DPOLY Meeting Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reinforcement of Natural Rubber Latex Using Jute Carboxycellulose Nanofibers Extracted Using Nitro-Oxidation Method
nanomaterials Article Reinforcement of Natural Rubber Latex Using Jute Carboxycellulose Nanofibers Extracted Using Nitro-Oxidation Method Sunil K. Sharma 1 , Priyanka R. Sharma 1,* , Simon Lin 1, Hui Chen 1, Ken Johnson 1, Ruifu Wang 1, William Borges 2, Chengbo Zhan 1 and Benjamin S. Hsiao 1,* 1 Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; [email protected] (S.K.S.); [email protected] (S.L.); [email protected] (H.C.); [email protected] (K.J.); [email protected] (R.W.); [email protected] (C.Z.) 2 Roslyn High School, Roslyn, NY 11576, USA; [email protected] * Correspondence: [email protected] (P.R.S.); [email protected] (B.S.H.); Tel.: +1-631-5423506 (P.R.S.); +1-631-6327793 (B.S.H.) Received: 28 February 2020; Accepted: 29 March 2020; Published: 8 April 2020 Abstract: Synthetic rubber produced from nonrenewable fossil fuel requires high energy costs and is dependent on the presumed unstable petroleum price. Natural rubber latex (NRL) is one of the major alternative sustainable rubber sources since it is derived from the plant ‘Hevea brasiliensis’. Our study focuses on integrating sustainably processed carboxycellulose nanofibers from untreated jute biomass into NRL to enhance the mechanical strength of the material for various applications. The carboxycellulose nanofibers (NOCNF) having carboxyl content of 0.94 mmol/g was prepared and integrated into its nonionic form (–COONa) for its higher dispersion in water to increase the interfacial interaction between NRL and NOCNF. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) analyses of NOCNF showed the average dimensions of nanofibers were length (L) = 524 203 nm, diameter (D) 7 2 nm and thickness 2.9 nm. -
March 14-18 Baltimore, MD
March 14‐18 Baltimore, MD Division of Polymer Physics SPECIAL ACTIVITIES AND EVENTS DPOLY SHORT COURSE Polymer Nanocomposites: Challenges and Opportunities Saturday, Sunday, March 12-13 DPOLY RECEPTION Sunday, March 13, 5:00PM – 8:00PM The Pratt Street Ale House, 206 W Pratt St, Baltimore, MD 21201 DPOLY AWARDS SYMPOSIA Polymer Physics Prize Symposium – Prize sponsored by Dow Chemical Session E4: Tuesday, March 15, 8:00AM – 11:00AM; Room: Ballroom IV Anna Balazs: Designing "Materials that Compute" - Exploiting the Properties of Self-Oscillating Polymer Gels Padden Prize Symposium – Prize sponsored by University of Akron Session F38: Tuesday, March 15, 11:15AM – 1:15PM; Room: 341 Selected Gradute Students Talks Dillon Medal Symposium – Prize sponsored by Elsevier, publisher of Polymer Session H4: Tuesday, March 15, 2:30PM – 5:30PM; Room: Ballroom IV Thomas Epps: Tapered Block Copolymers: Tuning Self-Assembly and Properties by Manipulating Monomer Segment Distributions DPOLY GRADUATE STUDENT LUNCH WITH EXPERTS Tuesday, March 15, 12:30PM - 2:00PM. (Free Registration) Graduate students enjoy complimentary box-lunch while participating in an informal and stimulating discussion with experts. This year’s DPOLY team of experts includes: Professor Rachel A. Segalman, University of California, Santa Barbara Expertise: Molecular structure and self-assembly of polymers Dr. Pieter J. in 't Veld, BASF Expertise: Computational polymer physics in industry Free Registration will be on a first-come, first-served basis. Participation is limited to eight students per topic. Sign-up will open Sunday, March 13 at 3:00PM, near the APS Registration Desk in Hall D. DPOLY BUSINESS MEETING Tuesday, March 15, 2016; 5:45PM - 6:45PM; Room: 336 DPOLY NSF QUESTION AND ANSWER SESSION Tuesday, March 15, 2016; 6:45PM - 7:30PM; Room: 336 INDUSTRY DAY Wednesday, March 16; sponsored by DPOLY, FIAP DPOLY POSTER SESSION Wednesday, March 16, 11:00AM - 2:30PM Exhibit Hall A Poster Awards: 2:00 PM DPOLY poster awards are sponsored by Journal of Polymer Science: Polymer Physics. -
Commencement Program, 2019
263 rd COMMENCEMENT MAY 20, 2019 20, MAY R D COMMENCEME 263 NT CLA S S O F 2 019 M A Y 20, 20 1 9 CLASS OF 2019 KEEPING FRANKLIN’S PROMISE In the words of one elegiac tribute, “Great men have two lives: one which occurs while they work on this earth; a second which begins at the day of their death and continues as long as their ideas and conceptions remain powerful.” These words befit the great Benjamin Franklin, whose inventions, innovations, ideas, writings, and public works continue to shape our thinking and renew the Republic he helped to create and the institutions he founded, including the University of Pennsylvania. Nowhere does Franklin feel more contemporary, more revolutionary, and more alive than at the University of Pennsylvania. His startling vision of a secular, nonsectarian Academy that would foster an “Inclination join’d with an Ability to serve Mankind, one’s Country, Friends and Family” has never ceased to challenge Penn to redefine the scope and mission of the modern American university. When pursued vigorously and simultaneously, the two missions – developing the inclination to do good and the ability to do well – merge to help form a more perfect university that educates more capable citizens for our democracy. Penn has embodied and advanced Franklin’s revolutionary vision for 279 years. Throughout its history, Penn has extended the frontiers of higher learning and research to produce graduates and scholars whose work has enriched the nation and all of humanity. The modern liberal arts curriculum as we know it can trace its roots to Franklin’s innovation to have Penn students study international commerce and foreign languages. -
Young Innovator Awards in Nanoenergy, 2019
1 Young Innovator Awards in NanoEnergy, 2019 1. Robert Baker Ohio State University, USA Email: [email protected] 2. Shannon Boettcher University of Oregon,USA Email: [email protected] 3. Ardemis Boghossian Swiss federal Institute of Technology in Lausanne (EPFL), Switzerland Email: [email protected] 4. Hye Ryung Byon Korea Advanced Institute of Science and Technology (KAIST), Korea Email: [email protected] 2 5. Judy Cha Yale University,USA Email: [email protected] 6. Guanglei Cui Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China Email: [email protected] 7. Dehui Deng Dalian Institute of Chemical Physics, Chinese Acedemy of Sciences,China Email: [email protected] 8. Qiang Fu Dalian Institute of Chemical Physics, Chinese Acedemy of Sciences,China Email: [email protected] 9. Jinlong Gong Tianjin University,China Email: [email protected] 3 10. Elad Gross The Hebrew University of Jerusalem, Israel Email: [email protected] 11. Shaojun Guo Peking University, China Email: [email protected] 12. Liangbing Hu University of Maryland, USA Email: [email protected] 13. Yongsheng Hu Institute of Physics, Chinese Academy of Sciences,China Email: [email protected] 14. Xiaoqing Huang Soochow University, China Email: [email protected] 4 15. Kristie Koski University of California, Davis, USA Email: [email protected] 16. Yanguang Li Soochow University, China Email: [email protected] 17. Yongye Liang Southern University of Science and Technology, China Email: [email protected] 18. Ding Ma Peking University, China Email: [email protected] 19. -
Journal of Undergraduate Chemical Engineering Research (JUCER
Volume VII May 2018 FAR BEYOND CME Kennewick man Journal of Undergraduate Chemical Engineering Research (JUCER) https://you.stonybrook.edu/jucer Stony Brook University Department of Materials Science and Chemical Engineering Engineering 208 Stony Brook, NY 11794 Phone: (631) 632-6269 [email protected] Cover Art (1st row/2nd row, left to right): SEM images captured using RBSD of PS with 0.15% surfactant at 1000x magnification (see page 46) Model of PMP polymer adhesion and substrate surface diffusion diminishment effects (see page 21) A half lumen composed of gelatin with a fibrin coating (see page 50) Optical microscopy of 5 weight% parallel printed sample (see page 35) SEM image of nitro-oxidized agave fibers suspended in 500 ppm of Pb water (see page 64) TEM image of 20/80/15 EVA/PP/GNP blend (see page 40) TEM image of Au-Ag nanoparticles (see page 13) Light microscopy picture (100X) of collagenous membrane with pollution (see page 8) JUCER is an annual publication by the Chemical and Molecular Engineering Program at the State University of New York at Stony Brook. ISSN: 2373-4221 Author Inquiries: For inquiries relating to the submission of articles, please contact Miriam Rafailovich [[email protected]] JUCER 2018 logo suite designed by Jessica Hofflich 2 Staff Editors Jessica Hofflich Justin Cheung Jenna Mallon Timothy Hart Arthur Ronne Arthur Rozario Advisors Miriam Rafailovich Yuval Shmueli Faculty Advisor Graduate Advisor 3 A Letter From the Editors We, the editorial board, are proud and honored to present the latest edition of the Journal of Un- dergraduate Chemical Engineering Research (JUCER). -
A Durable Thin-Film Nanofibrous Composite Nanofiltration Membrane
RSC Advances PAPER View Article Online View Journal | View Issue A durable thin-film nanofibrous composite nanofiltration membrane prepared by interfacial Cite this: RSC Adv.,2017,7, 18001 polymerization on a double-layer nanofibrous scaffold Yin Yang,a Xiong Li,a Lingdi Shen,b Xuefen Wang *a and Benjamin S. Hsiao*c A novel kind of thin-film nanofibrous composite (TFNC) nanofiltration membrane consisting of a polypiperazine amide (PPA) barrier layer, an ultrathin electrospun poly(acrylonitrile-co-acrylic acid) (PAN–AA) transitional mid-layer and an electrospun polyacrylonitrile (PAN) nanofibrous supporting layer, was successfully fabricated by interfacial polymerization with piperazine (PIP) and trimesoyl chloride (TMC) onto the PAN–AA/PAN double-layer substrate. The PAN–AA nanofibrous mid-layer played two important roles between the PPA barrier layer and the PAN nanofibrous supporting layer. It could be swollen in the alkaline aqueous monomer (PIP) solution to form an intermediate hydrogel film, which Creative Commons Attribution 3.0 Unported Licence. acted as the transitional mid-layer to cover the majority of the large surface pores of the electrospun PAN nanofibrous substrate. On the other hand, the hydrophilic PAN–AA hydrogel film could capture and reserve abundant PIP monomer to facilitate interfacial polymerization with TMC to form an endurable ultrathin PPA barrier layer, resulting in an integrated composite membrane confirmed by the mechanical Received 15th January 2017 properties. The resultant TFNC membranes demonstrated a high rejection rate (98.2%) and high Accepted 17th March 2017 À2 À1 À1 permeate flux (64.4 L m h ) for MgSO4 aqueous solution (2.0 g L ), and also exhibited excellent DOI: 10.1039/c7ra00621g structural stability due to the strong interactions between the barrier layer and the nanofibrous support rsc.li/rsc-advances that were enhanced by the transitional PAN–AA mid-layer. -
Advancing Sustainable Nanocellulose Technologies for Water Purification Benjamin S
VIDEO ARTICLE Vid. Proc. Adv. Mater., Volume 2, Article ID 2107192 (2021) Advancing Sustainable Nanocellulose Technologies for Water Purification Benjamin S. Hsiao Chemistry Department, Stony Brook University, Stony Brook, NY 11794-3400, USA Corresponding and Presenting Author. E-mail: [email protected] DOI: 10.5185/vpoam.2021.07192 Graphical Abstract Abstract Nanocellulose is a nature-based sustainable biomaterial, which not only poses molecular cellulosic properties but also has several important hallmarks of nanomaterial, such as large surface area, versatile reactive sites or functionalities and scaffolding ability. These unfold new opportunities for nanotechnology and its broad-spectrum applications for clean water production that were once assumed scientifically non-viable. Recently, our team at Stony Brook University has developed a simple, inexpensive and environmentally friendly approach to preparing nanocellulose for water purification, based on a nitro-oxidation reaction carried out on biomasses of diverse origins [1-5]. There are three key advantages of the nitro-oxidation method. First, the method greatly reduces the consumption of chemicals, energy and water. Second, the processing effluent can be efficaciously © International Association of Vid. Proc. Adv. Mater., Volume 2, Article ID 2107192 (2021) [1 of 3] Advanced Materials www.proceedings.iaamonline.org www.iaamonline.org neutralized to produce plant fertilizers. Third, the method is effective to extract nanostructured cellulose from underutilized raw biomass such as agriculture residues. There are two distinct processes in the nitro-oxidation approach: (1) delignification (pulping/bleaching) of various plants and (2) oxidation of cellulose. To make nanocellulosic materials, both delignification and oxidation are needed. However, delignification is a rapid process, but oxidation of cellulose is a slow process. -
Innovation and Exploration
ADVANCED ENERGY RESEARCH AND TECHNOLOGY CENTER™ RESEARCH PROJECTS INNOVATION AND EXPLORATION www.aertc.org ADVANCED ENERGY RESEARCH AND TECHNOLOGY CENTER™ INNOVATION AND EXPLORATION Emerging technologies and cutting-edge research. Microgrids and smart buildings. Offshore wind and geothermal power. Modern utility grids and alternative fuel vehicles. Today, entrepreneurs, researchers, and engineers are developing bold new advances in energy that will change the industry, and the world, forever. After decades of research and development in renewables, batteries, and other new technologies, the drive toward the development and adoption of cleaner, more sustainable energy is rapidly accelerating – not a moment too soon. The recent devastation wreaked by Mother Nature across the United States has had a tremendous impact on human lives, the economy, and the environment. From the destruction caused by flooding in Texas to Hurricanes Irma and Maria ravaging Florida and Puerto Rico, these disasters exposed the sweeping changes the energy industry must make to ad- dress aging energy infrastructures. The need to rebuild – not just using existing technology, but with state-of-the-art advancements – was never more critical than now. The Advanced Energy Research and Technology Center™ (AERTC), a NYS Center of Excellence located at Stony Brook University (SBU), partnering with a number of institutions including Brookhaven National Laboratory (BNL), City University of New York, SUNY Farmingdale, NYU-Tandon School of Engineering, and the New York Institute -
The Seventh Annual Emerging Information and Technology Conference
The Seventh Annual Emerging Information And Technology Conference Nanotechnology, System-on-Chip, Bioinformatics & Systems Biology, C4I, Emerging Energy Technology, AABF Workshops August 9 – August 10 (Thursday, Friday), 2007 Friend Center, Princeton University Princeton, New Jersey, U.S.A. In Memoriam EITC/AABF (Asian American Business Forum) advisory board member, the conference co-organizer of EITC-2007, and founding partner for PBI Tech Partners, Mr. Pao-Chien (Daniel) Di, passed away unexpectedly on Thursday, July 12, 2007 at his home in Monroe, New Jersey. He was 49. Born and raised in Taiwan, Daniel received his graduate degree in electric engineering in US in 1984. During the early part of his career, he worked for many prestigious information technology companies. His keen sense of business advanced him to VP of operation and business development for Foxconn in 2001-the turning point of his late career toward business, finance and investments. He was an amazing person and loved learning new things. After obtaining his EMBA degree from Wharton School at U. Penn, he enrolled himself into Stern Business School at NYU. Daniel enjoyed assisting others through his personal connections. Born with great leadership, he used his influential power to help change the world around him. Much of his spare time was dedicated to the Chinese community services. He was the principal of a Chinese school and board member and chairman for many non-profit organizations. This, however, was only the prologue to his great vision: he wished to see more of the Chinese community to get involved in the public service and infuse more political influence at the state and federal levels. -
The 2Nd Annual Emerging Information Technology Conference
The 2nd Annual Emerging Information Technology Conference Nanotechnology, MEMS, System-on-Chip, Bioinformatics Workshops November 1-2, 2002, Friend Center, Princeton University, Princeton, New Jersy, U.S.A. The 2nd Annual Emerging Information Technology Conference - Nov 1-2, 2002, Princeton, NJ, USA ============================================================================================================== Table of Contents WELCOME MESSAGE.............................................................................................................................................3 CONFERENCE THEMES .........................................................................................................................................4 NANOTECHNOLOGY WORKSHOP ................................................................................................................................4 MEMS WORKSHOP....................................................................................................................................................4 SYSTEM ON CHIP WORKSHOP.....................................................................................................................................5 BIOINFORMATICS WORKSHOP ....................................................................................................................................5 PLANNING COMMITTEE .......................................................................................................................................7 CONFERENCE ORGANIZING ASSOCIATIONS -
The Society of Rheology 81St Annual Meeting, October 2009 I Contents
THE SOCIETY OF RHEOLOGY 81ST ANNUAL MEETING PROGRAM AND ABSTRACTS Monona Terrace Madison, Wisconsin October 18 - 22, 2009 Program Committee: Lynden Archer Nicos Martys Cornell University National Institute of Standards and Technology Prosenjit Bagchi Jeffrey F. Morris (Co-Chair) Rutgers University City College of New York Daniel Blair Corey O’Hern Georgetown University Yale University Jason Butler Jim Oberhauser The University of Florida Abbott Vascular Ralph Colby Chinedum Osuji The Pennsylvania State University Yale University John De Bruyn Danilo Pozzo University of Western Ontario University of Washington Ian Frigaard Srinivasa R. Raghavan (Co-Chair) University of British Columbia University of Maryland Sascha Hilgenfeldt Subramanian Ramakrishnan University of Illinois Florida State University Yong Joo Rekha Rao Cornell University Sandia National Labs Rajesh Khare Amy Shen Texas Tech University University of Washington Michael R. King Mike Solomon Cornell University University of Michigan Matt Liberatore Radhakrishna Sureshkumar Colorado School of Mines Washington University Michael Loewenberg Lynn Walker Yale University Carnegie Mellon University Jules J. Magda University of Utah Local Arrangements: A. Jeffrey Giacomin University of Wisconsin Abstract Book Editor and Webmaster: Albert Co, University of Maine Meeting Schedule Monday, October 19, 2009 Tuesday, October 20, 2009 Wednesday, October 21, 2009 Thursday, October 22, 2009 8:30 N. J. Wagner (PL1) 8:30 G. B. McKenna (PL2) 8:30 A. K. Sood (PL3) 7:45 SC41 SM31 IC6 GG26 FM16 9:20 -
T. Advanced Fibers and Nanocomposites
T. Advanced Fibers and Nanocomposites Organizers:Meifang Zhu, Benjamin Hsiao, Brigitte Voit, Yi Li Session T1: Friday Afternoon, Oct.21, 2016 Effect of sintering temperature on the structure Chair: Benjamin Hsiao and porperties of attapulgite-based nanofibrous Room: 7106 membranes Yekai Zhu 1,2, Dajun Chen1,2 13:30-14:10 T-01(Keynote) 1. State key Laboratory for Modification of Chemical The Evolution of Strong, Fast, Powerful, Durable, Fibers and Polymer Materials and Cheap Polymer Artificial Muscles from 2. College of Materials Science and Engineering, Carbon Nanotube Muscles Donghua University, Shanghai 201620, PR China Ray Baughman The University of Texas at Dallas, 800 West Campbell 16:05-16:35 T-06(Keynote) Road, BE 26, Richardson, TX 75080 Functionalizing Fibrous Materials for Comfort and Performance 14:10-14:30 T-02 Jintu Fan Fabrication and electromagnetic property of Cornell University aligned Fe/SiC hybrid fiber Yi Hou, Laifei Cheng, Yani Zhang Chair: Jintu Fan Northwestern Polytechnical University 16:35-16:55 T-07 14:30-14:55 T-03(Invited) Precipitation and dissolution of Fe in aged Inorganic-organic hybird nanocomposites as Cu-11wt%Fe alloy efficient photothermal nanoagents for the ablation Bailing An1,2, Xiaowei Zuo1,3, Engang Wang1,3 of cancer cells in vivo 1. Key Laboratory of Electromagnetic Processing of Zhigang Chen, Zhouqi Meng, Nuo Yu, Zixiao Materials (Ministry of Education), Northeastern Liu, Zhaojie Wang, Meifang Zhu University, Shenyang, Liaoning, 110819, China State Key Laboratory for Modification of Chemical 2. School of Materials Science and Engineering, Fibers and Polymer Materials, College of Materials Northeastern University, Shenyang, Liaoning, 110819, Science and Engineering, Donghua University, China Shanghai, 201620 China 3.