Atmospheric Water Generator

Total Page:16

File Type:pdf, Size:1020Kb

Atmospheric Water Generator Atmospheric water generator An atmospheric water generator (AWG), is a device desiccants such as lithium chloride or lithium bromide that extracts water from humid ambient air. Water vapor to pull water from the air via hygroscopic processes.[2] in the air is condensed by cooling the air below its dew A proposed similar technique combines the use of solid point, exposing the air to desiccants, or pressurizing the desiccants, such as silica gel and zeolite, with pressure air. Unlike a dehumidifier, an AWG is designed to render condensation. the water potable. AWGs are useful where pure drinking water is difficult or impossible to obtain, because there is almost always a small amount of water in the air that 2.1 Cooling condensation can be extracted. The two primary techniques in use are cooling and desiccants. Condensor Evaporator Electrostatic Air Filter The extraction of atmospheric water may not be com- Warm Air Out pletely free of cost, because significant input of energy Fan Moist Air In Warm Air is required to drive some AWG processes. Certain tradi- Out tional AWG methods are completely passive, relying on Capillary Tube natural temperature differences, and requiring no exter- Water Line Water nal energy source. Research has also developed AWG Filters technologies to produce useful yields of water at a re- Compressor Pump Ozone Generator duced (but non-zero) energy cost. Refrigerant Flow 1 History Example of cooling-condensation process. In a cooling condensation type atmospheric water gener- The Incas were able to sustain their culture above the rain ator, a compressor circulates refrigerant through a con- line by collecting dew and channeling it to cisterns for denser and then an evaporator coil which cools the air later distribution. Historical records indicate the use of surrounding it. This lowers the air temperature to its dew water-collecting fog fences. These traditional methods point, causing water to condense. A controlled-speed fan have usually been completely passive, requiring no exter- pushes filtered air over the coil. The resulting water is nal energy source other than naturally occurring temper- then passed into a holding tank with purification and fil- ature variations. tration system to help keep the water pure and reduce the risk posed by viruses and bacteria which may be collected from the ambient air on the evaporator coil by the con- 2 Modern technologies densing water.[3] The rate at which water can be produced depends on Many atmospheric water generators operate in a manner relative humidity and ambient air temperature and size of very similar to that of a dehumidifier: air is passed over a the compressor. Atmospheric water generators become cooled coil, causing water to condense. The rate of water more effective as relative humidity and air temperature production depends on the ambient temperature, humid- increase. As a rule of thumb, cooling condensation at- ity, the volume of air passing over the coil, and the ma- mospheric water generators do not work efficiently when chine’s capacity to cool the coil. These systems reduce the temperature falls below 18.3°C (65°F) or the relative air temperature, which in turn reduces the air’s capacity humidity drops below 30%. This means they are rela- to carry water vapor. This is the most common technol- tively inefficient when located inside air-conditioned of- ogy in use, but when powered by coal-based electricity fices. The cost-effectiveness of an AWG depends on the it has one of the worst carbon footprints of any water capacity of the machine, local humidity and temperature source (exceeding reverse osmosis seawater desalination conditions and the cost to power the unit. by three orders of magnitude) and it demands more than The Airdrop system consists of a mast-like tube with a four times as much water up the supply chain as it delivers [1] wind-powered turbine that sucks air down into a coiled to the user. metal pipe buried in the earth. There, the air is cooled un- An alternative available technology uses liquid, or “wet” til it hits 100% humidity and the water starts to condense 1 2 7 REFERENCES out. This technology is basically a cooling condensation by erecting wind traps that funneled dew-laden air into system that takes advantage of the significant tempera- cool underground caverns. ture difference between underground and the air above In Star Wars, Luke Skywalker’s family on Tatooine used it. The inventor, Ed Linacre, was James Dyson Award atmospheric water generation on their moisture farm. Winner in 2011.[4] Video of Edward Linnacre’s AirDrop Irrigation In the Star Trek: The Next Generation episode "The Inner Light", Captain Picard suggests building “atmospheric condensers” for a planet experiencing prolonged drought. 2.2 Wet desiccation One form of wet desiccant water generation involves the 6 See also use of salt in a concentrated brine solution to absorb the ambient humidity. These systems then extract the water • Air well (condenser) from the solution and purify it for consumption. A ver- sion of this technology was developed as portable devices • Dew pond which run on generators. Large versions, mounted on trailers, are said to produce up to 1,200 US gallons (4,500 • Fog collection l) of water per day, at a ratio of up to 5 gallons of water • Rainwater harvesting per gallon of fuel.[5] This technology was contracted for use by the US Army and the US Navy from Terralab and • Solar chimney the Federal Emergency Management Agency (FEMA).[6] • Watermaker A variation of this technology has been developed to be more environmentally friendly, primarily through the use • Solar still of passive solar energy and gravity. Brine is streamed down the outside of towers, where it absorbs water from • Water-Gen the air. The brine then enters a chamber and subjected to a partial vacuum and heated. The water vapor is col- lected and condensed, while the renewed brine is recir- 7 References culated through the system. As the condensed water is removed from the system using gravity, it creates the vac- [1] Environmental Assessment of Air to Water Machines. In- uum which lowers the boiling point of the brine.[7] ternational Journal of Life Cycle Assessment, 18:1149- 1157. [2] Patents; Draw water from air, measure how much water 3 In greenhouses you drink and be kind to the fish you catch. New York Times. July 2, 2001 A special case is the water-generation in greenhouses be- [3] Latest Willie Nelson venture: Water from Air. Atlanta cause the air inside a greenhouse is much hotter and more Journal Constitution. humid than the outside. Particularly in climatic zones with water scarcity, a greenhouse can strongly enhance [4] Airdrop Pulls Water From Air to Irrigate Plants. Wired the conditions necessary for atmospheric water genera- (November 8, 2011) tion. Examples are the seawater greenhouse in Oman, [5] Water Extracted from the Air for Disaster Relief. Na- and the proposed Integrated Biotectural System or IBTS- tional Public Radio; by Nell Greenfieldboyce; October 19, Greenhouse. 2006 [6] Innovation Awards: Ahead of the Pack. Wall Street Jour- 4 Commercial Uses nal. October 30, 2007. [7] Drinking Water From Air Humidity. ScienceDaily (June “AWGs at this time can now be used as a sole source 8, 2009) of water for commercial and industrial applications, [8] Historical Moment in the Monterey Peninsula. PRWeb as well as residential secondary buildings, within the (August 23, 2014) MPWMD.”[8] 5 In fiction In the Dune series, Fremen on the desert world Arrakis collected water from the atmosphere on a massive scale 3 8 Text and image sources, contributors, and licenses 8.1 Text • Atmospheric water generator Source: https://en.wikipedia.org/wiki/Atmospheric_water_generator?oldid=666312070 Contributors: Ray Van De Walker, Jeffq, Carnildo, Enochlau, Giftlite, Khalid hassani, Geni, Karol Langner, Nzseries1, Imroy, Discospinster, Rich Farm- brough, Kbh3rd, Huntster, Cohesion, Pearle, Hooperbloob, Vanished user lkjsdkf34ij48fjhk4, Woohookitty, RHaworth, Al E., GregorB, CharlesC, NeonMerlin, GeorgeBills, Ground Zero, Straker, GreyWyvern, Wavelength, Xaa, Spudbeach, GPS Pilot, Gaius Cornelius, Bovi- neone, Neil McDermott, Retired username, Brandon, Jkelly, Wsiegmund, Chriswaterguy, Nae'blis, TuukkaH, Anthony717, SmackBot, C.Fred, AndyZ, PeterSymonds, Betacommand, Deli nk, Nbarth, OrphanBot, Albertalbs, Quixada, Ashvidia, Jaganath, Biwhite2, Skapur, Kingoomieiii, Thewinchester, Joeatxdobs, NigelR, Sorenriise, KrakatoaKatie, RobotG, Jbaranao, Smartse, IndianGeneralist, Pconrad0, Li- bLord, East718, Vaneetkaushal, Freedomlinux, Puroprana, Rettetast, KTo288, Cogorno, Jeff G., Dbryar, Someguy1221, Flyer22, Aly89, Vice regent, Nnemo, Aitias, DerBorg, Johnuniq, XLinkBot, Hjepsen, Osarius, H2o99, Tide rolls, Frmatt, Slgcat, AnomieBOT, Short Brigade Harvester Boris, Mintrick, T34CH, Grantmidnight, Aquaprada, A8UDI, Konia001, Mateyahoy, Luttinger, Dilipray, Beth Konia US, Koshy73, MartyHyman, Etanbar, Fibroman, Reify-tech, BG19bot, MusikAnimal, Bluelightning87, Moony22, Jblawg, ImpartialGeek, Trackteur, Joel Media and Anonymous: 135 8.2 Images • File:Atmospheric_Water_Generator_diagram.svg Source: https://upload.wikimedia.org/wikipedia/commons/9/9b/Atmospheric_ Water_Generator_diagram.svg License: GFDL Contributors: <a href='//commons.wikimedia.org/wiki/File:Atmospheric_Water_ Generator_diagram.jpg' class='image'><img alt='Atmospheric Water Generator diagram.jpg' src='https://upload.wikimedia.org/ wikipedia/commons/thumb/9/9b/Atmospheric_Water_Generator_diagram.jpg/100px-Atmospheric_Water_Generator_diagram.jpg'
Recommended publications
  • High Temperature Heat Pump Integration Using Zeotropic Working Fluids for Spray Drying Facilities
    High Temperature Heat Pump Integration using Zeotropic Working Fluids for Spray Drying Facilities Benjamin Zühlsdorfa*, Fabian Bühlera, Roberta Mancinia, Stefano Cignittib, Brian Elmegaarda aDepartment of Mechanical Engineering, Technical University of Denmark, Nils Koppels Alle, Building 403, 2800 Kgs. Lyngby, Denmark bCAPEC-PROCSES, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, DK 2800 Kgs. Lyngby, Denmark Abstract This paper presents an analysis of high temperature heat pumps in the industrial sector and demonstrates the approach of using zeotropic mixtures to enhance the overall efficiency. Many energy intensive processes in industry, such as drying processes, require heat at a temperature above 100 °C and show a large potential to reuse the excess heat from exhaust gases. This study analyses a heat pump application with an improved integration by choosing the working fluid as a mixture in such a way, that the temperature glide during evaporation and condensation matches the temperature glide of the heat source and sink best possibly. Therefore, a set of six common working fluids is defined and the possible binary mixtures of these fluids are analyzed. The performance of the fluids is evaluated based on the energetic performance (COP) and the economic potential (NPV). The results show that the utilization of mixtures allows a heat pump application to preheat the drying air to 120 °C with a COP of 3.04 and a NPV of 0.997 Mio. €, which could reduce the natural gas consumption by 36 %. © 2017 Stichting HPC 2017. Selection and/or peer-review under responsibility of the organizers of the 12th IEA Heat Pump Conference 2017.
    [Show full text]
  • Comments on “Is Condensation-Induced
    JULY 2019 C O R R E S P O N D E N C E 2181 CORRESPONDENCE Comments on ‘‘Is Condensation-Induced Atmospheric Dynamics a New Theory of the Origin of the Winds?’’ a,b a,b,f c a d A. M. MAKARIEVA, V. G. GORSHKOV, A. D. NOBRE, A. V. NEFIODOV, D. SHEIL, e b P. NOBRE, AND B.-L. LI a Theoretical Physics Division, Petersburg Nuclear Physics Institute, Saint Petersburg, Russia b U.S. Department of Agriculture–China Ministry of Science and Technology Joint Research Center for AgroEcology and Sustainability, University of California, Riverside, Riverside, California c Centro de Ciencia^ do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil d Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway e Center for Weather Forecast and Climate Studies, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil (Manuscript received 19 December 2018, in final form 27 May 2019) ABSTRACT Here we respond to Jaramillo et al.’s recent critique of condensation-induced atmospheric dynamics (CIAD). We show that CIAD is consistent with Newton’s laws while Jaramillo et al.’s analysis is invalid. To address implied objections, we explain our different formulations of ‘‘evaporative force.’’ The essential concept of CIAD is condensation’s role in powering atmospheric circulation. We briefly highlight why this concept is necessary and useful. 1. Introduction energy of wind (Makarieva and Gorshkov 2009, 2010; Makarieva et al. 2013b, 2014a). Jaramillo et al. (2018) critiqued our theory of Jaramillo et al. (2018) stated that CIAD modifies the condensation-induced atmospheric dynamics (CIAD).
    [Show full text]
  • The Impact of Air Well Geometry in a Malaysian Single Storey Terraced House
    sustainability Article The Impact of Air Well Geometry in a Malaysian Single Storey Terraced House Pau Chung Leng 1, Mohd Hamdan Ahmad 1,*, Dilshan Remaz Ossen 2, Gabriel H.T. Ling 1,* , Samsiah Abdullah 1, Eeydzah Aminudin 3, Wai Loan Liew 4 and Weng Howe Chan 5 1 Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, Johor 81300, Malaysia; [email protected] (P.C.L.); [email protected] (S.A.) 2 Department of Architecture Engineering, Kingdom University, Riffa 40434, Bahrain; [email protected] 3 School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor 81300, Malaysia; [email protected] 4 School of Professional and Continuing Education, Faculty of Engineering, Universiti Teknologi Malaysia, Johor 81300, Malaysia; [email protected] 5 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor 81300, Malaysia; [email protected] * Correspondence: [email protected] (M.H.A.); [email protected] (G.H.T.L.); Tel.: +60-19-731-5756 (M.H.A.); +60-14-619-9363 (G.H.T.L.) Received: 3 September 2019; Accepted: 24 September 2019; Published: 16 October 2019 Abstract: In Malaysia, terraced housing hardly provides thermal comfort to the occupants. More often than not, mechanical cooling, which is an energy consuming component, contributes to outdoor heat dissipation that leads to an urban heat island effect. Alternatively, encouraging natural ventilation can eliminate heat from the indoor environment. Unfortunately, with static outdoor air conditioning and lack of windows in terraced houses, the conventional ventilation technique does not work well, even for houses with an air well. Hence, this research investigated ways to maximize natural ventilation in terraced housing by exploring the air well configurations.
    [Show full text]
  • Solar Stills: a Comprehensive Review of Designs, Performance and 1 2 Material Advances 3 4 5 6 1 1 2 *3 7 Dsilva Winfred Rufus D , S
    © 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ *Manuscript Click here to view linked References Solar stills: A comprehensive review of designs, performance and 1 2 material advances 3 4 5 6 1 1 2 *3 7 Dsilva Winfred Rufus D , S. Iniyan , L. Suganthi and P. A. Davies 8 9 1-Institute for Energy Studies, Anna University, Chennai-600025, India 10 11 2-Anna University, Chennai-600025, India 12 13 3-Sustainable Environment Research Group, Engineering and Applied Science, Aston 14 University, Birmingham, UK, B4 7ET 15 16 * Corresponding author: [email protected] 17 18 Abstract 19 20 The demand for fresh water production is growing day by day with the increase in world 21 22 population and with industrial growth. Use of desalination technology is increasing to meet 23 this demand. Among desalination technologies, solar stills require low maintenance and are 24 readily affordable; however their productivity is limited. This paper aims to give a detailed 25 26 review about the various types of solar stills, covering passive and active designs, single- and 27 multi-effect types, and the various modifications for improved productivity including 28 29 reflectors, heat storage, fins, collectors, condensers, and mechanisms for enhancing heat and 30 mass transfer. Photovoltaic-thermal and greenhouse type solar stills are also covered. 31 Material advances in the area of phase change materials and nanocomposites are very 32 33 promising to enhance further performance; future research should be carried out in these and 34 other areas for the greater uptake of solar still technology.
    [Show full text]
  • Ventilation Air Preconditioning Systems
    ESL-HH-96-05-04 Ventilation Air Preconditioning Systems Mukesh Khattar Michael J. Brandemuehl Manager, Space Conditioning and Refrigeration Associate Professor Customer Systems Group Joint Center for Energy Management Electric Power Research Institute Campus Eox 428 P.O. Box 10214 University of Colorado Palo Alto, California 94303 Boulder, Colorado 80309 Abstract Introduction Increased outside ventilation air The increased ventilation recommended by requirements demand special attention to ASHRAE Standard 62-89 places a burden ' how that air will be conditioned. In winter, on existing HVAC equipment not sized to the incoming air may need preheating; in handle the added load. Some systems are summer. the mixed air may be too humid for simply too small and require extensive effective dehumidification. Part-load retrofits. Others may have sufficient capacity conditions posc greater challenges: systems to meet the sensible cooling needs of the , that cycle on and off allow unconditioned air building, but can~lotremove enough into the building during compressor off- moisture from the incoming air, causing cycles. indoor humidity to rise above acceptable levels-especially during the summer in The Electric Power Research Institute has humid climates. The humidity problem is teamed with manufacturers to develop dual exacerbated when condensate from the path HVAC systems, with one path cooling coil or drain pan re-evaporates and is dedicated to preconditioning the outside air. delivered to occupied space during This paper discusses two such systems for compressor off-cycles. Although heat cooling and dehumidification applications: recovery between the exhaust air and one with a separate preconditioning unit and ventilation air can reduce the impact on the one with separate ventilation and return air HVAC system, many buildings do not have paths in a single unit.
    [Show full text]
  • Bi-Directional Thermo-Hygroscopic Facades: Feasibility for Liquid Desiccant Thermal Walls to Provide Cooling in a Small-Office Building
    Bi-directional thermo-hygroscopic facades: Feasibility for liquid desiccant thermal walls to provide cooling in a small-office building Marionyt Tyrone Marshall1 1Perkins+Will, Atlanta, Georgia ABSTRACT: The paper will discuss the design of a bi-directional thermo-hygroscopic façade as a dedicated outdoor air system to cool and dehumidify outside air. The system is a variant of dedicated outdoor air systems to separate dehumidification and cooling in air-conditioning equipment and locates components within the building envelope. The integrated hybrid-building envelope relies on low-grade thermal energy to regenerate the liquid desiccant from southerly and northerly exposure. Southern and northern exposed walls with solution desiccant regenerator, dehumidifiers and direct evaporative cooler provide similar function as a conventional vapor compression air-conditioning system. Liquid desiccant regenerates with temperatures as low as 50ºC (122ºF). The consolidation of components for air-conditioning within the building envelope offers architectural expression and system adjacency to a source of fresh air. The use of the direct evaporative cooler makes use of cool dry dehumidified air to cool chilled water for use in radiant ceiling panels instead of conventional air conditioning equipment and refrigerant to minimize the impact to the environment. Regenerative liquid desiccant thermal walls use low-grade source of heat to reduce system energy consumption and reliance on sources of refrigerant to provide cooling and dehumidification. KEYWORDS: Thermal-Hygroscopic; Façade; Bi-Directional; Liquid Desiccant; Regenerative 1.0. INTRODUCTION The proposition for decoupling air-conditioning systems from dehumidification and cooling is not a new idea. The systems can undergo rapid configuration and experimentation. Dedicated outdoor systems provide decoupling of cooling from dehumidification.
    [Show full text]
  • High Temperature Heat Pump Integration Using Zeotropic Working Fluids for Spray Drying Facilities
    Downloaded from orbit.dtu.dk on: Oct 05, 2021 High Temperature Heat Pump Integration using Zeotropic Working Fluids for Spray Drying Facilities Zühlsdorf, Benjamin; Bühler, Fabian; Mancini, Roberta; Cignitti, Stefano; Elmegaard, Brian Published in: Proceedings of the 12th IEA Heat Pump Conference 2017 Publication date: 2017 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Zühlsdorf, B., Bühler, F., Mancini, R., Cignitti, S., & Elmegaard, B. (2017). High Temperature Heat Pump Integration using Zeotropic Working Fluids for Spray Drying Facilities. In Proceedings of the 12th IEA Heat Pump Conference 2017 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. High Temperature Heat Pump Integration using Zeotropic Working Fluids for Spray Drying Facilities Benjamin Zühlsdorfa*, Fabian Bühlera, Roberta Mancinia, Stefano Cignittib, Brian Elmegaarda aDepartment of Mechanical Engineering, Technical University of Denmark, Nils Koppels Alle, Building 403, 2800 Kgs. Lyngby, Denmark bCAPEC-PROCSES, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, DK 2800 Kgs.
    [Show full text]
  • Adsorption-Based Atmospheric Water Harvesting Device for Arid Climates
    Adsorption-based atmospheric water harvesting device for arid climates The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kim, Hyunho et al. “Adsorption-Based Atmospheric Water Harvesting Device for Arid Climates.” Nature Communications 9, 1 (March 2018): 1191 © 2018 The Author(s) As Published http://dx.doi.org/10.1038/s41467-018-03162-7 Publisher Nature Publishing Group Version Final published version Citable link http://hdl.handle.net/1721.1/115224 Terms of Use Attribution 4.0 International (CC BY 4.0) Detailed Terms https://creativecommons.org/licenses/by/4.0/ ARTICLE DOI: 10.1038/s41467-018-03162-7 OPEN Adsorption-based atmospheric water harvesting device for arid climates Hyunho Kim1, Sameer R. Rao1, Eugene A. Kapustin2,3, Lin Zhao1, Sungwoo Yang1, Omar M. Yaghi 2,3,4 & Evelyn N. Wang1 Water scarcity is a particularly severe challenge in arid and desert climates. While a sub- stantial amount of water is present in the form of vapour in the atmosphere, harvesting this 1234567890():,; water by state-of-the-art dewing technology can be extremely energy intensive and impractical, particularly when the relative humidity (RH) is low (i.e., below ~40% RH). In contrast, atmospheric water generators that utilise sorbents enable capture of vapour at low RH conditions and can be driven by the abundant source of solar-thermal energy with higher efficiency. Here, we demonstrate an air-cooled sorbent-based atmospheric water harvesting device using the metal−organic framework (MOF)-801 [Zr6O4(OH)4(fumarate)6] operating in an exceptionally arid climate (10–40% RH) and sub-zero dew points (Tempe, Arizona, USA) with a thermal efficiency (solar input to water conversion) of ~14%.
    [Show full text]
  • Cloud Microphysics 6
    P732951-Ch06.qxd 9/12/05 7:43 PM Page 209 Cloud Microphysics 6 Raindrops and snowflakes are among the smallest The artificial modification of clouds and attempts meteorological entities observable without special to deliberately modify precipitation are discussed equipment. Yet from the perspective of cloud micro- briefly in Section 6.6. physics, the particles commonly encountered in pre- Cloud microphysical processes are thought to be cipitation are quite remarkable precisely because of responsible for the electrification of thunderstorms. their large sizes. To form raindrops, cloud particles This subject is discussed in Section 6.7, together with have to increase in mass a million times or more, and lightning and thunder. these same cloud particles are nucleated by aerosol The final section of this chapter is concerned with as small as 0.01 ␮m. To account for growth through chemical processes within and around clouds, which such a wide range of sizes in time periods as short as play important roles in atmospheric chemistry, 10 min or so for some convective clouds, it is neces- including the formation of acid rain. sary to consider a number of physical processes. Scientific investigations of these processes is the domain of cloud microphysics studies, which is the 6.1 Nucleation of Water Vapor main subject of this chapter. We begin with a discussion of the nucleation of Condensation cloud droplets from water vapor and the particles Clouds form when air becomes supersaturated1 with in the air that are involved in this nucleation respect to liquid water (or in some cases with respect (Section 6.1).
    [Show full text]
  • Ventilation Air Preconditioning Systems
    ESL-HH-96-05-04 Ventilation Air Preconditioning Systems Mukesh Khattar Michael J. Brandemuehl Manager, Space Conditioning and Refrigeration Associate Professor Customer Systems Group Joint Center for Energy Management Electric Power Research Institute Campus Eox 428 P.O. Box 10214 University of Colorado Palo Alto, California 94303 Boulder, Colorado 80309 Abstract Introduction Increased outside ventilation air The increased ventilation recommended by requirements demand special attention to ASHRAE Standard 62-89 places a burden ' how that air will be conditioned. In winter, on existing HVAC equipment not sized to the incoming air may need preheating; in handle the added load. Some systems are summer. the mixed air may be too humid for simply too small and require extensive effective dehumidification. Part-load retrofits. Others may have sufficient capacity conditions posc greater challenges: systems to meet the sensible cooling needs of the , that cycle on and off allow unconditioned air building, but can~lotremove enough into the building during compressor off- moisture from the incoming air, causing cycles. indoor humidity to rise above acceptable levels-especially during the summer in View metadata, citationThe andElectric similar Powerpapers at Research core.ac.uk Institute has humid climates. The humidity problem isbrought to you by CORE teamed with manufacturers to develop dual exacerbated when condensate fromprovided the by Texas A&amp;M Repository path HVAC systems, with one path cooling coil or drain pan re-evaporates and is dedicated to preconditioning the outside air. delivered to occupied space during This paper discusses two such systems for compressor off-cycles. Although heat cooling and dehumidification applications: recovery between the exhaust air and one with a separate preconditioning unit and ventilation air can reduce the impact on the one with separate ventilation and return air HVAC system, many buildings do not have paths in a single unit.
    [Show full text]
  • Gas Turbine Inlet Air Chilling for Lng
    GAS TURBINE INLET AIR CHILLING FOR LNG John L. Forsyth, P.Eng. LNG Business Development Manager TAS Energy, Houston, Texas ABSTRACT It is well recognized that gas turbines used as compressor drivers in LNG liquefaction plants suffer from decreased power output as the ambient temperature increases. This fluctuation in driver output can result in reduced LNG production and process instability. An established technology in the power generation industry, gas turbine inlet air chilling (TIC) can allow the liquefaction compressor drivers to operate at near constant power output. This technology is widely accepted by gas turbine OEM's and has been proven safe and reliable in hundreds of installations worldwide. TIC can eliminate one aspect of the weather as a process variable in the liquefaction plant, and even allow a simpler approach to compressor selection. Unlike traditional evaporative cooling methods, TIC is not restricted to cooling the inlet air to the prevailing wet bulb temperature, and as such is ideal for inlet air cooling in the high humidity, coastal environments associated with LNG liquefaction plants. 1.0 INTRODUCTION Gas turbines, whether aeroderivative or heavy duty, are mass flow engines; that is, their power output is directly proportional to the mass flow of air through the turbine. For single-shaft heavy duty or frame gas turbines, the volumetric flow of air is constant making the air mass flow a function of air temperature. For multiple-shaft aeroderivative engines, the inlet air flow varies with compressor shaft speed. In both cases, the density of the air entering the compressor and therefore the air temperature plays a major role in determining the actual power produced by the engine.
    [Show full text]
  • Water Harvesting Methods and the Built Environment: the Role of Architecture in Providing Water Security
    UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2016 Water Harvesting Methods and the Built Environment: The Role of Architecture in Providing Water Security Adam Joseph Bradshaw University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Architecture Commons Repository Citation Bradshaw, Adam Joseph, "Water Harvesting Methods and the Built Environment: The Role of Architecture in Providing Water Security" (2016). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2646. http://dx.doi.org/10.34917/9112039 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. WATER HARVESTING METHODS AND THE BUILT ENVIRONMENT: THE ROLE OF ARCHITECTURE IN PROVIDING WATER SECURITY by Adam J. Bradshaw Bachelor of Science – General Biology University of California, San Diego 2008 A thesis submitted in partial fulfillment of the requirements for the Master of Architecture School of Architecture College of Fine Arts The Graduate College University of Nevada, Las Vegas May 2016 Thesis Approval The Graduate College The University of Nevada, Las Vegas April 15, 2016 This thesis prepared by Adam J.
    [Show full text]