Epigenetic Regulation of EMT (Epithelial to Mesenchymal Transition) and Tumor Aggressiveness: a View on Paradoxical Roles of KDM6B and EZH2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Kiss-1): Essential Players in Suppressing Tumor Metastasis
DOI:http://dx.doi.org/10.7314/APJCP.2013.14.11.6215 Kisspeptins (KiSS-1) as Supressors of Cancer Metastasis MINI-REVIEW Kisspeptins (KiSS-1): Essential Players in Suppressing Tumor Metastasis Venugopal Vinod Prabhu, Kunnathur Murugesan Sakthivel, Chandrasekharan Guruvayoorappan* Abstract Kisspeptins (KPs) encoded by the KiSS-1 gene are C-terminally amidated peptide products, including KP- 10, KP-13, KP-14 and KP-54, which are endogenous agonists for the G-protein coupled receptor-54 (GPR54). Functional analyses have demonstrated fundamental roles of KiSS-1 in whole body homeostasis including sexual differentiation of brain, action on sex steroids and metabolic regulation of fertility essential for human puberty and maintenance of adult reproduction. In addition, intensive recent investigations have provided substantial evidence suggesting roles of Kisspeptin signalling via its receptor GPR54 in the suppression of metastasis with a variety of cancers. The present review highlights the latest studies regarding the role of Kisspeptins and the KiSS-1 gene in tumor progression and also suggests targeting the KiSS-1/GPR54 system may represent a novel therapeutic approach for cancers. Further investigations are essential to elucidate the complex pathways regulated by the Kisspeptins and how these pathways might be involved in the suppression of metastasis across a range of cancers. Keywords: Kisspeptins - GPR54 receptor - KiSS-1 gene - metastasis - cancer Asian Pac J Cancer Prev, 14 (11), 6215-6220 Introduction deaths (Stafford et al., 2008). There are around 20 different metastasis suppressor genes which brings a valuable Cancer is a class of disease characterized by out-of- mechanistic insight for guiding specific therapeutic control cell growth. -
Malignant Pleural Mesothelioma: State- Of-The-Art on Current Therapies and Promises for the Future
Prime Archives in Cancer Research Book Chapter Malignant Pleural Mesothelioma: State- of-the-Art on Current Therapies and Promises for the Future Fabio Nicolini1, Martine Bocchini1, Giuseppe Bronte2, Angelo Delmonte2, Massimo Guidoboni3, Lucio Crinò2 and Massimiliano Mazza1* 1Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Italy 2Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Italy 3Immunotherapy and Cell Therapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Italy *Corresponding Author: Massimiliano Mazza, Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy Published January 11, 2021 This Book Chapter is a republication of an article published by Massimiliano Mazza, et al. at Frontiers in Oncology in January 2020. (Nicolini F, Bocchini M, Bronte G, Delmonte A, Guidoboni M, Crinò L and Mazza M (2020) Malignant Pleural Mesothelioma: State-of-the-Art on Current Therapies and Promises for the Future. Front. Oncol. 9:1519. doi: 10.3389/fonc.2019.01519) How to cite this book chapter: Fabio Nicolini, Martine Bocchini, Giuseppe Bronte, Angelo Delmonte, Massimo Guidoboni, Lucio Crinò, Massimiliano Mazza. Malignant Pleural Mesothelioma: State-of-the-Art on Current Therapies and Promises for the Future. In: Heidari A, editor. Prime Archives in Cancer Research. Hyderabad, India: Vide Leaf. 2021. 1 www.videleaf.com Prime Archives in Cancer Research © The Author(s) 2021. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Regulators at Every Step—How Micrornas Drive Tumor Cell Invasiveness and Metastasis
cancers Review Regulators at Every Step—How microRNAs Drive Tumor Cell Invasiveness and Metastasis 1,2,3, 1,2, 1, Tomasz M. Grzywa y , Klaudia Klicka y and Paweł K. Włodarski * 1 Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; [email protected] (T.M.G.); [email protected] (K.K.) 2 Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland 3 Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland * Correspondence: [email protected] These authors contributed equally to this work. y Received: 19 November 2020; Accepted: 7 December 2020; Published: 10 December 2020 Simple Summary: Tumor cell invasiveness and metastasis are key processes in cancer progression and are composed of many steps. All of them are regulated by multiple microRNAs that either promote or suppress tumor progression. Multiple studies demonstrated that microRNAs target the mRNAs of multiple genes involved in the regulation of cell motility, local invasion, and metastatic niche formation. Thus, microRNAs are promising biomarkers and therapeutic targets in oncology. Abstract: Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial–mesenchymal transition (EMT), hence modulating cell migration and invasiveness. -
Targeting EZH2 for the Treatment of Soft Tissue Sarcomas
Karolak et al. J Cancer Metastasis Treat 2021;7:15 Journal of Cancer DOI: 10.20517/2394-4722.2021.05 Metastasis and Treatment Review Open Access Targeting EZH2 for the treatment of soft tissue sarcomas Magdalena Karolak1, Ian Tracy1, Janet Shipley2, Zoë S Walters1 1Translational Epigenomics Team, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK. 2Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK. Correspondence to: Zoë S Walters, Translational Epigenomics Team, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK. E-mail: [email protected] How to cite this article: Karolak M, Tracy I, Shipley J, Walters ZS. Targeting EZH2 for the treatment of soft tissue sarcomas. J Cancer Metastasis Treat 2021;7:15. https://dx.doi.org/10.20517/2394-4722.2021.05 Received: 7 Jan 2021 First Decision: 2 Feb 2021 Revised: 8 Feb 2021 Accepted: 25 Feb 2021 Available online: 26 Mar 2021 Academic Editor: Ian Judson Copy Editor: Yue-Yue Zhang Production Editor: Yue-Yue Zhang Abstract Soft tissue sarcomas (STS) are a heterogenous group of rare malignancies of mesenchymal origin, affecting both children and adults. The majority of STS have a poor prognosis and advanced stage at the time of diagnosis. Standard treatments for STS largely constitute tumour resection with chemotherapy and/or radiotherapy, and there has been little significant advancement in the application of novel therapies for treatment of these tumours. The current multimodal approach to therapy often leads to long-term side effects, and for some patients, resistance to cytotoxic agents is associated with local recurrence and/or metastasis. -
Epithelioid Sarcoma—From Genetics to Clinical Practice
cancers Review Epithelioid Sarcoma—From Genetics to Clinical Practice Anna M. Czarnecka 1,2,* , Pawel Sobczuk 1,3,* , Michal Kostrzanowski 1,4 , Mateusz Spalek 1 , Marzanna Chojnacka 5, Anna Szumera-Cieckiewicz 6,7 and Piotr Rutkowski 1 1 Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; [email protected] (M.K.); [email protected] (M.S.); [email protected] (P.R.) 2 Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland 3 Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland 4 Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland 5 Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; [email protected] 6 Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; [email protected] 7 Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland * Correspondence: [email protected] (A.M.C.); [email protected] (P.S.) Received: 29 June 2020; Accepted: 24 July 2020; Published: 29 July 2020 Abstract: Epithelioid sarcoma is a mesenchymal soft tissue sarcoma often arising in the extremities, usually in young adults with a pick of incidence at 35 years of age. Epithelioid sarcoma (ES) is characterized by the loss of SMARCB1/INI1 (integrase interactor 1) or other proteins of the SWI/SNF complex. -
Use of the Tree-Based Scan Statistic for Surveillance of Infant Outcomes Following Maternal Perinatal Medication Use Appendices: Code Lists
Use of the Tree-Based Scan Statistic for Surveillance of Infant Outcomes Following Maternal Perinatal Medication Use Appendices: Code Lists Elizabeth A Suarez1, Michael Nguyen2, Di Zhang3, Yueqin Zhao3, Danijela Stojanovic2, Monica Munoz4, Jane Liedtka5, Abby Anderson6, Wei Liu7, Steven Bird7, Inna Dashevsky1, David Cole1, Sandra DeLuccia1, Talia Menzin1, Jennifer Noble1, Judith C Maro1 1. Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA; 2. Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD; 3. Office of Biostatistics, Center for Drug Evaluation and Research, FDA, Silver Spring, MD; 4. Division of Pharmacovigilance, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD; 5. Division of Pediatric and Maternal Health, Center for Drug and Evaluation Research, US Food and Drug Administration, Silver Spring, MD; 6. Division of Bone, Reproductive, and Urologic Products, Center for Drug and Evaluation Research, US Food and Drug Administration, Silver Spring, MD; 7. Division of Epidemiology, Center for Drug and Evaluation Research, US Food and Drug Administration, Silver Spring, MD February 9, 2021 The Sentinel System is sponsored by the U.S. Food and Drug Administration (FDA) to proactively monitor the safety of FDA-regulated medical products and complements other existing FDA safety surveillance capabilities. The Sentinel System is one piece of FDA’s Sentinel Initiative, a long-term, multi-faceted effort to develop a national electronic system. Sentinel Collaborators include Data and Academic Partners that provide access to healthcare data and ongoing scientific, technical, methodological, and organizational expertise. -
Diet, Nutrients, Phytochemicals, and Cancer Metastasis Suppressor Genes
Cancer Metastasis Rev DOI 10.1007/s10555-012-9369-5 Diet, nutrients, phytochemicals, and cancer metastasis suppressor genes Gary G. Meadows # Springer Science+Business Media, LLC (outside the USA) 2012 Abstract The major factor in the morbidity and mortality of EGF Epidermal growth factor cancer patients is metastasis. There exists a relative lack of EGFR Epidermal growth factor receptor specific therapeutic approaches to control metastasis, and EPA Eicosapentaenoic acid this is a fruitful area for investigation. A healthy diet and IFN Interferon lifestyle not only can inhibit tumorigenesis but also can have KAI1 Kangai 1 a major impact on cancer progression and survival. Many MALL Mal-like chemicals found in edible plants are known to inhibit meta- MAPK Mitogen activated protein kinase static progression of cancer. While the mechanisms under- MKK Mitogen-activated protein kinase kinase lying antimetastatic activity of some phytochemicals are miR Micro RNA being delineated, the impact of diet, dietary components, NDRG N-myc downstream-regulated gene and various phytochemicals on metastasis suppressor genes NM23 Nonmetastatic gene 23 is underexplored. Epigenetic regulation of metastasis sup- PDCD Programmed cell death pressor genes promises to be a potentially important mech- PEBP Phosphatidylethanolamine binding protein anism by which dietary components can impact cancer PTEN Phosphatase and tensin homolog metastasis since many dietary constituents are known to RASSF Ras-associated domain family modulate gene expression. The review addresses this area RECK Reversion-inducing-cysteine-rich protein with of research as well as the current state of knowledge regard- kazal motifs ing the impact of diet, dietary components, and phytochem- RhoGDI2 Rho GDP-dissociation inhibitor 2 icals on metastasis suppressor genes. -
Tazemetostat (Tazverik™) EOCCO POLICY
tazemetostat (Tazverik™) EOCCO POLICY Policy Type: PA/SP Pharmacy Coverage Policy: EOCCO184 Description Tazemetostat (Tazverik) is an orally administered inhibitor of methyltransferase, EZH2. Length of Authorization N/A Quantity Limits Product Name Dosage Form Indication Quantity Limit Epithelioid sarcoma, advanced or metastatic, not eligible for resection; Follicular lymphoma, relapsed or refractory, tazemetostat EZH2 mutation-positive, in 200 mg tablets 240 tablets/30 days (Tazverik) that that have received at least two therapies; Follicular lymphoma, relapsed or refractory, in those with no satisfactory alternative therapy Initial Evaluation I. Tazemetostat (Tazverik) is considered investigational when used for all conditions, including but not limited to: A. Epithelioid sarcoma B. Non-Hodgkin lymphoma, including follicular lymphoma Renewal Evaluation I. N/A 1 tazemetostat (Tazverik™) EOCCO POLICY Supporting Evidence I. Background: Epithelioid sarcoma is a very rare cancer of the soft tissue, generally seen in younger populations (average age of 27). This aggressive condition is known for recurrence, spread to locoregional lymph nodes, and eventually distant metastases. Common sites of origin include fingers, hands, forearms, feet, and other limbs. First-line management is typically surgery, with local recurrence necessitating amputation in many cases. Although, not specifically FDA-approved for epithelioid sarcoma, there are several systemic therapies used in the metastatic setting. Often, anthracycline based regimens (e.g., doxorubicin with or without ifosfamide), gemcitabine, pazopanib (Votrient), doxetaxel, sunitinib (Sutent), dacarbazine, epirubicin, and temozolomide. II. Efficacy: Tazemetostat (Tazverik) was approved on data from a Phase 2 trial. Pooled data from two cohorts, five and six (n=62, n=44), were used to support the approval. Seventy-seven percent of patients had prior surgery and 61% had prior chemotherapy. -
MRTFB Suppresses Colorectal Cancer Development Through Regulating SPDL1 and MCAM
MRTFB suppresses colorectal cancer development through regulating SPDL1 and MCAM Takahiro Kodamaa,b,c, Teresa A. Mariana,b, Hubert Leea, Michiko Kodamaa, Jian Lid, Michael S. Parmacekd, Nancy A. Jenkinsa,e, Neal G. Copelanda,e,1, and Zhubo Weia,b,1 aHouston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030; bHouston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX 77030; cDepartment of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, 5650871 Suita, Osaka, Japan; dDepartment of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and eGenetics Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 Contributed by Neal G. Copeland, October 7, 2019 (sent for review June 18, 2019; reviewed by Masaki Mori and Hiroshi Seno) Myocardin-related transcription factor B (MRTFB) is a candidate tumor- shown to regulate cell cycle progression (9) and HCC xenograft suppressor gene identified in transposon mutagenesis screens of the tumor growth (10). Functional validation using cell culture sys- intestine, liver, and pancreas. Using a combination of cell-based assays, tems have also shown that reduced expression of MRTFB by in vivo tumor xenograft assays, and Mrtfb knockout mice, we demon- RNA interference leads to increased CRC cell invasion (4), strate here that MRTFB is a human and mouse colorectal cancer suggesting its important role in tumor progression. (CRC) tumor suppressor that functions in part by inhibiting cell Based on these results, we decided to conditionally delete invasion and migration. To identify possible MRTFB transcriptional Mrtfb in the mouse intestine to further explore its role in CRC. -
Exploring Mechanisms of Metastasis Suppression in Metastatic Melanoma by Kelsey R
Exploring mechanisms of metastasis suppression in metastatic melanoma By Kelsey R. Hampton B.Sc., University of Northern Iowa, 2012 Submitted to the graduate degree program in Molecular and Integrative Physiology and the Graduate Faculty of the University of Kansas Medical Center in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Co-Chair: Danny Welch, Ph.D. Co-Chair: Michael Wolfe, Ph. D. Chad Slawson, Ph.D. Nikki Cheng, Ph.D. Shrikant Anant, Ph.D. Adam Krieg, Ph.D. Date Defended: 12 April 2017 The dissertation committee for Kelsey Hampton certifies that this is the approved version of the following dissertation: Exploring mechanisms of metastasis suppression in metastatic melanoma Co-Chair: Danny Welch Co-Chair: Michael Wolfe Date Approved: 05/11/2017 ii Abstract Melanoma is responsible for 76% of deaths from skin cancer, making it the deadliest form of commonly diagnosed skin cancer. The deadly nature of melanoma is due to its tendency towards rapid metastasis early in tumor progression. Metastasis is the process of cells exiting the primary tumor and forming secondary tumors in other parts of the body. Metastasis accounts for as much as 90% of morbidity and mortality associated with cancer. Therapeutically targeting and treating melanoma metastases is a challenging clinical goal, as metastatic cells are heterogeneous and can be morphologically and genetically distinct from the primary tumor. This dissertation examines two distinct approaches towards preventing or treating disseminated melanoma metastases: 1) Re-introduction of metastasis suppressor protein fragments to prevent metastatic colonization, and 2) Treating disseminated metastases with a targeted small molecule treatment. -
Soft Tissue Sarcoma: an Insight on Biomarkers at Molecular, Metabolic and Cellular Level
cancers Review Soft Tissue Sarcoma: An Insight on Biomarkers at Molecular, Metabolic and Cellular Level Serena Pillozzi 1,* , Andrea Bernini 2, Ilaria Palchetti 3 , Olivia Crociani 4, Lorenzo Antonuzzo 1,4, Domenico Campanacci 5 and Guido Scoccianti 6 1 Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy; lorenzo.antonuzzo@unifi.it 2 Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; [email protected] 3 Department of Chemistry Ugo Schiff, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; ilaria.palchetti@unifi.it 4 Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; olivia.crociani@unifi.it 5 Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; domenicoandrea.campanacci@unifi.it 6 Department of Orthopaedic Oncology and Reconstructive Surgery, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy; [email protected] * Correspondence: serena.pillozzi@unifi.it Simple Summary: Soft tissue sarcoma is a rare mesenchymal malignancy. Despite the advancements in the fields of radiology, pathology and surgery, these tumors often recur locally and/or with metastatic disease. STS is considered to be a diagnostic challenge due to the large variety of histologi- Citation: Pillozzi, S.; Bernini, A.; cal subtypes with clinical and histopathological characteristics which are not always distinct. One of Palchetti, I.; Crociani, O.; Antonuzzo, the important clinical problems is a lack of useful biomarkers. Therefore, the discovery of biomarkers L.; Campanacci, D.; Scoccianti, G. Soft that can be used to detect tumors or predict tumor response to chemotherapy or radiotherapy could Tissue Sarcoma: An Insight on help clinicians provide more effective clinical management. -
Association of Polymorphisms in Metastasis Suppressor Genes
Antar et al. Journal of the Egyptian National Cancer Institute (2020) 32:24 Journal of the Egyptian https://doi.org/10.1186/s43046-020-00037-1 National Cancer Institute RESEARCH Open Access Association of polymorphisms in metastasis suppressor genes NME1 and KISS1 with breast cancer development and metastasis Sarah Antar1* , Naglaa Mokhtar1, Mahmoud Adel Abd elghaffar2 and Amal K. Seleem1 Abstract Background: NME1 and KISS1 genes are two tumor metastasis suppressor genes, mapped to chromosomes 17q21.3 and 1q32 respectively. Here, we analyzed the association of EcoR1 (rs34214448—G/T) polymorphism in NME1 gene and 9 del T (rs5780218—A/-) polymorphism in KISS1 gene with breast cancer development and metastasis. Results: The study included 75 women newly diagnosed with breast cancer recruited from Oncology Center at Mansoura University Hospitals and 37 age-matched healthy female volunteers as a control group. DNA was extracted from peripheral blood samples and genotyping of rs34214448 and rs5780218 SNPs was carried out by PCR-RFLP technique. NME1 EcoR1 (rs34214448) polymorphism has a statistically significant association with breast cancer risk (P < 0.001). Most of breast cancer group (55%) had heterozygous (G/T) genotype while most of control group (95%) had homozygous wild (G/G) genotype (P < 0.0005). Also, KISS1 rs5780218 polymorphism has a statistically significant association with breast cancer risk. The wild (A/A) genotype was associated with lower risk of breast cancer (A/- + -/- vs. A/A: OR = 3.1, 95% CI = 1.15–8.36, P = 0.025). EcoR1 (rs34214448) polymorphism revealed a significant association with tumor stage and distant metastasis as patients.