern cast doubt on a single magmatic intrusion theory. Manitoba. The BRS is currently an exploration target In 2005, this study was initiated to examine the for Ni-Cu–platinum group element (PGE) deposits and, controls on Ni-Cu-PGE mineralization and test the single in the past, hosted two Ni-Cu mines (Maskwa West and versus multiple injection hypothesis to establish the Dumbarton mines). relationship between mineralization and the magmatic Nickel-copper mineralization on the western half history. Specific objectives include of the BRS consists primarily of disseminated to blebby • detailed mapping of the Chrome, Page, Peterson pyrrhotite+chalcopyrite and is present in the ultramafic Block and National-Ledin properties (Figure GS-19-1); series of the Chrome and Page properties and the mafic • determination of the sulphur source for the Ni-Cu- series of the Wards property. During this study, several PGE mineralization; new sulphide-bearing localities in both the ultramafic and • delineation of the sill’s sulphur saturation history; mafic units of the sill have been identified.
    [Show full text]
  • Platinum Group Minerals in Eastern Brazil GEOLOGY and OCCURRENCES in CHROMITITE and PLACERS
    DOI: 10.1595/147106705X24391 Platinum Group Minerals in Eastern Brazil GEOLOGY AND OCCURRENCES IN CHROMITITE AND PLACERS By Nelson Angeli Department of Petrology and Metallogeny, University of São Paulo State (UNESP), 24-A Avenue, 1515, Rio Claro (SP), 13506-710, Brazil; E-mail: [email protected] Brazil does not have working platinum mines, nor even large reserves of the platinum metals, but there is platinum in Brazil. In this paper, four massifs (mafic/ultramafic complexes) in eastern Brazil, in the states of Minas Gerais and Ceará, where platinum is found will be described. Three of these massifs contain concentrations of platinum group minerals or platinum group elements, and gold, associated with the chromitite rock found there. In the fourth massif, in Minas Gerais State, the platinum group elements are found in alluvial deposits at the Bom Sucesso occurrence. This placer is currently being studied. The platinum group metals occur in specific Rh and Os occur together in minerals in various areas of the world: mainly South Africa, Russia, combinations. This particular PGM distribution Canada and the U.S.A. Geological occurrences of can also form noble metal alloys (7), and minerali- platinum group elements (PGEs) (and sometimes sation has been linked to crystallisation during gold (Au)) are usually associated with Ni-Co-Cu chromite precipitation of hydrothermal origin. sulfide deposits formed in layered igneous intru- In central Brazil there are massifs (Americano sions. The platinum group minerals (PGMs) are do Brasil and Barro Alto) that as yet are little stud- associated with the more mafic parts of the layered ied, and which are thought to contain small PGM magma deposit, and PGEs are found in chromite concentrations.
    [Show full text]
  • Geological Survey
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY ISTo. 162 WASHINGTON GOVERNMENT PRINTING OFFICE 1899 UNITED STATES GEOLOGICAL SUEVEY CHAKLES D. WALCOTT, DIRECTOR Olf NORTH AMERICAN GEOLOGY, PALEONTOLOGY, PETROLOGY, AND MINERALOGY FOR THE YEAR 1898 BY FRED BOUG-HTOISr WEEKS WASHINGTON GOVERNMENT PRINTING OFFICE 1899 CONTENTS, Page. Letter of transmittal.......................................... ........... 7 Introduction................................................................ 9 List of publications examined............................................... 11 Bibliography............................................................... 15 Classified key to the index .................................................. 107 Indiex....................................................................... 113 LETTER OF TRANSMITTAL. DEPARTMENT OF THE INTERIOR, UNITED STATES GEOLOGICAL SURVEY. Washington, D. C., June 30,1899. SIR: I have the honor to transmit herewith the manuscript of a Bibliography and Index o'f North American Geology, Paleontology, Petrology, and Mineralogy for the Year 1898, and to request that it be published as a bulletin of the Survey. Very respectfully, F. B. WEEKS. Hon. CHARLES D. WALCOTT, Director United States Geological Survey. 1 I .... v : BIBLIOGRAPHY AND INDEX OF NORTH AMERICAN GEOLOGY, PALEONTOLOGY, PETROLOGY, AND MINERALOGY FOR THE YEAR 1898. ' By FEED BOUGHTON WEEKS. INTRODUCTION. The method of preparing and arranging the material of the Bibli­ ography and Index for 1898 is similar to that adopted for the previous publications 011 this subject (Bulletins Nos. 130,135,146,149, and 156). Several papers that should have been entered in the previous bulletins are here recorded, and the date of publication is given with each entry. Bibliography. The bibliography consists of full titles of separate papers, classified by authors, an abbreviated reference to the publica­ tion in which the paper is printed, and a brief summary of the con­ tents, each paper being numbered for index reference.
    [Show full text]
  • Origin of Platinum Group Minerals (PGM) Inclusions in Chromite Deposits of the Urals
    minerals Article Origin of Platinum Group Minerals (PGM) Inclusions in Chromite Deposits of the Urals Federica Zaccarini 1,*, Giorgio Garuti 1, Evgeny Pushkarev 2 and Oskar Thalhammer 1 1 Department of Applied Geosciences and Geophysics, University of Leoben, Peter Tunner Str.5, A 8700 Leoben, Austria; [email protected] (G.G.); [email protected] (O.T.) 2 Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Science, Str. Pochtovy per. 7, 620151 Ekaterinburg, Russia; [email protected] * Correspondence: [email protected]; Tel.: +43-3842-402-6218 Received: 13 August 2018; Accepted: 28 August 2018; Published: 31 August 2018 Abstract: This paper reviews a database of about 1500 published and 1000 unpublished microprobe analyses of platinum-group minerals (PGM) from chromite deposits associated with ophiolites and Alaskan-type complexes of the Urals. Composition, texture, and paragenesis of unaltered PGM enclosed in fresh chromitite of the ophiolites indicate that the PGM formed by a sequence of crystallization events before, during, and probably after primary chromite precipitation. The most important controlling factors are sulfur fugacity and temperature. Laurite and Os–Ir–Ru alloys are pristine liquidus phases crystallized at high temperature and low sulfur fugacity: they were trapped in the chromite as solid particles. Oxygen thermobarometry supports that several chromitites underwent compositional equilibration down to 700 ◦C involving increase of the Fe3/Fe2 ratio. These chromitites contain a great number of PGM including—besides laurite and alloys—erlichmanite, Ir–Ni–sulfides, and Ir–Ru sulfarsenides formed by increasing sulfur fugacity. Correlation with chromite composition suggests that the latest stage of PGM crystallization might have occurred in the subsolidus.
    [Show full text]
  • Detrital Platinum-Group Minerals (PGM) in Rivers of the Bushveld Complex, South Africa – a Reconnaissance Study
    Detrital Platinum-Group Minerals (PGM) in Rivers of the Bushveld Complex, South Africa – A Reconnaissance Study Thomas Oberthür, Frank Melcher, Lothar Gast, Christian Wöhrl and Jerzy Lodziak Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover, Germany e-mail: [email protected] Introduction Regional geology The initial major discovery of platinum in Sampling concentrated on stream the Bushveld Complex, which subsequently led to sediments of rivers in the vicinity of the original the discovery of the Merensky Reef, was made in discovery of the Merensky Reef on the farm 1924 by panning in a river bed on the farm Maandagshoek close to Burgersfort in the Eastern Maandagshoek in the Eastern Bushveld (Merensky Bushveld (Fig. 1). The localities investigated by 1924, 1926, Wagner 1929, Cawthorn 1999a, 1999b, Cawthorn (1999b, 2001), i. e. those documented by 2001). Wagner (1929) also reports on a number of Merensky (1924) as Pt-bearing, and additional alluvial diggings in the Bushveld Complex that places along the Moopetsi river were sampled. The produced some platinum. However, as mining river valley runs approximately north-south, commenced on the rich pipes and reef-type deposits subparallel to the layering of the Mafic Phase of the of the Bushveld, alluvial PGM soon became Bushveld Complex, and is between 2 and 3 km forgotten and no published information on the wide. On the farm Maandagshoek, the Merensky placer PGM is available. Cawthorn (1999b, 2001) Reef and the UG2 are about 2 km apart and crop performed geochemical investigations of stream- out on the western and eastern side, respectively, of sediments at and close to the 1924 discovery site the Moopetsi river.
    [Show full text]
  • Platinum-Group Element and Minerals in the Lower and Middle Group Chromitites of the Western Bushveld Complex, South Africa
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Platinum-group element and minerals in the Lower and Middle Group chromitites of the western Bushveld Complex, South Africa Junge, M.; Oberthür, T.; Osbahr, I.; Gutter, P.; Originally published: August 2016 Mineralium Deposita 51(2016)7, 841-852 DOI: https://doi.org/10.1007/s00126-016-0676-6 Perma-Link to Publication Repository of HZDR: https://www.hzdr.de/publications/Publ-26567 Release of the secondary publication based on the publisher's specified embargo time. Platinum-group elements and minerals in the Lower and Middle Group chromitites of the western Bushveld Complex, South Africa Malte Junge1, Thomas Oberthür1, Inga Osbahr2 and Paul Gutter3 1Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover, Germany; [email protected] 2Helmholtz Institute Freiberg for Resource Technology, Halsbrücker Strasse 34, 09599 Freiberg, Germany 3SYLVANIA Platinum Ltd., P.O. Box 976, Florida Hills 1716, South Africa Abstract The chromitites of the Bushveld Complex in South Africa contain vast resources of platinum- group elements (PGE). However, knowledge of the distribution and the mineralogical siting of the PGE in the Lower Group (LG) and Middle Group (MG) chromitite seams of the Bushveld Complex is limited. We studied concentrates from the LG-6 and MG-2 chromitites of the western Bushveld Complex by a variety of microanalytical techniques. The dominant PGM are sulfides, namely laurite, cooperite-braggite and malanite-cuprorhodsite, followed by PGE-sulfarsenides, sperrylite, and Pt-Fe alloys. Laurite is the most abundant PGM (vol%). The matching sets of PGM present in the LG and MG chromitites of both the western and the eastern Bushveld Complex, and in the UG-2 chromitite, show strong similarities which support the assumption of a characteristic and general chromitite-related PGM assemblage.
    [Show full text]
  • MINERALOGY and MINERAL CHEMISTRY of NOBLE METAL GRAINS in R CHONDRITES. H. Schulze, Museum Für Naturkunde, Institut Für Mineralogie, Invalidenstr
    Lunar and Planetary Science XXX 1720.pdf MINERALOGY AND MINERAL CHEMISTRY OF NOBLE METAL GRAINS IN R CHONDRITES. H. Schulze, Museum für Naturkunde, Institut für Mineralogie, Invalidenstr. 43, D-10115 Berlin, Germany, hart- [email protected]. Introduction: Rumuruti-chondrites are a group of [1]. Mostly, NM grains can be encountered as mono- chondrites intermediate between ordinary and carbo- mineralic grains, but multiphase assemblages of two naceous chondrites [1]. The characteristic feature of or three phases were found as well. Host phase of most these chondrites is their highly oxidized mineral as- NM grains are sulfides, either intact like in Rumuruti semblage. Equilibrated olivine usually has a fayalite or weathered to Fe-hydroxides in the desert finds. content around ~39 mole-% Fa. There is almost no Also silicates are frequent host phases (mostly olivine free NiFe-metal in these chondrites [1]. As a conse- and plagioclase). Several grains were found in or ad- quence, noble metals form separate phases [1,2,3] jacent to chromite. which otherwise, due to their siderophilic behavior, Mineralogy and mineral chemistry: Table 1 lists certainly would be dissolved in the FeNi metal. De- the NM minerals detected in R chondrites. Summa- spite the occurrence of noble metal minerals the rizing the results for all R chondrites, tetraferroplati- chemistry does not show any enrichment in these ele- num, sperrylite, irarsite, and osmium are the most ments which are CI-like except for very volatile and abundant NM minerals. Gold seems to be a common chalcophile elements which are even lower [4]. Noble phase, too, but was not so frequently observed due to metal grains were described so far from carbonaceous the lower chemical abundance.
    [Show full text]
  • Braggite (Pt, Pd, Ni)S
    Braggite (Pt, Pd, Ni)S c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Tetragonal. Point Group: 4/m or 4. As prisms, to 2 cm, and rounded grains. Twinning: Rarely observed. Physical Properties: Hardness = n.d. VHN = 946–1064, 997 average (100 g load). D(meas.) = ∼10 D(calc.) = 9.383 Optical Properties: Opaque. Color: White in reflected light. Luster: Metallic. Anisotropism: Distinct, in purplish and pinkish shades of gray and brown. R1–R2: (400) 41.3–41.8, (420) 41.8–42.4, (440) 42.1–43.0, (460) 42.4–43.4, (480) 42.5–43.8, (500) 42.7–44.1, (520) 42.7–44.2, (540) 42.6–44.2, (560) 42.5–44.2, (580) 42.4–44.2, (600) 42.3–44.1, (620) 42.2–44.1, (640) 41.9–44.0, (660) 41.9–43.9, (680) 41.9–43.8, (700) 41.5–43.8 Cell Data: Space Group: P 42/m. a = 6.367 c = 6.561 Z = 8 X-ray Powder Pattern: Potgietersrus district, South Africa; can be confused with vysotskite. 2.86 (100), 2.93 (30), 2.64 (30), 1.852 (30), 1.423 (30), 1.713 (20), 1.595 (2) Chemistry: (1) (2) (1) (2) Pt 63.2 62.1 Ni 4.4 2.0 Pd 15.4 19.0 S 17.4 16.9 Total 100.4 100.0 (1) Potgietersrus district, South Africa; by electron microprobe, corresponding to (Pt0.60Pd0.27 Ni0.14)Σ=1.01S1.00. (2) Stillwater complex, Montana, USA; by electron microprobe, corresponding to (Pt0.60Pd0.34Ni0.06)Σ=1.00S1.00.
    [Show full text]
  • ECONOMIC GEOLOGY RESEARCH INSTITUTE HUGH ALLSOPP LABORATORY University of the Witwatersrand Johannesburg
    2 ECONOMIC GEOLOGY RESEARCH INSTITUTE HUGH ALLSOPP LABORATORY University of the Witwatersrand Johannesburg ! GEOLOGICAL CHARACTERISTICS OF PGE-BEARING LAYERED INTRUSIONS IN SOUTHWEST SICHUAN PROVINCE, CHINA Y.YAO, M.J. VILJOEN, R.P. VILJOEN, A.H. WILSON, H. ZHONG, B.G. LIU, H.L. YING, G.Z. TU and N. LUO ! INFORMATION CIRCULAR No. 358 3 UNIVERSITY OF THE WITWATERSRAND JOHANNESBURG GEOLOGICAL CHARACTERISTICS OF PGE-BEARING LAYERED INTRUSIONS IN SOUTHWEST SICHUAN PROVINCE, CHINA by Y. YAO1, M. J. VILJOEN2, R. P. VILJOEN2, A. H. WILSON3, H. ZHONG1, B. G. LIU4, H. L. YING4, G. Z. TU4 AND Y. N. LUO5, ( 1 Economic Geology Research Institute, School of Geosciences, University of the Witwatersrand, P/Bag 3, WITS 2050, Johannesburg, South Africa; 2 Department of Geology and CAMEG, School of Geosciences, University of the Witwatersrand, P/Bag 3, WITS 2050, Johannesburg, South Africa; 3 Department of Geology and Applied Geology, University of Natal, King George V Avenue, Durban, 4001; 4 Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Qijiahuozhi, Deshengmenwai, Beijing 100029, P.R. China; 5 Geological Exploration Bureau of Sichuan Province, Renminglu, Chengdu 610081, P.R. China) ECONOMIC GEOLOGY RESEARCH UNIT INFORMATION CIRCULAR No. 358 December 2001 4 GEOLOGICAL CHARACTERISTICS OF PGE-BEARING LAYERED INTRUSIONS IN SOUTHWEST SICHUAN PROVINCE, CHINA ABSTRACT A number of platinum-group-element (PGE-bearing), layered, ultramafic-mafic intrusions in the Pan-Xi and Danba areas of the southwest Sichuan Province of China have been investigated. The two study areas are located, respectively, in the central and northern parts of the Kangding Axis on the western margin of the Yangtze Platform, a region geologically distinguished by late- Archaean to late-Proterozoic basement and by stable sedimentary sequences.
    [Show full text]
  • The Post-Magmatic Genesis of Sperrylite from Some Gold Placers in South Part of Krasnoyarsk Region (Russia)
    The Post-Magmatic Genesis of Sperrylite from some Gold Placers in South Part of Krasnoyarsk Region (Russia) G.I.Shvedov1, V.V. Nekos1 and A.M. Uimanov2 1Krasnoyarsk Mining-Geological Company. St.K.Marksa 62, Krasnoyarsk, 660049, Russia 2Mining Company "Tamsiz". St.Artelsky 6, Severo-Yeniseysk, 663280, Russia e-mail: [email protected] Krasnoyarsk Region has been one of the hand, the placers sperrylites from rivers – Karagan main gold-mining provinces of Russia from the last (Eastern Sayan), Rudnaya, Bolshoy Khaylyk, century and up to nowadays. While placer deposits Zolotaya (Western Sayan) are characterized by the being mining they have marked constantly Ir, Ru, Rh unpurities presence. It witnesses for platinum-group minerals with gold in common. In absolutely another native sources. For the the main, they were "platinum" (Fe-Pt compounds) comparison, they show the composition of the and "osmiridium" (Os-Ir-Ru alloys). Receiving and sperrylites from original rocks in some ultramafic- studying heavy concentrates from placer deposits, mafic massifs of Eastern Sayan. we have discovered, that practically all of them The majority of the investigated sperrylitic contained sperrylites somehow, independently of grains from placers contains itself inclusions of the region, or another PGM presence or absence. different ore- and rock-forming minerals. One can One has discovered the mineral in placers of the and should use the mineral compositions for following rivers and creeks: Coloromo, Krasavitza, solving the problem on supposed native sources for Garevka, Lombancha, Danilovsky, Bolshaya PGM. Quartz, pyroxenes, micas, common potash Kuzeyeva (Yenisey Ridge), Karagan, Levaya feldspars, plagioclases, garnets, talc and some Zhaima, Mana, Bolshaya Sinachaga (Eastern others were identified by the composition among Sayan), Rudnaya, Zolotaya, Bolchoy Khaylyk the analyzed mineral inclusions.
    [Show full text]