246 Appendix 40 FMD and Camelids

Total Page:16

File Type:pdf, Size:1020Kb

246 Appendix 40 FMD and Camelids Appendix 40 FMD and camelids: International relevance of current research U. Wernery Central Veterinary Research Laboratory, P.O. Box 597, Dubai, U.A.E. Key words: Tylopoda, camelids, FMD Abstract Camelids regurgitate and re-chew their food and thus technically ruminate. In strict taxonomic terms, however, they are not recognized as belonging to the suborder Ruminantia. They belong to the suborder Tylopoda. Numerous differences in anatomy and physiology justify a separate classification of tylopods from ruminants. Many reports show that New World Camelids (NWC) and Old World Camelids (OWC) possess a low susceptibility to foot and mouth disease (FMD), and do not appear to be long-term carriers of the foot and mouth disease virus (FMDV). Recent preliminary results from Dubai have shown that two dromedaries infected subepidermolingually with FMD serotype 0 did not develop any clinical signs and failed to develop any lesions at the inoculation site. Infectious FMDV or FMDV RNA were not isolated and the two dromedaries failed to seroconvert. It would, therefore, appear appropriate for OIE to refine the definition of NWC and OWC by clearly stating that these animal species are not members of the suborder Ruminantia. Furthermore, these recent results suggest that dromedaries (and most probably all camelid species), which are listed in the OIE Code chapter as being susceptible to FMD similar to cattle, sheep, goats and pigs, are much less susceptible or non-susceptible to FMD. Therefore, the importance of FMD in camelids should be re- assessed. The Central Veterinary Research Laboratory (CVRL) in Dubai, U.A.E., offers to become a reference laboratory for OWC. For more than a decade, CVRL has published in excess of 150 scientific papers and three reference books on camel diseases. Classification, population and distribution Although camelids ruminate, they are not modified ruminants in a taxonomic sense. A separate evolutionary history of 35 – 40 million years divides tylopods from ruminants. Camelidae belong to the suborder Tylopoda (Fowler, 1997; Table 1). Numerous anatomical and physiological differences justify the separate classification of Tylopoda from Ruminantia. The most important differences are shown in Table 2 and some are explained in several figures. The camelid stomach system differs from that of ruminants. There are only three distinct forestomachs compared to four in ruminants. In camelids they are called compartments (C) 1, 2 and 3. The rumen equivalent is C1, which possesses cranial and caudal glandular sacs. These were once considered to represent the water store of the animal; however they mainly function as absorption and fermentation areas as well as zones of enzymatic secretion (Wilson, 1989). The second, much smaller compartment C2 is the reticulum equivalent, and the eolongated C3 is the combined omasum/abomasun equivalent, which might best be referred to as the tubular stomach due to its length. Compartments 1 and 2 are lined with non-papillary smooth epithelium (Figure 1). In camelids, the motility patterns are markedly different compared with ruminants. Another distinguished feature of all Camelidae is the unique structure of their feet (Fig. 2). The padded feet act like snowshoes allowing them to walk over soft, loose sand without sinking. Camelids walk on thick pads consisting primarily of fat. They possess two digits, and their second and third phalanges are horizontal. The reproductive physiology of camelids is of particular interest. Camels mate in a crouching position (Fig. 3) and while mating the bull exteriorises its “doula” (Fig. 4), a bright pink inflatable sac, to attract females. Camels are induced ovulators. Their gestation period lasted 13 months. A slippery surface of a third membrane surrounding the fetus eases its birth (Figure 5). Latest osteological investigations on post- cranial skeletons of Camelus dromedarius and C. bactrianus have shown that they derived from two different ancestors. Approximately twenty million OWC exist, of which two million are Bactrians (Table 3). There are four different species of NWC which inhabit the high altitudes in South America. The estimated population of NWC is shown in Table 4. Llamas and alpacas were domesticated 7.000 years ago; the dromedary and the Bactrian around 5.000 years ago. Guanacos and vicuñcas are wild and there are few wild Bactrians which roam in the Chinese and Gobi desert. There are no wild dromedaries anymore. The distribution of OWC is shown in Figure 6. 246 The knowledge of the susceptibility and resistance to infectious and parasitic diseases is of paramount importance in an area where tylopods mix with other livestock. Review of findings on FMD in camelids FMD remains the single most important animal disease, and OWC and NWC inhabit countries in North and East Africa, the Middle and Far East as well as in South America where FMD is endemic. It has been reported that dromedaries can contract the disease following experimental infection and via close contact with FMD diseased livestock, yet do not present a risk in transmitting FMD to susceptible animals (Kitching, 2002). Summarised results are presented in the following Tables 5 to 8 (Wernery and Kaaden, 2004). Only two reports exist of a natural infection. The execution of experimental infections is poor, and therefore conclusions are questionable. FMD serology and infection in Bactrian camels remains questionable, with FMD diagnosis only being made by means of clinical observations. Results of recent FMD experiments in dromedaries in Dubai with serotype 0 Two Holstein heifers of around 150 kg (6-8 months of age) and two castrated male dromedaries (Camelus dromedarius) around 400-450 kg (7-10 years of age) were each inoculated subepidermo- 7.6 lingually with 10 Tissue Culture Infectious Doses 50% (TCID50) of foot-and-mouth disease virus (FMDV) type O UAE 7/99 in a volume of 0.5 ml (Fig. 7). While the heifers developed elevated body temperatures, were drooling saliva and had typical vesicular lesions (Fig. 8) on the tongue within 24 hours, the two dromedaries did not show any clinical signs of disease and had no vesicular lesions, even at the inoculation site. Infectious FMDV and FMDV RNA were detected at relatively high levels in sera and nasal and mouth swabs from the heifers, but no infectious FMDV or FMDV RNA were isolated in similar samples from the two dromedaries (Fig. 9). Furthermore, the two dromedaries did not develop any detectable antibodies to FMDV. Based on the overall results obtained, we conclude that dromedaries (Camelus dromedarius) are not susceptible to infection with this isolate of FMDV (Wernery et al., 2005). Conclusion Camelids belong to the suborder Tylopoda; they are not ruminants. Camelids possess a low flow susceptibility to FMD, and do not appear to be long-term carriers of the FMDV. These are the main two reasons to remove them from the OIE chapter as possessing the same degree of susceptibility as cattle, sheep and goats. References Abou Zaid, A.A., 1991. Studies on some diseases of camels. PhD Thesis, Faculty of Veterinary Medicine Zagazig, Egypt Farag, M.A., Al-Sukayran, A., Mazlou, K.S, Al-Bokney, A.M., 1998. The susceptibility of camels to natural infection with foot and mouth disease virus. Assiut Veterinary Medical Journal 40, 201 – 211 Fowler, M. E. (1997), Evolutionary history and differences between camelids and ruminants, J. Camel Pract. and Research 4 (2), 99 – 105 Hafez, S.M., Farag, M.A., Al-Mukayel, Al, 1993. Are camels susceptible to natural infection with foot and mouth disease virus? Internal Paper: National Agriculture and Water Research, Center Riyadh, Saudi Arabia Hedger, R.S., Barnett, I.T.R., Gray, D.F., 1980. Some virus diseases of domestic animals in the Sultanate of Oman. Tropical Animal Health and Production 12, 107 –114 Kitching, P. (2002). Identification of foot and mouth disease virus carrier and subclinically infected animals and differentiation from vaccinated animals. Revue scientifique et technique. Foot and mouth disease: facing the new dilemmas. OIE 21 (3), 531 - 538 Kumar, A., Prasad, S., Ahuja, K.L., Tewari, S.C., Dogra, S.C., Garb, D.N., 1983. Distribution pattern of foot and mouth disease virus types in North-West India (1979 – 1981). Haryana Veterinarian 22, 28 – 30 Metwally, M.A., Moussa, A.A., Reda, J., Wahba, S., Omar, A., Daoud, A., Tantawi, H.H., 1986. Detection of antibodies against FMDV in camels by using fluorescent antibody technique. Agricultural Research Review 64, 1079 – 1084 Moussa, A.A., Daoud, A., Tawfik, S., 1979. Susceptibility of camel and sheep to infection with foot and mouth disease virus. Agricultural Research Revision Egypt 57, 1 –19 Moussa, A., Nasser, M.I., Mowafi, L., Salah, A., 1986a. Occurrence of foot and mouth disease in different species of mammals at Sharkia province. Journal of Egypt Veterinary Medicine Association 40, 23 – 35 247 Moussa, A.A., Tantawi, H.H., Metwally, N.A., Wahba, S., Hussein, K., Osman, O.A., Saber, M.S., 1986b. Pathogenicity of foot and mouth disease virus isolated from experimentally infected camels to susceptible steers. Agricultural Research Review 64, 1071 – 1077 Moussa, A.A.M., Daoud, A., Omar, A., Meetwally, N., El-Nimr, M., McVicar, J.W. 1987. Isolation of foot and mouth disease virus from camels with ulcerative disease syndromes. Journal of Egypt Veterinary Medicine Association 47, 219 – 229 Moussa, A.A.M., 1988. The role of camels in the epizootiology of FMD in Egypt. In: FAO. The Camel: Development Research. Proceedings of Kuwait Camel Seminar, Kuwait, Oct. 20 – 23, 1986, pp. 162 – 173 Moussa, H.A.A., Youssef, N.M.A., 1998. Serological screening for some viral diseases antibodies in camel sera in Egypt. Egypt Journal of Agricultural Research 76, 867 – 873 Nasser, M., Moussa, A.A., Metwally, M.A., Saleh, R.EL.S., 1980. Secretion and persistence of foot and mouth disease virus in faeces of experimental infected camels and ram.
Recommended publications
  • Wild Or Bactrian Camel French: German: Wildkamel Spanish: Russian: Dikiy Verblud Chinese
    1 of 4 Proposal I / 7 PROPOSAL FOR INCLUSION OF SPECIES ON THE APPENDICES OF THE CONVENTION ON THE CONSERVATION OF MIGRATORY SPECIES OF WILD ANIMALS A. PROPOSAL: Inclusion of the Wild camel Camelus bactrianus in Appendix I of the Convention on the Conservation of Migratory Species of Wild Animals: B. PROPONENT: Mongolia C. SUPPORTING STATEMENT 1. Taxon 1.1. Classis: Mammalia 1.2. Ordo: Tylopoda 1.3. Familia: Camelidae 1.4. Genus: Camelus 1.5. Species: Camelus bactrianus Linnaeus, 1758 1.6. Common names: English: Wild or Bactrian camel French: German: Wildkamel Spanish: Russian: Dikiy verblud Chinese: 2. Biological data 2.1. Distribution Wild populations are restricted to 3 small, remnant populations in China and Mongolia:in the Taklamakan Desert, the deserts around Lop Nur, and the area in and around region A of Mongolia’s Great Gobi Strict Protected Area (Reading et al 2000). In addition, there is a small semi-captive herd of wild camels being maintained and bred outside of the Park. 2.2. Population Surveys over the past several decades have suggested a marked decline in wild bactrian camel numbers and reproductive success rates (Zhirnov and Ilyinsky 1986, Anonymous 1988, Tolgat and Schaller 1992, Tolgat 1995). Researchers suggest that fewer than 500 camels remain in Mongolia and that their population appears to be declining (Xiaoming and Schaller 1996). Globally, scientists have recently suggested that less than 900 individuals survive in small portions of Mongolia and China (Tolgat and Schaller 1992, Hare 1997, Tolgat 1995, Xiaoming and Schaller 1996). However, most of the population estimates from both China and Mongolia were made using methods which preclude rigorous population estimation.
    [Show full text]
  • Camelids: New Players in the International Animal Production Context
    Tropical Animal Health and Production (2020) 52:903–913 https://doi.org/10.1007/s11250-019-02197-2 REVIEWS Camelids: new players in the international animal production context Mousa Zarrin1 & José L. Riveros2 & Amir Ahmadpour1,3 & André M. de Almeida4 & Gaukhar Konuspayeva5 & Einar Vargas- Bello-Pérez6 & Bernard Faye7 & Lorenzo E. Hernández-Castellano8 Received: 30 October 2019 /Accepted: 22 December 2019 /Published online: 2 January 2020 # Springer Nature B.V. 2020 Abstract The Camelidae family comprises the Bactrian camel (Camelus bactrianus), the dromedary camel (Camelus dromedarius), and four species of South American camelids: llama (Lama glama),alpaca(Lama pacos)guanaco(Lama guanicoe), and vicuña (Vicugna vicugna). The main characteristic of these species is their ability to cope with either hard climatic conditions like those found in arid regions (Bactrian and dromedary camels) or high-altitude landscapes like those found in South America (South American camelids). Because of such interesting physiological and adaptive traits, the interest for these animals as livestock species has increased considerably over the last years. In general, the main animal products obtained from these animals are meat, milk, and hair fiber, although they are also used for races and work among other activities. In the near future, climate change will likely decrease agricultural areas for animal production worldwide, particularly in the tropics and subtropics where competition with crops for human consumption is a major problem already. In such conditions, extensive animal production could be limited in some extent to semi-arid rangelands, subjected to periodical draughts and erratic patterns of rainfall, severely affecting conventional livestock production, namely cattle and sheep.
    [Show full text]
  • Bactrian Camel, Two-Humped Camel
    Camelus ferus/bactrianus Common name: Bactrian camel, two-humped camel Local name: Havtagai (Mongolian), Wildkamel (German), Jya nishpa yapung (Ladakhi) Classification: Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Artiodactyla Family: Camelidae Genus: Camelus Species: ferus/bactrianus Profile: The scientific name of the wild Bactrian camel is Camelus ferus, while the domesticated form is called Camelus bactrianus. The distinctive feature of the animal is that it is two-humped whereas the Dromedary camel has a single hump. DNA tests have revealed that there are two or three distinct genetic differences and about 3% base difference between the wild and domestic populations of Bactrian camels. They also differ physically. The wild Bactrian camel is smaller and slender than the domestic breed. The wild camels have a sandy gray- brown coat while the domestic ones have a dark brown coat. The predominant difference between them however is the shape of the humps. While that of the wild camel are small and pyramid-like, those of the domestic ones are large and irregular. The face of a Bactrian camel is long and triangular with a split upper lip. The Bactrian camel is highly adapted to surviving the cold desert climate. Each foot has an undivided sole with two large toes that can spread wide apart for walking on sand. The ears and nose are lined with hair to protect against sand and the muscular nostrils can be closed during sandstorms. The eyes are protected from sand and debris by a double layer of long eyelashes while bushy eyebrows give protection from the sun. It grows a thick shaggy coat during winter, which is shed very rapidly in spring to give the animal a shorn look.
    [Show full text]
  • Thewissen Et Al. Reply Replying To: J
    NATURE | Vol 458 | 19 March 2009 BRIEF COMMUNICATIONS ARISING Hippopotamus and whale phylogeny Arising from: J. G. M. Thewissen, L. N. Cooper, M. T. Clementz, S. Bajpai & B. N. Tiwari Nature 450, 1190–1194 (2007) Thewissen etal.1 describe new fossils from India that apparentlysupport fossils, Raoellidae or the raoellid Indohyus is more closely related to a phylogeny that places Cetacea (that is, whales, dolphins, porpoises) as Cetacea than is Hippopotamidae (Fig. 1). Hippopotamidae is the the sister group to the extinct family Raoellidae, and Hippopotamidae exclusive sister group to Cetacea plus Raoellidae in the analysis that as more closely related to pigs and peccaries (that is, Suina) than to down-weights homoplastic characters, althoughin the equallyweighted cetaceans. However, our reanalysis of a modified version of the data set analysis, another topology was equally parsimonious. In that topology, they used2 differs in retaining molecular characters and demonstrates Hippopotamidae moved one node out, being the sister group to an that Hippopotamidae is the closest extant family to Cetacea and that Andrewsarchus, Raoellidae and Cetacea clade. In neither analysis is raoellids are the closest extinct group, consistent with previous phylo- Hippopotamidae closer to the pigs and peccaries than to Cetacea, the genetic studies2,3. This topology supports the view that the aquatic result obtained by Thewissen et al.1. In all our analyses, pachyostosis adaptations in hippopotamids and cetaceans are inherited from their (thickening) of limb bones and bottom walking, which occur in hippo- common ancestor4. potamids9,10, are interpreted to have evolved before the pachyostosis of To conduct our analyses, we started with the same published matrix the auditory bulla, as seen in raoellids and cetaceans1.
    [Show full text]
  • 1 BOARD of ANIMAL HEALTH Subpart 2 Chapter 12 Sheep And
    BOARD OF ANIMAL HEALTH Subpart 2 Chapter 12 Sheep and Goats 109 All sheep and goats, except those for immediate slaughter shall be accompanied by an official certificate of veterinary inspection (OCVI) and shall comply with the following: 1. Intact sheep and goats require individual identification by an official USDA Scrapie eartag, brand, or tattoo recorded on the OCVI. 2. “I certify these animals are free of clinical signs of the diseases contagious footrot, keratoconjunctivitis, contagious ecthyma (Orf), scabies and lice and that the sexually intact animals represented on this form are not known to be scrapie- positive, suspect, high risk, or exposed, and did not originate from a known infected, source, exposed, or noncompliant flock.” 3. When originating from an area known to have scabies, must be dipped within ten (10) days immediately preceding the date of entry in an USDA approved dip, and maintained on absolutely clean premises until delivered to the final destination. Dairy goats and dairy sheep maintained separate from other sheep and goats are exempt from dipping when certified free of scabies on OCVI. 4. Dairy goats and dairy sheep over 6 months of age must be negative to an official tuberculin test and an official brucellosis test made within 30 days immediately preceding date of entry. 5. All sheep and goats for immediate slaughter shall be consigned to a recognized slaughtering establishment on either an OCVI or permit or waybill or inspection certification from federally inspected stockyards. In either instance, a copy shall accompany sheep and goats and a copy shall be forwarded to the State Veterinarian of Mississippi.
    [Show full text]
  • Guanaco Lama Guanicoe
    Guanaco Lama guanicoe Class: Mammalia Order: Cetartiodactyla Family: Camelidae Characteristics: The guanaco is the largest wild member of the camelid family in South America. Guanacos have a long slender neck, and thin long legs. Their thick wool coat is light brown or tan on top of the body, and white on the underbelly and legs. The head is a grey of black color but the lips and ears are white. Guanacos, like other camelids have large pads on the soles of their hooves. The pads help the guanaco to maneuver on rocky terrain. Guanacos measure in at 43-45 inches tall at the shoulders, or less than 4 feet. (Arkive) This camelid can weigh up to 265 pounds. (San Diego Zoo) Behavior: Guanacos tend to live in herds or social groups throughout the Range & Habitat: year. During the breeding season the groups are broken up into family groups, Found in desert grassland, pampas, male groups, and small solitary male groups. The family groups consist of one shrubland, and forest, the guanaco male with several females and young. In winter, females may leave to form can be found at elevations up to female herds or they may remain in large mixed-sex herds of 500 individuals. 13,000 feet. They have a large range Guanacos communicate visually and through vocalizations, especially alarm from north of Peru to southern calls to warn of danger. Odor is also important for the males to mark their Chile, including Argentina, Bolivia territory with dung piles. The males use their enlarged canines to chase, bite, and Paraguay.
    [Show full text]
  • Pleistocene Mammals from Extinction Cave, Belize
    Canadian Journal of Earth Sciences Pleistocene Mammals From Extinction Cave, Belize Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2018-0178.R3 Manuscript Type: Article Date Submitted by the 04-May-2019 Author: Complete List of Authors: Churcher, C.S.; University of Toronto, Zoology Central America, Pleistocene, Fauna, Vertebrate Palaeontology, Keyword: Limestone cave Is the invited manuscript for consideration in a Special Not applicableDraft (regular submission) Issue? : https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 43 Canadian Journal of Earth Sciences 1 1 PLEISTOCENE MAMMALS FROM EXTINCTION CAVE, BELIZE 2 by C.S. CHURCHER1 Draft 1Department of Zoology, University of Toronto, Toronto, Ontario Canada M5S 2C6 and 322-240 Dallas Rd., Victoria, British Columbia, Canada V8V 4X9 (corresponding address): e-mail [email protected] https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 43 2 4 5 ABSTRACT. A small mammalian fauna is recorded from Extinction Cave (also called Sibun 6 Cave), east of Belmopan, on the Sibun River, Belize, Central America. The animals recognized 7 are armadillo (†Dasypus bellus), American lion (†Panthera atrox), jaguar (P. onca), puma or 8 mountain lion (Puma concolor), Florida spectacled bear (†Tremarctos floridanus), javelina or 9 collared peccary (Pecari tajacu), llama (Camelidae indet., ?†Palaeolama mirifica), red brocket 10 deer (Mazama americana), bison (Bison sp.) and Mexican half-ass (†Equus conversidens), and 11 sabre-tooth cat († Smilodon fatalis) may also be represented (‘†’ indicates an extinct taxon). 12 Bear and bison are absent from the region today. The bison record is one of the more southernly 13 known. The bear record is almost the mostDraft westerly known and a first for Central America.
    [Show full text]
  • Sexual Selection and Extinction in Deer Saloume Bazyan
    Sexual selection and extinction in deer Saloume Bazyan Degree project in biology, Master of science (2 years), 2013 Examensarbete i biologi 30 hp till masterexamen, 2013 Biology Education Centre and Ecology and Genetics, Uppsala University Supervisor: Jacob Höglund External opponent: Masahito Tsuboi Content Abstract..............................................................................................................................................II Introduction..........................................................................................................................................1 Sexual selection........................................................................................................................1 − Male-male competition...................................................................................................2 − Female choice.................................................................................................................2 − Sexual conflict.................................................................................................................3 Secondary sexual trait and mating system. .............................................................................3 Intensity of sexual selection......................................................................................................5 Goal and scope.....................................................................................................................................6 Methods................................................................................................................................................8
    [Show full text]
  • Ungulate and Human Risk Perception in Shared Environments
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2020 Ungulate and human risk perception in shared environments Benjamin Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Recommended Citation Johnson, Benjamin, "Ungulate and human risk perception in shared environments" (2020). Graduate Theses and Dissertations. 17960. https://lib.dr.iastate.edu/etd/17960 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Ungulate and human risk perception in shared environments by Benjamin J. Johnson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Ecology and Evolutionary Biology Program of Study Committee: Robert Klaver, Co-major Professor Cassandra Nuñez, Co-major Professor Amy Toth Dara Wald The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2020 Copyright © Benjamin J. Johnson, 2020. All rights
    [Show full text]
  • Prospects for Rewilding with Camelids
    Journal of Arid Environments 130 (2016) 54e61 Contents lists available at ScienceDirect Journal of Arid Environments journal homepage: www.elsevier.com/locate/jaridenv Prospects for rewilding with camelids Meredith Root-Bernstein a, b, *, Jens-Christian Svenning a a Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark b Institute for Ecology and Biodiversity, Santiago, Chile article info abstract Article history: The wild camelids wild Bactrian camel (Camelus ferus), guanaco (Lama guanicoe), and vicuna~ (Vicugna Received 12 August 2015 vicugna) as well as their domestic relatives llama (Lama glama), alpaca (Vicugna pacos), dromedary Received in revised form (Camelus dromedarius) and domestic Bactrian camel (Camelus bactrianus) may be good candidates for 20 November 2015 rewilding, either as proxy species for extinct camelids or other herbivores, or as reintroductions to their Accepted 23 March 2016 former ranges. Camels were among the first species recommended for Pleistocene rewilding. Camelids have been abundant and widely distributed since the mid-Cenozoic and were among the first species recommended for Pleistocene rewilding. They show a range of adaptations to dry and marginal habitats, keywords: Camelids and have been found in deserts, grasslands and savannas throughout paleohistory. Camelids have also Camel developed close relationships with pastoralist and farming cultures wherever they occur. We review the Guanaco evolutionary and paleoecological history of extinct and extant camelids, and then discuss their potential Llama ecological roles within rewilding projects for deserts, grasslands and savannas. The functional ecosystem Rewilding ecology of camelids has not been well researched, and we highlight functions that camelids are likely to Vicuna~ have, but which require further study.
    [Show full text]
  • Convention on the Conservation of Migratory Species of Wild Animals
    Convention on the Conservation of Migratory Species of Wild Animals Secretariat provided by the United Nations Environment Programme 16TH MEETING OF THE CMS SCIENTIFIC COUNCIL Bonn, Germany, 28-30 June, 2010 UNEP/CMS/ScC16/Inf.10 Agenda Item No. 13.3a COMPILATION OF (RE-) EMERGING TRANSMISSIBLE DISEASES IN MIGRATORY SPECIES (Prepared for the CMS Secretariat by Philipp Zimmermann, DVM, PhD) 1. COP Resolution 9.8 calls on the CMS Secretariat and the FAO Animal Health Service to co-convene a new task force, the Scientific Task Force on Wildlife Disease, with the aim of identifying diseases that have an impact on both domestic and wildlife species, and that are of greatest concern with regard to food security, economics and sustainable livelihoods. 2. The new task force is also meant to develop responses to emerging and re-emerging diseases in migratory species, taking into account the fact that integration of both wildlife and domestic animal issues is required to understand disease epidemiology properly as well as to address disease transmission, control and prevention. 3. As a basis for the work of the new task force, two tables have been prepared, one on transmissible diseases of viral origin (Annex I) and another on transmissible diseases of bacterial origin (Annex II). These tables summarize the most relevant diseases that can affect wild animals, and include information on species affected, outbreaks, transmission, and treatment and control mechanisms. 4. The sources and criteria used include: - The Transmissible Diseases Handbook, 3rd Edition, European Association of Zoo and Wildlife Veterinarians - The Field Manual on Wildlife Diseases, US Geological Survey - Review of selected literature 5.
    [Show full text]
  • The Conservation and Potential Habitat of the Himalayan Musk Deer, Moschus Chrysogaster, in the Protected Areas of Nepal
    INTERNATIONAL JOURNAL OF CONSERVATION SCIENCE ISSN: 2067-533X Volume 2, Issue 2, April-June: 127-141 www.ijcs.uaic.ro THE CONSERVATION AND POTENTIAL HABITAT OF THE HIMALAYAN MUSK DEER, MOSCHUS CHRYSOGASTER, IN THE PROTECTED AREAS OF NEPAL Achyut ARYAL 1*, Ashok SUBEDI 2 1) Ecology and Conservation Group, Institute of Natural Sciences, Massey University, New Zealand 2) Institute of Forestry, Tribhuvan University, Pokhara, Nepal Abstract The Himalayan musk deer (Moschus chrysogaster) is a cervid distributed from the eastern to the western Himalayas of Nepal. The species is listed as endangered in appendix I of IUCN Red data, and protected in Nepal under the National Parks and Wildlife Conservation Act of 1973. Musk deer occupy the middle to the higher mountain regions, which cover 12 protected areas of Nepal (6 national parks, 5 conservation areas, 1 hunting reserve). However, of the 30177.19 km2 potential habitat, only 19.26% (5815.08 km2) is inside the protected areas and the remaining 80.73% falls outside the protected areas. Consequently, poaching, habitat destruction, livestock grazing and forest fire in the musk deer habitat are important challenges for the conservation of musk deer in the country. A thorough status survey in and outside the protected areas should be carried out and a species-focused conservation action plan should be prepared and implemented properly. A program for increasing awareness and enhancing livelihood of the local populations should be launched in the poor and poaching risk zones of Nepal. Keywords: Musk deer; potential habitat; poaching; protected area. Introduction The Himalayan musk deer (Moschus Chrysogaster) (Nepali name: Kasturi Mriga) is a cervid distributed from the eastern to the western Himalayas of Nepal.
    [Show full text]