Time-Resolved High-Harmonic Spectroscopy of Ultrafast Photo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generation of Even and Odd High Harmonics in Resonant Metasurfaces Using Single and Multiple Ultra-Intense Laser Pulses
Generation of even and odd high harmonics in resonant metasurfaces using single and multiple ultra-intense laser pulses Maxim Shcherbakov ( [email protected] ) Cornell University Haizhong Zhang Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) Michael Tripepi Department of Physics, The Ohio State University https://orcid.org/0000-0002-4657-9826 Giovanni Sartorello Cornell University Noah Talisa Department of Physics, The Ohio State University Abdallah AlShafey Department of Physics, The Ohio State University Zhiyuan Fan Cornell University Justin Twardowski Department of Physics, The Ohio State University Leonid Krivitsky Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) Arseniy Kuznetsov Institute of Materials Research and Engineering https://orcid.org/0000-0002-7622-8939 Enam Chowdhury Department of Physics, The Ohio State University Gennady Shvets Cornell University https://orcid.org/0000-0001-8542-6753 Article Keywords: High harmonic generation (HHG), resonant metasurfaces, ultra-intense laser pulses, Posted Date: October 26th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-92835/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Generation of even and odd high harmonics in resonant metasurfaces using single and multiple ultra-intense laser pulses Maxim R. Shcherbakov,1,* Haizhong Zhang,2 Michael Tripepi,3 Giovanni Sartorello,1 Noah Talisa,3 Abdallah AlShafey,3 Zhiyuan Fan,1 Justin Twardowski,4 Leonid A. Krivitsky,2 Arseniy I. Kuznetsov,2 Enam Chowdhury,3,4,5 Gennady Shvets1,* Affiliations: 1School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA. 2Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 138634, Singapore. -
High Harmonic Generation by Short Laser Pulses
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 High harmonic generation by short laser pulses: time-frequency behavior and applications to attophysics Mitsuko Murakami Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Physical Sciences and Mathematics Commons Recommended Citation Murakami, Mitsuko, "High harmonic generation by short laser pulses: time-frequency behavior and applications to attophysics" (2006). LSU Doctoral Dissertations. 769. https://digitalcommons.lsu.edu/gradschool_dissertations/769 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. HIGH HARMONIC GENERATION BY SHORT LASER PULSES: TIME-FREQUENCY BEHAVIOR AND APPLICATIONS TO ATTOPHYSICS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Physics and Astronomy by Mitsuko Murakami B. Sc., McNeese State University, Lake Charles, LA, 1999 M. Sc., Louisiana State University, Baton Rouge, LA, 2001 May, 2006 To my grandmother ii Acknowledgements I am very grateful to my advisor, Dr. Mette Gaarde, who has been helpful and inspiring throughout my dissertation research. Her teaching is rigorous upon fundamental principles and yet extremely intuitive. I am also grateful to Dr. Ravi Rau, Dr. Dana Browne, Dr. Gabriela Gonzalez, and Dr. Xue-Bin Liang for serving as the members of my dissertation committee. -
Impact of the Electronic Band Structure in High-Harmonic Generation Spectra of Solids
Impact of the Electronic Band Structure in High-Harmonic Generation Spectra of Solids The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Tancogne-Dejean, Nicolas et al. “Impact of the Electronic Band Structure in High-Harmonic Generation Spectra of Solids.” Physical Review Letters 118.8 (2017): n. pag. © 2017 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevLett.118.087403 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/107908 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. week ending PRL 118, 087403 (2017) PHYSICAL REVIEW LETTERS 24 FEBRUARY 2017 Impact of the Electronic Band Structure in High-Harmonic Generation Spectra of Solids † Nicolas Tancogne-Dejean,1,2,* Oliver D. Mücke,3,4 Franz X. Kärtner,3,4,5,6 and Angel Rubio1,2,3,5, 1Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany 2European Theoretical Spectroscopy Facility (ETSF), Luruper Chaussee 149, 22761 Hamburg, Germany 3Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany 4The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany 5Physics Department, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany 6Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA (Received 29 September 2016; published 24 February 2017) An accurate analytic model describing the microscopic mechanism of high-harmonic generation (HHG) in solids is derived. -
Single-Pass Laser Frequency Conversion to 780.2 Nm and 852.3 Nm Based on Ppmgo:LN Bulk Crystals and Diode-Laser-Seeded Fiber Amplifiers
applied sciences Article Single-Pass Laser Frequency Conversion to 780.2 nm and 852.3 nm Based on PPMgO:LN Bulk Crystals and Diode-Laser-Seeded Fiber Amplifiers Kong Zhang 1, Jun He 1,2 and Junmin Wang 1,2,* 1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; [email protected] (K.Z.); [email protected] (J.H.) 2 Collaborative Innovation Center of Extreme Optics of the Ministry of Education and Shanxi Province, Shanxi University, Taiyuan 030006, China * Correspondence: [email protected] Received: 16 October 2019; Accepted: 15 November 2019; Published: 17 November 2019 Abstract: We report the preparation of a 780.2 nm and 852.3 nm laser device based on single-pass periodically poled magnesium-oxide-doped lithium niobate (PPMgO:LN) bulk crystals and diode-laser-seeded fiber amplifiers. First, a single-frequency continuously tunable 780.2 nm laser of more than 600 mW from second-harmonic generation (SHG) by a 1560.5 nm laser can be achieved. Then, a 250 mW light at 852.3 nm is generated and achieves an overall conversion efficiency of 4.1% from sum-frequency generation (SFG) by mixing the 1560.5 nm and 1878.0 nm lasers. The continuously tunable range of 780.2 nm and 852.3 nm are at least 6.8 GHz and 9.2 GHz. By employing this laser system, we can conveniently perform laser cooling, trapping and manipulating both rubidium (Rb) and cesium (Cs) atoms simultaneously. This system has promising applications in a cold atoms Rb-Cs two-component interferemeter and in the formation of the RbCs dimer by the photoassociation of cold Rb and Cs atoms confined in a magneto-optical trap. -
Second Harmonic Generation in Nonlinear Optical Crystal
Second Harmonic Generation in Nonlinear Optical Crystal Diana Jeong 1. Introduction In traditional electromagnetism textbooks, polarization in the dielectric material is linearly proportional to the applied electric field. However since in 1960, when the coherent high intensity light source became available, people realized that the linearity is only an approximation. Instead, the polarization can be expanded in terms of applied electric field. (Component - wise expansion) (1) (1) (2) (3) Pk = ε 0 (χ ik Ei + χ ijk Ei E j + χ ijkl Ei E j Ek +L) Other quantities like refractive index (n) can be expanded in terms of electric field as well. And the non linear terms like second (E^2) or third (E^3) order terms become important. In this project, the optical nonlinearity is present in both the source of the laser-mode-locked laser- and the sample. Second Harmonic Generation (SHG) is a coherent optical process of radiation of dipoles in the material, dependent on the second term of the expansion of polarization. The dipoles are oscillated with the applied electric field of frequency w, and it radiates electric field of 2w as well as 1w. So the near infrared input light comes out as near UV light. In centrosymmetric materials, SHG cannot be demonstrated, because of the inversion symmetries in polarization and electric field. The only odd terms survive, thus the second order harmonics are not present. SHG can be useful in imaging biological materials. For example, the collagen fibers and peripheral nerves are good SHG generating materials. Since the SHG is a coherent process it, the molecules, or the dipoles are not excited in terms of the energy levels. -
Nonlinear Optical Characterization of 2D Materials
nanomaterials Review Nonlinear Optical Characterization of 2D Materials Linlin Zhou y, Huange Fu y, Ting Lv y, Chengbo Wang y, Hui Gao, Daqian Li, Leimin Deng and Wei Xiong * Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; [email protected] (L.Z.); [email protected] (H.F.); [email protected] (T.L.); [email protected] (C.W.); [email protected] (H.G.); [email protected] (D.L.); [email protected] (L.D.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 7 October 2020; Accepted: 30 October 2020; Published: 16 November 2020 Abstract: Characterizing the physical and chemical properties of two-dimensional (2D) materials is of great significance for performance analysis and functional device applications. As a powerful characterization method, nonlinear optics (NLO) spectroscopy has been widely used in the characterization of 2D materials. Here, we summarize the research progress of NLO in 2D materials characterization. First, we introduce the principles of NLO and common detection methods. Second, we introduce the recent research progress on the NLO characterization of several important properties of 2D materials, including the number of layers, crystal orientation, crystal phase, defects, chemical specificity, strain, chemical dynamics, and ultrafast dynamics of excitons and phonons, aiming to provide a comprehensive review on laser-based characterization for exploring 2D material properties. Finally, the future development trends, challenges of advanced equipment construction, and issues of signal modulation are discussed. In particular, we also discuss the machine learning and stimulated Raman scattering (SRS) technologies which are expected to provide promising opportunities for 2D material characterization. -
Efficient Frequency Doubling at 399Nm Arxiv:1401.1623V3 [Physics
Efficient Frequency Doubling at 399 nm Marco Pizzocaro,1, 2, ∗ Davide Calonico,2 Pablo Cancio Pastor,3, 4 Jacopo Catani,3, 4 Giovanni A. Costanzo,1 Filippo Levi,2 and Luca Lorini2 1Politecnico di Torino, Dipartimento di Elettronica e Telecomunicazioni, C.so duca degli Abruzzi 24, 10125 Torino, Italy 2Istituto Nazionale di Ricerca Metrologica (INRIM), Str. delle Cacce 91, 10135 Torino, Italy 3Istituto Nazionale di Ottica (INO-CNR), Via Nello Carrara, 1, 50019 Sesto Fiorentino, Italy 4European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara, 1, 50019 Sesto Fiorentino, Italy (Dated: May 22, 2014) Abstract This article describes a reliable, high-power, and narrow-linewidth laser source at 399 nm useful for cooling and trapping of ytterbium atoms. A continuous-wave titanium-sapphire laser at 798 nm is frequency doubled using a lithium triborate crystal in an enhancement cavity. Up to 1:0 W of light at 399 nm has been obtained from 1:3 W of infrared light, with an efficiency of 80 %. arXiv:1401.1623v3 [physics.optics] 21 May 2014 ∗ Author to whom correspondence should be addressed. Electronic mail: [email protected] 1 Ytterbium holds interest for several atomic physics experiments because it is easy to cool and trap and has seven stable isotopes. Such experiments include optical frequency standards [1], non-conservation measurement [2], Bose-Einstein condensation [3], degenerate Fermi gases [4,5], bosonic-fermionic systems [6], and quantum information [7]. Ytterbium atoms can be cooled at millikelvin temperature using a magneto-optical trap (MOT) on the 1 1 strong blue transition S0− P1 at 399 nm. -
Imaging with Second-Harmonic Generation Nanoparticles
1 Imaging with Second-Harmonic Generation Nanoparticles Thesis by Chia-Lung Hsieh In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2011 (Defended March 16, 2011) ii © 2011 Chia-Lung Hsieh All Rights Reserved iii Publications contained within this thesis: 1. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, "Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging," Opt. Express 17, 2880–2891 (2009). 2. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, "Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes," Biomaterials 31, 2272–2277 (2010). 3. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, "Second harmonic generation from nanocrystals under linearly and circularly polarized excitations," Opt. Express 18, 11917–11932 (2010). 4. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, "Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media," Opt. Express 18, 12283–12290 (2010). 5. C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, "Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle," Opt. Express 18, 20723–20731 (2010). iv Acknowledgements During my five-year Ph.D. studies, I have thought a lot about science and life, but I have never thought of the moment of writing the acknowledgements of my thesis. At this moment, after finishing writing six chapters of my thesis, I realize the acknowledgment is probably one of the most difficult parts for me to complete. -
Enhanced High-Harmonic Generation from an All-Dielectric Metasurface
LETTERS https://doi.org/10.1038/s41567-018-0233-6 Enhanced high-harmonic generation from an all-dielectric metasurface Hanzhe Liu 1,2*, Cheng Guo3,4, Giulio Vampa1, Jingyuan Linda Zhang3,4, Tomas Sarmiento 4,5, Meng Xiao 4, Philip H. Bucksbaum1,2,3,6, Jelena Vucković3,4,5 , Shanhui Fan3,4,5 and David A. Reis 1,3,6* The recent observation of high-harmonic generation from damage threshold of plasmonic-based metal structures is extremely solids creates a new possibility for engineering fundamen- sensitive to the fabrication quality and the high degree of confine- tal strong-field processes by patterning the solid target with ment in the vicinity of sharp features, such as edges or corners, sig- subwavelength nanostructures. All-dielectric metasurfaces nificantly limits the overall signal enhancement12,18,19. exhibit high damage thresholds and strong enhancement of A dielectric metasurface that hosts an optical resonance provides the driving field, making them attractive platforms to con- a promising solution to this issue. Electromagnetically induced trol high harmonics and other high-field processes at the transparency (EIT)20 can give rise to greatly enhanced nonlinear nanoscale. Here we report enhanced non-perturbative high- light–matter interactions in the spectral region of the resonance21. harmonic emission from a Fano-resonant Si metasurface Enhanced frequency conversion from EIT has been observed in that possesses a classical analogue of electromagnetically atomic systems21 and, very recently, enhanced perturbative third- induced transparency. The harmonic emission is enhanced by harmonic generation has been reported from photonic devices more than two orders of magnitude compared to unpatterned exhibiting a classical analogue of EIT14. -
X-Ray Spectroscopy and Metrology with High-Harmonic Sources
X-ray spectroscopy and metrology with high-harmonic sources Peter M. Kraus Advanced Research Center for Nanolithography (ARCNL), Amsterdam, The Netherlands. EUV Lithography Source Workshop, 06.11.2018 – HiLASE, Prague, Czech Republic. EUV lithography requires new XUV sources Resolve structures during lithography and Understand EUV (13.5 nm) interactions to after production with sub-nm precision improve masks, pellicles, mirrors, resists… L. Li et al., Chem. Soc. Rev., 2017, 46, 4855 Y. Zhang et al., J. Micro Nanolith. MEMS MOEMS 16, 023510 (2017) Broadband XUV and soft x-ray imaging Ulrafast XUV and soft x-ray spectroscopy We need an ultrafast, coherent, table-top XUV/soft x-ray source Solution: High-harmonic generation (HHG) High-harmonic generation argon atoms 1300 nm Space ~ 1 mJ ~1014 W/cm2 20 eV 50 eV 120 eV =^ 60 nm =^ 10 nm High-harmonic generation (HHG): Converting many IR-photons into one 3 XUV-photon Three-step model of HHG Typical parameters: E - 3 - Recombination 800 nm 3.17 Up - 2 - ~ 1 mJ Propagation ~ 1014 - 1015 W/cm2 XUV emission 0 r Active Figure from: electron P. M. Kraus, H. J. Woerner, Angew. Chem. 57, - IP 5228 (2018). - 1 - Three-step model of HHG: Core P. B. Corkum, PRL 71, 1994 (1993) Ionization J. L. Krause, K. J. Schafer, K. C. Kulander, PRL 68, 3535 (1992) Quantum theory of HHG: Electron M. Lewenstein et al., PRA 49, 2117 (1994) mean field Imaging needs in nanolithpgraphy Lensless imaging with x-rays from HHG Compared to a conventional microscope, the lenses are replaced with a computer algorithm Collaboration with Stefan Witte & Kjeld Eikema (ARCNL) Needs in lithography: Short wavelength, high average power Demonstrated HHG sources S. -
Label-Free Multiphoton Microscopy: Much More Than Fancy Images
International Journal of Molecular Sciences Review Label-Free Multiphoton Microscopy: Much More than Fancy Images Giulia Borile 1,2,*,†, Deborah Sandrin 2,3,†, Andrea Filippi 2, Kurt I. Anderson 4 and Filippo Romanato 1,2,3 1 Laboratory of Optics and Bioimaging, Institute of Pediatric Research Città della Speranza, 35127 Padua, Italy; fi[email protected] 2 Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; [email protected] (D.S.); andrea.fi[email protected] (A.F.) 3 L.I.F.E.L.A.B. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy 4 Crick Advanced Light Microscopy Facility (CALM), The Francis Crick Institute, London NW1 1AT, UK; [email protected] * Correspondence: [email protected] † These authors contributed equally. Abstract: Multiphoton microscopy has recently passed the milestone of its first 30 years of activity in biomedical research. The growing interest around this approach has led to a variety of applications from basic research to clinical practice. Moreover, this technique offers the advantage of label-free multiphoton imaging to analyze samples without staining processes and the need for a dedicated system. Here, we review the state of the art of label-free techniques; then, we focus on two-photon autofluorescence as well as second and third harmonic generation, describing physical and technical characteristics. We summarize some successful applications to a plethora of biomedical research fields and samples, underlying the versatility of this technique. A paragraph is dedicated to an overview of sample preparation, which is a crucial step in every microscopy experiment. -
Spin Conservation in High-Order-Harmonic Generation Using Bicircular fields
Spin conservation in high-order-harmonic generation using bicircular fields Emilio Pisanty1,∗ Suren Sukiasyan1, and Misha Ivanov1;2;3† 1Blackett Laboratory, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom 2Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany 3Max Born Institute, Max Born Strasse 2a, 12489 Berlin, Germany (Dated: October 3, 2018) We present an alternative theoretical model for a recent experiment [A. Fleischer et al., Nature Photon. 8, 543 (2014)] which used bichromatic, counter-rotating high intensity laser pulses to probe the conservation of spin angular momentum in high harmonic generation. We separate elliptical polarizations into independent circular fields with definite angular momentum, instead of using the expectation value of spin for each photon in the conservation equation, and we find good agreement with the experimental results. In our description the generation of each individual harmonic con- serves spin angular momentum, in contrast to the model proposed by Fleischer et al. Our model also correctly describes analogous processes in standard perturbative optics. §I. INTRODUCTION that in general the production of each individual harmonic is not a closed process. The process of high harmonic generation [1] is the flag- This model, which we call Model 1, suggests that spin ship experiment of extreme nonlinear optics. It consists of angular momentum is not conserved for certain harmonic irradiating atoms or small molecules with long-wavelength lines, so that some harmonics must be assumed to be emit- laser pulses whose electric field is comparable to the inter- ted in correlated pairs for the overall process to be paramet- nal electric fields of the atoms, which results in the emission ric.