Separator of Diametral Path Graphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exclusive Graph Searching Lélia Blin, Janna Burman, Nicolas Nisse
Exclusive Graph Searching Lélia Blin, Janna Burman, Nicolas Nisse To cite this version: Lélia Blin, Janna Burman, Nicolas Nisse. Exclusive Graph Searching. Algorithmica, Springer Verlag, 2017, 77 (3), pp.942-969. 10.1007/s00453-016-0124-0. hal-01266492 HAL Id: hal-01266492 https://hal.archives-ouvertes.fr/hal-01266492 Submitted on 2 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Exclusive Graph Searching∗ L´eliaBlin Sorbonne Universit´es, UPMC Univ Paris 06, CNRS, Universit´ed'Evry-Val-d'Essonne. LIP6 UMR 7606, 4 place Jussieu 75005, Paris, France [email protected] Janna Burman LRI, Universit´eParis Sud, CNRS, UMR-8623, France. [email protected] Nicolas Nisse Inria, France. Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France. [email protected] February 2, 2016 Abstract This paper tackles the well known graph searching problem, where a team of searchers aims at capturing an intruder in a network, modeled as a graph. This problem has been mainly studied for its relationship with the pathwidth of graphs. All variants of this problem assume that any node can be simultaneously occupied by several searchers. -
Symmetry and Structure of Graphs
Symmetry and Structure of graphs by Kovács Máté Submitted to Central European University Department of Department of Mathematics and its Applications In partial fulfillment of the requirements for the degree of Master of Science Supervisor: Dr. Hegedus˝ Pál CEU eTD Collection Budapest, Hungary 2014 I, the undersigned [Kovács Máté], candidate for the degree of Master of Science at the Central European University Department of Mathematics and its Applications, declare herewith that the present thesis is exclusively my own work, based on my research and only such external information as properly credited in notes and bibliography. I declare that no unidentified and illegitimate use was made of work of others, and no part the thesis infringes on any person’s or institution’s copyright. I also declare that no part the thesis has been submitted in this form to any other institution of higher education for an academic degree. Budapest, 9 May 2014 ————————————————— Signature CEU eTD Collection c by Kovács Máté, 2014 All Rights Reserved. ii Abstract The thesis surveys results on structure and symmetry of graphs. Structure and symmetry of graphs can be handled by graph homomorphisms and graph automorphisms - the two approaches are compatible. Two graphs are called homomorphically equivalent if there is a graph homomorphism between the two graphs back and forth. Being homomorphically equivalent is an equivalence relation, and every class has a vertex minimal element called the graph core. It turns out that transitive graphs have transitive cores. The possibility of a structural result regarding transitive graphs is investigated. We speculate that almost all transitive graphs are cores. -
Vertex Deletion Problems on Chordal Graphs∗†
Vertex Deletion Problems on Chordal Graphs∗† Yixin Cao1, Yuping Ke2, Yota Otachi3, and Jie You4 1 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] 2 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] 3 Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan [email protected] 4 School of Information Science and Engineering, Central South University and Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] Abstract Containing many classic optimization problems, the family of vertex deletion problems has an important position in algorithm and complexity study. The celebrated result of Lewis and Yan- nakakis gives a complete dichotomy of their complexity. It however has nothing to say about the case when the input graph is also special. This paper initiates a systematic study of vertex deletion problems from one subclass of chordal graphs to another. We give polynomial-time algorithms or proofs of NP-completeness for most of the problems. In particular, we show that the vertex deletion problem from chordal graphs to interval graphs is NP-complete. 1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity, G.2.2 Graph Theory Keywords and phrases vertex deletion problem, maximum subgraph, chordal graph, (unit) in- terval graph, split graph, hereditary property, NP-complete, polynomial-time algorithm Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.22 1 Introduction Generally speaking, a vertex deletion problem asks to transform an input graph to a graph in a certain class by deleting a minimum number of vertices. -
A Comparison of Two Approaches for Polynomial Time Algorithms
A comparison of two approaches for polynomial time algorithms computing basic graph parameters∗† Frank Gurski‡ March 26, 2018 Abstract In this paper we compare and illustrate the algorithmic use of graphs of bounded tree- width and graphs of bounded clique-width. For this purpose we give polynomial time algorithms for computing the four basic graph parameters independence number, clique number, chromatic number, and clique covering number on a given tree structure of graphs of bounded tree-width and graphs of bounded clique-width in polynomial time. We also present linear time algorithms for computing the latter four basic graph parameters on trees, i.e. graphs of tree-width 1, and on co-graphs, i.e. graphs of clique-width at most 2. Keywords:graph algorithms, graph parameters, clique-width, NLC-width, tree-width 1 Introduction A graph parameter is a mapping that associates every graph with a positive integer. Well known graph parameters are independence number, dominating number, and chromatic num- ber. In general the computation of such parameters for some given graph is NP-hard. In this work we give fixed-parameter tractable (fpt) algorithms for computing basic graph parameters restricted to graph classes of bounded tree-width and graph classes of bounded clique-width. The tree-width of graphs has been defined in 1976 by Halin [Hal76] and independently in arXiv:0806.4073v1 [cs.DS] 25 Jun 2008 1986 by Robertson and Seymour [RS86] by the existence of a tree decomposition. Intuitively, the tree-width of some graph G measures how far G differs from a tree. Two more powerful and more recent graph parameters are clique-width1 and NLC-width2 both defined in 1994, by Courcelle and Olariu [CO00] and by Wanke [Wan94], respectively. -
Discrete Mathematics Rooted Directed Path Graphs Are Leaf Powers
Discrete Mathematics 310 (2010) 897–910 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Rooted directed path graphs are leaf powers Andreas Brandstädt a, Christian Hundt a, Federico Mancini b, Peter Wagner a a Institut für Informatik, Universität Rostock, D-18051, Germany b Department of Informatics, University of Bergen, N-5020 Bergen, Norway article info a b s t r a c t Article history: Leaf powers are a graph class which has been introduced to model the problem of Received 11 March 2009 reconstructing phylogenetic trees. A graph G D .V ; E/ is called k-leaf power if it admits a Received in revised form 2 September 2009 k-leaf root, i.e., a tree T with leaves V such that uv is an edge in G if and only if the distance Accepted 13 October 2009 between u and v in T is at most k. Moroever, a graph is simply called leaf power if it is a Available online 30 October 2009 k-leaf power for some k 2 N. This paper characterizes leaf powers in terms of their relation to several other known graph classes. It also addresses the problem of deciding whether a Keywords: given graph is a k-leaf power. Leaf powers Leaf roots We show that the class of leaf powers coincides with fixed tolerance NeST graphs, a Graph class inclusions well-known graph class with absolutely different motivations. After this, we provide the Strongly chordal graphs largest currently known proper subclass of leaf powers, i.e, the class of rooted directed path Fixed tolerance NeST graphs graphs. -
Computing Directed Path-Width and Directed Tree-Width of Recursively
Computing directed path-width and directed tree-width of recursively defined digraphs∗ Frank Gurski1 and Carolin Rehs1 1University of D¨usseldorf, Institute of Computer Science, Algorithmics for Hard Problems Group, 40225 D¨usseldorf, Germany June 13, 2018 Abstract In this paper we consider the directed path-width and directed tree-width of recursively defined digraphs. As an important combinatorial tool, we show how the directed path-width and the directed tree-width can be computed for the disjoint union, order composition, directed union, and series composition of two directed graphs. These results imply the equality of directed path-width and directed tree-width for all digraphs which can be defined by these four operations. This allows us to show a linear-time solution for computing the directed path-width and directed tree-width of all these digraphs. Since directed co-graphs are precisely those digraphs which can be defined by the disjoint union, order composition, and series composition our results imply the equality of directed path-width and directed tree-width for directed co-graphs and also a linear-time solution for computing the directed path-width and directed tree-width of directed co-graphs, which generalizes the known results for undirected co-graphs of Bodlaender and M¨ohring. Keywords: directed path-width; directed tree-width; directed co-graphs 1 Introduction Tree-width is a well-known graph parameter [36]. Many NP-hard graph problems admit poly- nomial-time solutions when restricted to graphs of bounded tree-width using the tree-decom- position [1, 3, 22, 27]. The same holds for path-width [35] since a path-decomposition can be regarded as a special case of a tree-decomposition. -
Online Graph Coloring
Online Graph Coloring Jinman Zhao - CSC2421 Online Graph coloring Input sequence: Output: Goal: Minimize k. k is the number of color used. Chromatic number: Smallest number of need for coloring. Denoted as . Lower bound Theorem: For every deterministic online algorithm there exists a logn-colorable graph for which the algorithm uses at least 2n/logn colors. The performance ratio of any deterministic online coloring algorithm is at least . Transparent online coloring game Adversary strategy : The collection of all subsets of {1,2,...,k} of size k/2. Avail(vt): Admissible colors consists of colors not used by its pre-neighbors. Hue(b)={Corlor(vi): Bin(vi) = b}: hue of a bin is the set of colors of vertices in the bin. H: hue collection is a set of all nonempty hues. #bin >= n/(k/2) #color<=k ratio>=2n/(k*k) Lower bound Theorem: For every randomized online algorithm there exists a k- colorable graph on which the algorithm uses at least n/k bins, where k=O(logn). The performance ratio of any randomized online coloring algorithm is at least . Adversary strategy for randomized algo Relaxing the constraint - blocked input Theorem: The performance ratio of any randomized algorithm, when the input is presented in blocks of size , is . Relaxing other constraints 1. Look-ahead and bufferring 2. Recoloring 3. Presorting vertices by degree 4. Disclosing the adversary’s previous coloring First Fit Use the smallest numbered color that does not violate the coloring requirement Induced subgraph A induced subgraph is a subset of the vertices of a graph G together with any edges whose endpoints are both in the subset. -
Compact Representation of Graphs with Small Bandwidth and Treedepth
Compact Representation of Graphs with Small Bandwidth and Treedepth Shahin Kamali University of Manitoba Winnipeg, MB, R3T 2N2, Canada [email protected] Abstract We consider the problem of compact representation of graphs with small bandwidth as well as graphs with small treedepth. These parameters capture structural properties of graphs that come in useful in certain applications. We present simple navigation oracles that support degree and adjacency queries in constant time and neighborhood query in constant time per neighbor. For graphs of bandwidth k, our oracle takesp (k + dlog 2ke)n + o(kn) bits. By way of an enumeration technique, we show that (k − 5 k − 4)n − O(k2) bits are required to encode a graph of bandwidth k and size n. For graphs of treedepth k, our oracle takes (k + dlog ke + 2)n + o(kn) bits. We present a lower bound that certifies our oracle is succinct for certain values of k 2 o(n). 1 Introduction Graphs are among the most relevant ways to model relationships between objects. Given the ever-growing number of objects to model, it is increasingly important to store the underlying graphs in a compact manner in order to facilitate designing efficient algorithmic solutions. One simple way to represent graphs is to consider them as random objects without any particular structure. There are two issues, however, with such general approach. First, many computational problems are NP-hard on general graphs and often remain hard to approximate. Second, random graphs are highly incompressible and cannot be stored compactly [1]. At the same time, graphs that arise in practice often have combinatorial structures that can -and should- be exploited to provide space-efficient representations. -
Branch-Depth: Generalizing Tree-Depth of Graphs
Branch-depth: Generalizing tree-depth of graphs ∗1 †‡23 34 Matt DeVos , O-joung Kwon , and Sang-il Oum† 1Department of Mathematics, Simon Fraser University, Burnaby, Canada 2Department of Mathematics, Incheon National University, Incheon, Korea 3Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, Korea 4Department of Mathematical Sciences, KAIST, Daejeon, Korea [email protected], [email protected], [email protected] November 5, 2020 Abstract We present a concept called the branch-depth of a connectivity function, that generalizes the tree-depth of graphs. Then we prove two theorems showing that this concept aligns closely with the no- tions of tree-depth and shrub-depth of graphs as follows. For a graph G = (V, E) and a subset A of E we let λG(A) be the number of vertices incident with an edge in A and an edge in E A. For a subset X of V , \ let ρG(X) be the rank of the adjacency matrix between X and V X over the binary field. We prove that a class of graphs has bounded\ tree-depth if and only if the corresponding class of functions λG has arXiv:1903.11988v2 [math.CO] 4 Nov 2020 bounded branch-depth and similarly a class of graphs has bounded shrub-depth if and only if the corresponding class of functions ρG has bounded branch-depth, which we call the rank-depth of graphs. Furthermore we investigate various potential generalizations of tree- depth to matroids and prove that matroids representable over a fixed finite field having no large circuits are well-quasi-ordered by restriction. -
Hyperbolicity and Complement of Graphs
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Applied Mathematics Letters 24 (2011) 1882–1887 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Hyperbolicity and complement of graphs Sergio Bermudo a, José M. Rodríguez b, José M. Sigarreta c,∗, Eva Tourís b a Departamento de Economía, Métodos cuantitativos e Historia Económica, Universidad Pablo de Olavide, Carretera de Utrera Km. 1, 41013 Sevilla, Spain b Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain c Facultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No. 54 Col. Garita, 39650 Acalpulco Gro., Mexico article info a b s t r a c t Article history: If X is a geodesic metric space and x1; x2; x3 2 X, a geodesic triangle T D fx1; x2; x3g is the Received 20 July 2010 union of the three geodesics Tx1x2U, Tx2x3U and Tx3x1U in X. The space X is δ-hyperbolic (in Received in revised form 29 April 2011 the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two Accepted 11 May 2011 other sides, for every geodesic triangle T in X. We denote by δ.X/ the sharp hyperbolicity constant of X, i.e. δ.X/ VD inffδ ≥ 0 V X is δ-hyperbolicg. The study of hyperbolic graphs is Keywords: an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the Graph hyperbolicity of a graph related to it. -
An Efficient Reachability Indexing Scheme for Large Directed Graphs
1 Path-Tree: An Efficient Reachability Indexing Scheme for Large Directed Graphs RUOMING JIN, Kent State University NING RUAN, Kent State University YANG XIANG, The Ohio State University HAIXUN WANG, Microsoft Research Asia Reachability query is one of the fundamental queries in graph database. The main idea behind answering reachability queries is to assign vertices with certain labels such that the reachability between any two vertices can be determined by the labeling information. Though several approaches have been proposed for building these reachability labels, it remains open issues on how to handle increasingly large number of vertices in real world graphs, and how to find the best tradeoff among the labeling size, the query answering time, and the construction time. In this paper, we introduce a novel graph structure, referred to as path- tree, to help labeling very large graphs. The path-tree cover is a spanning subgraph of G in a tree shape. We show path-tree can be generalized to chain-tree which theoretically can has smaller labeling cost. On top of path-tree and chain-tree index, we also introduce a new compression scheme which groups vertices with similar labels together to further reduce the labeling size. In addition, we also propose an efficient incremental update algorithm for dynamic index maintenance. Finally, we demonstrate both analytically and empirically the effectiveness and efficiency of our new approaches. Categories and Subject Descriptors: H.2.8 [Database management]: Database Applications—graph index- ing and querying General Terms: Performance Additional Key Words and Phrases: Graph indexing, reachability queries, transitive closure, path-tree cover, maximal directed spanning tree ACM Reference Format: Jin, R., Ruan, N., Xiang, Y., and Wang, H. -
Cop Number of Graphs Without Long Holes
Cop number of graphs without long holes Vaidy Sivaraman January 3, 2020 Abstract A hole in a graph is an induced cycle of length at least 4. We give a simple winning strategy for t − 3 cops to capture a robber in the game of cops and robbers played in a graph that does not contain a hole of length at least t. This strengthens a theorem of Joret-Kaminski-Theis, who proved that t − 2 cops have a winning strategy in such graphs. As a consequence of our bound, we also give an inequality relating the cop number and the Dilworth number of a graph. The game of cops and robbers is played on a finite simple graph G. There are k cops and a single robber. Each of the cops chooses a vertex to start, and then the robber chooses a vertex. And then they alternate turns starting with the cop. In the turn of cops, each cop either stays on the vertex or moves to a neighboring vertex. In the robber’s turn, he stays on the same vertex or moves to a neighboring vertex. The cops win if at any point in time, one of the cops lands on the robber. The robber wins if he can avoid being captured. The cop number of G, denoted c(G), is the minimum number of cops needed so that the cops have a winning strategy in G. The question of what makes a graph to have high cop number is not clearly understood. Some fundamental results were proved in [1] and [9].