Effects of Copy Number Variable Regions on Local Gene Expression in White Blood Cells of Mexican Americans

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Copy Number Variable Regions on Local Gene Expression in White Blood Cells of Mexican Americans European Journal of Human Genetics (2015) 23, 1229–1235 & 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/ejhg ARTICLE Effects of copy number variable regions on local gene expression in white blood cells of Mexican Americans August Blackburn*,1,2,MarcioAlmeida1, Angela Dean3, Joanne E Curran1, Matthew P Johnson1,EricKMoses4, Lawrence J Abraham4, Melanie A Carless1,ThomasDDyer1,SatishKumar1,LauraAlmasy1, Michael C Mahaney1, Anthony Comuzzie1, Sarah Williams-Blangero1,5,JohnBlangero1, Donna M Lehman6 and Harald HH Göring1 Only few systematic studies on the contribution of copy number variation to gene expression variation have been published to date. Here we identify effects of copy number variable regions (CNVRs) on nearby gene expression by investigating 909 CNVRs and expression levels of 12059 nearby genes in white blood cells from Mexican-American participants of the San Antonio Family Heart Study. We empirically evaluate our ability to detect the contribution of CNVs to proximal gene expression (presumably in cis)atvariouswindowsizes(uptoa10Mbdistance) between the gene and CNV. We found a ~ 1-Mb window size to be optimal for capturing cis effects of CNVs. Up to 10% of the CNVs in this study were found to be significantly associated with the expression of at least one gene within their vicinity. As expected, we find that CNVs that directly overlap gene sequences have the largest effects on gene expression (compared with non-overlapping CNVRs located nearby), with positive correlation (except for a few exceptions) between estimated genomic dosage and expression level. We find that genes whose expression level is significantly influenced by nearby CNVRs are enriched for immunity and autoimmunity related genes. These findings add to the currently limited catalog of CNVRs that are recognized as expression quantitative trait loci, and have implications for future study designs as well as for prioritizing candidate causal variants in genomic regions associated with disease. European Journal of Human Genetics (2015) 23, 1229–1235; doi:10.1038/ejhg.2014.280; published online 14 January 2015 INTRODUCTION Copy number variation reported in the Database of Genomic Inter-individual variation in transcript abundance is known to be Variants covers roughly 70% of the genome,5 although this estimate is significantly heritable for many genes. Transcript level can be likely upward biased by inaccurate breakpoint identification.6 None- considered as a quantitative endophenotype whose genetic regulatory theless, in an individual, copy number variants (CNVs) make up more machinery can be mapped to the genome.1 The expression quantita- variation than SNPs on a per nucleotide basis.7 Thus, the potential tive trait loci (eQTL) with the strongest effects on gene expression act effects of CNVs as eQTL are likely large. Effects caused by gene dosage primarily in cis.1 A critical bottleneck in the search for disease genes is should be less tissue specific than variation in gene expression caused the identification of the underlying causal variants, which are often by genetic variation in distant regulatory regions, which is important initially localized in genome-wide association studies (GWAS). as we are often limited to studying surrogate tissues to identify eQTL. A promising hypothesis now being explored for complex traits and Only a few recent studies have sought to systematically identify CNVs diseases is that functional alleles may be regulatory in nature and exert which act as eQTL.8,9 Stranger et al9 identified 238 genes with their effect by altering gene expression2 (and thus making them expression levels that were significantly associated with copy number detectable by genetic investigations of expression levels). This general variation. More recently, Schlattl et al8 identified 110 genes with hypothesis is supported by various observations, including the fact that expression affected by CNVs. Both studies investigated the relative most of the identified common disease-associated SNPs are not in proportions of eQTL attributable to CNVs and SNPs, but the effects protein coding regions and often are located far away from exons of by both variants are difficult to disentangle because of the linkage known genes. Recent studies have shown that GWAS SNPs are disequilibrium between CNVs and SNPs. This correlation among enriched among eQTL.3,4 Further, GWAS SNPs, that are known genetic variants located in genomic proximity to one another also eQTL, often affect gene expression in the disease tissue.3 Given these suggests that some eQTL previously identified in SNP-based studies observations, gene transcript levels have received a high level of may be attributable to CNVs. Gamazon et al10 found that SNPs interest as endophenotypes that can be correlated with disease status, tagging CNVs were enriched for cis-eQTL, and that these SNPs are and whose genetic regulatory mechanisms can be mapped with overrepresented in the National Human Genome Research Institute’s considerable power.2 (NHGRI) catalog of GWAS SNPs. 1Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA; 2Department of Cellular and Structural Biology, UT Health Science Center San Antonio, San Antonio, TX, USA; 3Department of Computer Science, University of Texas San Antonio, San Antonio, TX, USA; 4Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, WA, Australia; 5Southwest National Primate Research Center, San Antonio, TX, USA; 6Department of Medicine/Division of Clinical Epidemiology, UT Health Science Center San Antonio, San Antonio, TX, USA *Correspondence: Dr A Blackburn, Department of Genetics, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA. Tel: +1 210 258 9208; Fax: +1 210 258 9444; E-mail: [email protected] Received 25 March 2014; revised 25 September 2014; accepted 26 November 2014; published online 14 January 2015 CNVs and gene expression ABlackburnet al 1230 In this study we seek to add to the growing catalog of eQTL by Gene expression identifying genes whose expression level in white blood cells (mainly For this study, we used gene expression values from Goring et al.1 The lymphocytes) is affected by CNVs in the San Antonio Family Heart ascertainment of transcript abundance measurements has been previously 1 fl fi Study (SAFHS). described in detail. Brie y, genome-wide transcription pro les were created using Illumina Sentrix Human Whole Genome (WG-6) Series I BeadChips, SUBJECTS AND METHODS and are archived under ArrayExpress accession number E-TABM-305. How- ever, these data were re-processed using the following approach. Based on the Study design number of probes with detectable expression (at ‘detection P-value’ ≤ 0.05), the Participants in the SAFHS11 are members of extended, multigenerational average of the raw expression levels across probes, and the average correlation families of Mexican-American descent. SAFHS is a family study where the across all probes between each sample and all others, 1244 samples were subjects were not ascertained on disease status. The Institutional Review Board determined to yield expression profile data of acceptable quality. Among these at the University of Texas Health Science Center San Antonio approved the samples, we tested whether there was an enrichment of samples with a current study, and informed consent was obtained from all participants. All detection P-value ≤ 0.05 for each probe (the ‘detection P-value’ is a quantity study related clinical exams were conducted in San Antonio, TX, USA. Gene provided by Illumina software for each probe in each sample, generated by expression and copy number variation data were available for 1104 participants. comparing the expression level of a given probe to null control probes on the array) to determine which probes detected significant expression. We did this Copy number variable regions using a binomial test of the number of samples with ‘detection P-value’ ≤ 0.05 We recently identified 2937 copy number variable regions (CNVRs) in (5% of the samples would be expected to have a P-value at this level by chance). participants of the SAFHS using various Illumina (San Diego, CA, USA) To correct for multiple testing (as there are many probes being tested) we kept Infinium Beadchips.12 Our ability to characterize these CNVRs is limited in the probes at a false discovery rate of 0.05. Subsequently, we performed background absence of sequencing data. Some CNVRs fall within known complex regions, noise correction, log2 transformation, and quantile normalization. We have or fall within regions of the genome that are predisposed to recurrent copy- used this procedure previously and it is also described here.20 For the sake of number-altering mutational events.13,14 However, we reason that the majority simplicity, tests were performed at the probe level, although in some cases genes are diallelic CNVs as we previously observed reasonable concordance in size were represented by more than one probe. illuminaHumanv1.db available and location between these CNVRs and those identified to be polymorphisms through the Bioconductor website was used for probe annotation. by HapMap3.12,15 Using Log R ratios for probes within each CNVR, we generated quantitative Statistical genetic analysis values representative of copy number using the principal components function The relationship between copy number variation and probe-level gene implemented within CNVtools.16 As described by Barnes et
Recommended publications
  • Replace This with the Actual Title Using All Caps
    UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Asha Marie Miles December 2019 © 2019 Asha Marie Miles UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH Asha Marie Miles, Ph. D. Cornell University 2019 This dissertation addresses deficiencies in the existing genetic characterization of mastitis due to granddaughter study designs and selection strategies based primarily on lactation average somatic cell score (SCS). Composite milk samples were collected across 6 sampling periods representing key lactation stages: 0-1 day in milk (DIM), 3- 5 DIM, 10-14 DIM, 50-60 DIM, 90-110 DIM, and 210-230 DIM. Cows were scored for front and rear teat length, width, end shape, and placement, fore udder attachment, udder cleft, udder depth, rear udder height, and rear udder width. Independent multivariable logistic regression models were used to generate odds ratios for elevated SCC (≥ 200,000 cells/ml) and farm-diagnosed clinical mastitis. Within our study cohort, loose fore udder attachment, flat teat ends, low rear udder height, and wide rear teats were associated with increased odds of mastitis. Principal component analysis was performed on these traits to create a single new phenotype describing mastitis susceptibility based on these high-risk phenotypes. Cows (N = 471) were genotyped on the Illumina BovineHD 777K SNP chip and considering all 14 traits of interest, a total of 56 genome-wide associations (GWA) were performed and 28 significantly associated quantitative trait loci (QTL) were identified.
    [Show full text]
  • Downloads, 2019-11-21 Version) with the Same Set of Keywords Used in a Previous Study14 (One
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.13.422502; this version posted December 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Association of Structural Variation with Cardiometabolic Traits in Finns 2 3 Lei Chen,1,2,3 Haley J. Abel,1,2 Indraniel Das,1 David E. Larson,1,4 Liron Ganel,1,2 Krishna L. Kanchi,1 4 Allison A. Regier,1,2 Erica P. Young,1,5 Chul Joo Kang,1 Alexandra J Scott,1,2 Colby Chiang,1,2 Xinxin 5 Wang,1,2,3 Shuangjia Lu,3 Ryan Christ,1 Susan K. Service,6 Charleston W.K. Chiang,7,8 Aki S. 6 Havulinna,9,10 Johanna Kuusisto,11,12 Michael Boehnke,13 Markku Laakso,11,12 Aarno Palotie,9,14,15 7 Samuli Ripatti,9,15,16 Nelson B. Freimer,6 Adam E. Locke,1,2 Nathan O. Stitziel,1,2,4,* Ira M. Hall1,2,3,* 8 9 1 McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA 10 2 Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA 11 3 Department of Genetics, Yale University School of Medicine, New Haven, CT, USA 12 4 Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA 13 5 Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St.
    [Show full text]
  • Literature Mining Sustains and Enhances Knowledge Discovery from Omic Studies
    LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES by Rick Matthew Jordan B.S. Biology, University of Pittsburgh, 1996 M.S. Molecular Biology/Biotechnology, East Carolina University, 2001 M.S. Biomedical Informatics, University of Pittsburgh, 2005 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Rick Matthew Jordan It was defended on December 2, 2015 and approved by Shyam Visweswaran, M.D., Ph.D., Associate Professor Rebecca Jacobson, M.D., M.S., Professor Songjian Lu, Ph.D., Assistant Professor Dissertation Advisor: Vanathi Gopalakrishnan, Ph.D., Associate Professor ii Copyright © by Rick Matthew Jordan 2016 iii LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES Rick Matthew Jordan, M.S. University of Pittsburgh, 2016 Genomic, proteomic and other experimentally generated data from studies of biological systems aiming to discover disease biomarkers are currently analyzed without sufficient supporting evidence from the literature due to complexities associated with automated processing. Extracting prior knowledge about markers associated with biological sample types and disease states from the literature is tedious, and little research has been performed to understand how to use this knowledge to inform the generation of classification models from ‘omic’ data. Using pathway analysis methods to better understand the underlying biology of complex diseases such as breast and lung cancers is state-of-the-art. However, the problem of how to combine literature- mining evidence with pathway analysis evidence is an open problem in biomedical informatics research.
    [Show full text]
  • E4F1 Controls a Transcriptional Program Essential for Pyruvate Dehydrogenase Activity
    E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity Matthieu Lacroixa,b,c,d,e,1, Geneviève Rodiera,b,c,d,e,f,1, Olivier Kirshf,g,1, Thibault Houlesa,b,c,d,e,f,2, Hélène Delpecha,b,c,d,e,f,2, Berfin Seyrana,b,c,d,e, Laurie Gaytea,b,c,d,e, Francois Casasc,h, Laurence Pessemessec,h, Maud Heuilleti,j,k, Floriant Bellverti,j,k, Jean-Charles Portaisi,j,k, Charlene Bertheta,b,c,d,l, Florence Bernexa,b,c,d,l, Michele Brivetm, Audrey Boutronm, Laurent Le Cama,b,c,d,e,3,4, and Claude Sardeta,b,c,d,e,f,3,4 aInstitut de Recherche en Cancérologie de Montpellier, Montpellier F-34298, France; bINSERM, U1194, Montpellier F-34298, France; cUniversité Montpellier, Montpellier F-34090, France; dInstitut du Cancer Montpellier, Montpellier F-34298, France; eEquipe labellisée Ligue Contre le Cancer, 75013 Paris, France; fInstitut de Génétique Moléculaire de Montpellier, UMR5535, CNRS, Montpellier F-34293, France; gCNRS, UMR7216, Epigenetics and Cell Fate, University Paris Diderot, Sorbonne Paris Cite, 75013 Paris, France; hDynamique Musculaire et Métabolisme, Institut National de la Recherche Agronomique, UMR866, F-34060 Montpellier, France; iUniversité de Toulouse, Institut National des Sciences Appliquées, Université Paul Sabatié, Institut National Polytechnique, F-31077 Toulouse, France; jUMR792 Ingénierie des Systèmes Biologiques et des Procédés, Institut National de la Recherche Agronomique, F-31400 Toulouse, France; kCNRS, UMR5504, F-31400 Toulouse, France; lMontpellier Network of Experimental Histology, BioCampus, CNRS, UMS3426, F-34094 Montpellier, France; and mDepartment of Biochemistry, Bicêtre Hospital, 94270 Le Kremlin Bicetre, France Edited by Steven L.
    [Show full text]
  • Strong Synaptic Transmission Impact by Copy Number Variations in Schizophrenia
    Strong synaptic transmission impact by copy number variations in schizophrenia Joseph T. Glessnera, Muredach P. Reillyb, Cecilia E. Kima, Nagahide Takahashic, Anthony Albanoa, Cuiping Houa, Jonathan P. Bradfielda, Haitao Zhanga, Patrick M. A. Sleimana, James H. Florya, Marcin Imielinskia, Edward C. Frackeltona, Rosetta Chiavaccia, Kelly A. Thomasa, Maria Garrisa, Frederick G. Otienoa, Michael Davidsond, Mark Weiserd, Abraham Reichenberge, Kenneth L. Davisc,JosephI.Friedmanc, Thomas P. Cappolab, Kenneth B. Marguliesb, Daniel J. Raderb, Struan F. A. Granta,f,g, Joseph D. Buxbaumc, Raquel E. Gurh, and Hakon Hakonarsona,f,g,1 aCenter for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104; bPenn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; cConte Center for the Neuroscience of Mental Disorders and Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, 10029; dSheba Medical Center, Tel Hashomer, 52621, Israel; eMount Sinai and Institute of Psychiatry, King’s College, London, SE5 8AF, United Kingdom; fDivision of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104; gDepartment of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and hSchizophrenia Center, Neuropsychiatry Division, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 Edited by James R. Lupski, Baylor College of Medicine, Houston, TX, and accepted by the Editorial Board April 13, 2010 (received for review January 7, 2010) Schizophrenia is a psychiatric disorder with onset in late adoles- contribute to the complex etiology underlying various psychiatric cence and unclear etiology characterized by both positive and ne- and neurodevelopmental disorders (13, 14). Whereas rare recurrent gative symptoms, as well as cognitive deficits.
    [Show full text]
  • Proteomics Reveals Disturbances in the Immune Response and Energy
    www.nature.com/scientificreports OPEN Proteomics reveals disturbances in the immune response and energy metabolism of monocytes from patients with septic shock Pedro Mendes de Azambuja Rodrigues1, Richard Hemmi Valente2, Giselle Villa Flor Brunoro2, Helder Takashi Imoto Nakaya3, Mariana Araújo‑Pereira3, Patricia Torres Bozza4, Fernando Augusto Bozza1,6 & Monique Ramos de Oliveira Trugilho2,5,6* Sepsis results from a dyshomeostatic response to infection, which may lead to hyper or hypoimmune states. Monocytes are central regulators of the infammatory response, but our understanding of their role in the genesis and resolution of sepsis is still limited. Here, we report a comprehensive exploration of monocyte molecular responses in a cohort of patients with septic shock via proteomic profling. The acute stage of septic shock was associated with an impaired infammatory phenotype, indicated by the down‑regulation of MHC class II molecules and proinfammatory cytokine pathways. Simultaneously, there was an up‑regulation of glycolysis enzymes and a decrease in proteins related to the citric acid cycle and oxidative phosphorylation. On the other hand, the restoration of immunocompetence was the hallmark of recovering patients, in which an upregulation of interferon signaling pathways was a notable feature. Our results provide insights into the immunopathology of sepsis and propose that, pending future studies, immunometabolism pathway components could serve as therapeutic targets in septic patients. Sepsis represents a signifcant burden for healthcare systems worldwide due to its high incidence, mortality, and associated costs1. Te critical event for the development of sepsis seems to be a dysregulation of the host response to infection, resulting in a state of life-threatening loss of homeostasis.
    [Show full text]
  • Genetic Mutations and Variants in the Susceptibility of Familial Non-Medullary Thyroid Cancer
    G C A T T A C G G C A T genes Review Genetic Mutations and Variants in the Susceptibility of Familial Non-Medullary Thyroid Cancer Fabíola Yukiko Miasaki 1 , Cesar Seigi Fuziwara 2, Gisah Amaral de Carvalho 1 and Edna Teruko Kimura 2,* 1 Department of Endocrinology and Metabolism (SEMPR), Hospital de Clínicas, Federal University of Paraná, Curitiba 80030-110, Brazil; [email protected] (F.Y.M.); [email protected] (G.A.d.C.) 2 Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-11-3091-7304 Received: 24 October 2020; Accepted: 16 November 2020; Published: 18 November 2020 Abstract: Thyroid cancer is the most frequent endocrine malignancy with the majority of cases derived from thyroid follicular cells and caused by sporadic mutations. However, when at least two or more first degree relatives present thyroid cancer, it is classified as familial non-medullary thyroid cancer (FNMTC) that may comprise 3–9% of all thyroid cancer. In this context, 5% of FNMTC are related to hereditary syndromes such as Cowden and Werner Syndromes, displaying specific genetic predisposition factors. On the other hand, the other 95% of cases are classified as non-syndromic FNMTC. Over the last 20 years, several candidate genes emerged in different studies of families worldwide. Nevertheless, the identification of a prevalent polymorphism or germinative mutation has not progressed in FNMTC. In this work, an overview of genetic alteration related to syndromic and non-syndromic FNMTC is presented.
    [Show full text]
  • Sensitization of Glioblastoma Cells to Irradiation by Modulating the Glucose Metabolism Han Shen1, Eric Hau1,2, Swapna Joshi1, Pierre J
    Published OnlineFirst June 10, 2015; DOI: 10.1158/1535-7163.MCT-15-0247 Small Molecule Therapeutics Molecular Cancer Therapeutics Sensitization of Glioblastoma Cells to Irradiation by Modulating the Glucose Metabolism Han Shen1, Eric Hau1,2, Swapna Joshi1, Pierre J. Dilda3, and Kerrie L. McDonald1 Abstract Because radiotherapy significantly increases median survival in combination. In vitro, an enhanced inhibition of clonogenicity of patients with glioblastoma, the modulation of radiation resis- a panel of glioblastoma cells was observed when dichloroacetate tance is of significant interest. High glycolytic states of tumor cells was combined with radiotherapy. Further mechanistic investiga- are known to correlate strongly with radioresistance; thus, the tion revealed that dichloroacetate sensitized glioblastoma cells to concept of metabolic targeting needs to be investigated in com- radiotherapy by inducing the cell-cycle arrest at the G2–M phase, bination with radiotherapy. Metabolically, the elevated glycolysis reducing mitochondrial reserve capacity, and increasing the oxi- in glioblastoma cells was observed postradiotherapy together dative stress as well as DNA damage in glioblastoma cells together with upregulated hypoxia-inducible factor (HIF)-1a and its target with radiotherapy. In vivo, the combinatorial treatment of dichlor- pyruvate dehydrogenase kinase 1 (PDK1). Dichloroacetate, a PDK oacetate and radiotherapy improved the survival of orthotopic inhibitor currently being used to treat lactic acidosis, can modify glioblastoma-bearing mice. In conclusion, this study provides the tumor metabolism by activating mitochondrial activity to force proof of concept that dichloroacetate can effectively sensitize glycolytic tumor cells into oxidative phosphorylation. Dichlor- glioblastoma cells to radiotherapy by modulating the metabolic oacetate alone demonstrated modest antitumor effects in both in state of tumor cells.
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Mouse Glucose Metabolism Cat. no. 330231 PAMM-006ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Mouse Glucose Metabolism RT² Profiler PCR Array profiles the expression of 84 key genes involved in the regulation and enzymatic pathways of glucose and glycogen metabolism. Glycolysis, the TCA cycle and the pentose phosphate pathways break down glucose from carbohydrates into the metabolites necessary for energy production, and gluconeogenesis stores excess energy as glucose. Cells, particularly in skeletal muscle and the liver, store excess glucose as the polysaccharide glycogen, and quickly metabolize it again when necessary.
    [Show full text]
  • Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimulated by Porphyromonas Gingivalis and Its Outer Membrane Vesicles
    ORIGINAL RESEARCH published: 04 August 2017 doi: 10.3389/fcimb.2017.00351 Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles Andrew J. Fleetwood 1*, Man K.S. Lee 2, William Singleton 3, Adrian Achuthan 1, Ming-Chin Lee 1, Neil M. O’Brien-Simpson 3, Andrew D. Cook 1, Andrew J. Murphy 2, Stuart G. Dashper 3, Eric C. Reynolds 3 and John A. Hamilton 1 1 Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia, 2 Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia, 3 Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, University of Melbourne, VIC, Australia Porphyromonas gingivalis is one of the bacterial species most closely associated with periodontitis and can shed large numbers of outer membrane vesicles (OMVs), which are increasingly thought to play a significant role in bacterial virulence and pathogenicity. Macrophages are amongst the first immune cells to respond to bacteria and their Edited by: products, so we sought to directly compare the response of macrophages to P.gingivalis Georgios N. Belibasakis, or its purified OMVs. Macrophages stimulated with OMVs produced large amounts of Karolinska Institute (KI), Sweden TNFα, IL-12p70, IL-6, IL-10, IFNβ, and nitric oxide compared to cells infected with Reviewed by: Özlem Yilmaz, P. gingivalis, which produced very low levels of these mediators. Both P. gingivalis Medical University of South Carolina, and OMVs induced a shift in macrophage metabolism from oxidative phosphorylation United States Peyman Kelk, (OXPHOS) to glycolysis, which was supported by enhanced lactate release, decreased Umeå University, Sweden mitochondrial oxygen consumption with reduced spare respiratory capacity, as well as *Correspondence: increased mitochondrial reactive oxygen species (ROS) production.
    [Show full text]
  • Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2010 Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Renuka Nayak University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Computational Biology Commons, and the Genomics Commons Recommended Citation Nayak, Renuka, "Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress" (2010). Publicly Accessible Penn Dissertations. 1559. https://repository.upenn.edu/edissertations/1559 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1559 For more information, please contact [email protected]. Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Abstract Genes interact in networks to orchestrate cellular processes. Here, we used coexpression networks based on natural variation in gene expression to study the functions and interactions of human genes. We asked how these networks change in response to stress. First, we studied human coexpression networks at baseline. We constructed networks by identifying correlations in expression levels of 8.9 million gene pairs in immortalized B cells from 295 individuals comprising three independent samples. The resulting networks allowed us to infer interactions between biological processes. We used the network to predict the functions of poorly-characterized human genes, and provided some experimental support. Examining genes implicated in disease, we found that IFIH1, a diabetes susceptibility gene, interacts with YES1, which affects glucose transport. Genes predisposing to the same diseases are clustered non-randomly in the network, suggesting that the network may be used to identify candidate genes that influence disease susceptibility.
    [Show full text]
  • Phosphorylation of Skeletal Muscle Pyruvate Dehydrogenase Phosphatase in Response to Insulin Stimulation
    Phosphorylation of Skeletal Muscle Pyruvate Dehydrogenase Phosphatase in Response to Insulin Stimulation Jonathan Robert Choptiany, B.Kin. Submitted in partial fulfillment of the requirements for the degree Master of Science in Applied Health Sciences (Kinesiology) Under the supervision of Sandra Peters, Ph.D. Faculty of Applied Health Sciences Brock University St. Catharines, Ontario, Canada Jonathan R. Choptiany© June 2013 M.Sc. Thesis – J. R. Choptiany Brock University Master of Science (2013) Title: Phosphorylation of Skeletal Muscle Pyruvate Dehydrogenase Phosphatase in Response to Insulin Stimulation Author: Jonathan R. Choptiany Supervisor: Dr. Sandra J. Peters Supervisory Committee: Dr. Paul J. LeBlanc Dr. Michael J. Plyley Dr. Brendon Gurd (External Examiner) Number of Pages: 176 ii M.Sc. Thesis – J. R. Choptiany Brock University ABSTRACT Pyruvate dehydrogenase phosphatase (PDP) regulates carbohydrate oxidation through the pyruvate dehydrogenase (PDH) complex. PDP activates PDH, enabling increased carbohydrate flux towards oxidative energy production. In culture myoblasts, both PDP1 and PDP2 undergo covalent activation in response to insulin–stimulation by protein kinase C delta (PKCδ). Our objective was to examine the effect of insulin on PDP phosphorylation and PDH activation in skeletal muscle. Intact rat extensor digitorum longus muscles were incubated (oxygenated at 25°C, 1g of tension) for 30min in basal or insulin–stimulated (10 mU/mL) media. PDH activity increased 58% following stimulation, (p=0.057, n=11). Serine phosphorylation of PDP1 (p=0.047) and PDP2 (p=0.006) increased by 29% and 48%, respectively (n=8), and mitochondrial PKCδ protein content was enriched by 45% in response to stimulation (p=0.0009, n=8).
    [Show full text]