Switching Systems Management No. 4A and 4M

Total Page:16

File Type:pdf, Size:1020Kb

Switching Systems Management No. 4A and 4M DIAL FACILITIES MANAGEMENT PRACTICES DIVISION H AT & TCo Standard SECTION 13b{1) Issue 1, February 1976 SWITCHING SYSTEMS MANAGEMENT NO. 4A AND 4M CROSSBAR SYSTEM DESCRIPTION ELECTROMECHANICAL-CARD TRANSLATOR SYSTEM CONTENTS PAGE CONTENTS PAGE A. Call Through a Combined Train-CT 1. GENERAL 4 Office 11 COMMON CONTROL 4 B. Call Through a Separate Train-CT Office 12 CONNECTORS 5 C. Calls Requiring Outgoing Senders 12 4-WIRE TALKING PATH 5 4. EQUIPMENT ELEMENTS 13 ROUTE TRANSLATION 5 ELEMENTS COMMON TO CT AND ET OFFICES CARD TRANSLATOR 5 13 STORED PROGRAM CONTROL STORE 5 A. Marker 13 2. SWITCHING PRINCIPLES 5 B. Switching Frames and Their Connectors 16 CROSSBAR SWITCH 5 C. Incoming Sender 16 SWITCHING FRAMES 6 D. Sender Link Frame 18 A. Incoming Frames 6 E. Link Controller and Connector 19 B. Outgoing Frames 7 F. Trunk Block Connector 19 JUNCTORS 8 G. Decoder Connector 20 A. Frame Grouping 8 H. Marker Connector 21 B. Switching Trains 9 I. Outgoing Senders 21 C. Offtee Size 9 J. Multifrequency Pulsing Receiving Frame CONTROL OF SWITCHING OPERATIONS 9 21 3. FUNCTIONS OF PRINCIPAL EQUIPMENT K. Multifrequency Current Supply Frame ELEMENTS 10 21 NOTICE Not for use or disclosure outside the Bell System except under written agreement 006 066 Printed in U.S.A. Page 1 SECTION 13b(l) CONTENTS PAGE CONTENTS PAGE L. Frame Identification Frequency Supply I. Plug-in Trunk Test Set 44 Frame 22 J. Frame Identification Frequency Test Set M. Traffic Overload Reroute Control 44 (Manual) 22 TOLL UNE MAINTENANCE EQUIPMENT 45 N. Traffic Control Console 22 A. No. 17-Type Toll Testboard 45 0. Circuit Busy Announcement Trunks 22 B. Patching Bays 45 P. Group Busy Chain Relays 23 c. Automatic Outgoing lntertoll Trunk Q. Trunks and Trunk Relay Equipment 23 Test Frame 45 ELEMENTS PECUUAR TO CT OFFICES 27 ALARMS 46 A. Decoders and Card Translators 27 6. TRAFFIC REGISTERS 46 B. Card Translator 29 FIGURES C. Foreign Translator Connector 35 1. Partial Perspective View of Unit Crossbar D. Emergency Translator Connector 35 Switch (200 Point) • . • 47 E. Alternate Route Traffic Control Frame 2. Schematic of Crossbar Switch ( 10 Horizontal 35 Paths) . 49 5. MAINTENANCE FEATURES 36 3. Schematic of Crossbar Switch (20 Horizontal Paths) 49 SWITCHING MAINTENANCE EQUIPMENT 36 4. Crossbar Switches 51 A. Trouble Recorder Frame 36 5. Channel Between Incoming and Outgoing B. Incoming Sender Test Frame or Incoming Trunks 53 Sender and Register Test Frame 40 6. Path of Call Through Incoming and Outgoing C. Outgoing Sender Test Frame 40 Frames 53 D. Sender Make-Busy Frame 40 7. Incoming Frame 55 E. Automatic Outgoing Toll Connecting 8. Outgoing Frame 57 Trunk Test Frame (AOCT in 4A Offices or ATCT in 4M Offices) 41 9. Junctor Distribution 59 F. Manual Outgoing Trunk Test Frame-Test 10. Single Train-Combined Operation 60 and Make-Busy Frames 43 11. Separate Train-Combined Operation 60 G. Automatic Outgoing Trunk Test Frame for Toll Completing Trunks (AOOT or 12. Relationship Between Common Control AOTT) . 43 Equipment and Switching Frames 61 H. Incoming, Outgoing, and lntertoll Trunk 13. Call Through a Combined Train CT Office Test Set . • 44 63 Page 2 DIVISION H, SECTION 13b(1) CONTENTS PAGE CONTENTS PAGE 14. Call Through a Separate Train CT Office 33. Supplementary Decoder Connector Frame 65 for Use in Separate Train Offices, Combined Train Offices or Office Expanded to Separate 15. Information to Marker 67 Train Combined Operations 84 16. Seizing an Outgoing Trunk 67 34. Marker Connector Frame for Use in Separate Train Offices 85 17. Establishing a Channel 68 35. Outgoing Sender Frame 86 18. Marker Frame 69 36. Multifrequency Current Supply Frame 87 19. Pairing Switching Frames (Home and Mate Operation) 70 37. Frame Identification Frequency Supply and Control Frame 88 20. Access to Incoming Senders-Office Equipped With Flat-Spring MF Incoming Sender 71 38. Traffic Control Frame 88 21. Access to Incoming Senders-Office Equipped 39. Decoder Access to Card Translators 89 With Wire-Spring MF Incoming Sender 72 40. Decoder Frame 90 22. Incoming MF and DP Sender Frame-4M Offices 73 41. Card Translator Cabinet 91 23. Incoming MF and DP Sender Frame-4A 42. Translator Card 93 Offices 74 43. Effect of Dropped Card on Light Channels 24. Incoming Multifrequency Sender Frame-4A 95 Offices 75 44. Card Support and Code Bars Normal 95 25. Overseas Sender 76 45. Card Support and Code Bars Operated 26. Sender Link Frame-Sender Link Spread (Corresponding Card Drops) 95 (MF and DP Senders) 77 46. Elements of the Card Translator 96 27. Incoming or Outgoing Sender Link Frame 78 47. Foreign Translator Connector Frame (For Supplementary Foreign Translator Connector 28. Link Controller Operation 79 Frame) 97 29. Link Controller and Connector Frame 80 48. Emergency Translator Connector Frame (For 18-Decoder Capacity) 97 30. Sender Link Access to Link Controllers 81 49. Trouble Recorder Frame 98 31. Block Relay Frame 82 SO. Trouble Record Cards (Blank) 99 32. Decoder Connector Frame for Separate or Combined Train Offices 83 S 1. Trouble Record Card (Punched) 101 Page 3 SECTION 13b(1) CONTENTS PAGE outside the local or extended service area by direct distance dialing (DDD) and for operator dialing of 52. Incoming Sender and Register Test Frame such calls by "Operator Distance Dialing". The 103 4A/4M switching equipment provides a means for automatically completing connections: (a) between 53. Outgoing Sender Test Frame 104 various long-distance dial trunks {intertoll trunks), (b) between intertoll trunks and trunks which are 54. Sender Make-Busy Frame 105 used to either complete or originate calls in the toll center area (toll connecting trunks). The switching 55. Automatic Outgoing Toll Connecting Trunk equipment is controlled by dial pulses (DP) or Test Frame (AOCT in 4A Offices or ATCT multifrequency pulses (MF) originated by customers in 4M Offices) 106 or long-distance operators. 56. Manual Outgoing Toll Connecting Trunk 1.05 Calls arriving at the 4A/4M toll office may Test Frame 107 have been originated by an operator or customer. Operator and customer calls may be 57. Automatic Outgoing Toll Connecting Trunk given different routing treatment during translation Operational and Transmission Test Frames of the dialed digits by use of an incoming trunk (AOOT and AOTT) 108 class. In a CT office there are only two incoming trunk class indications available for this purpose. 58. Automatic Outgoing lntertoll Trunk Test In an ET office it is possible to have up to 16 Frame and Associated Transmission Test incoming trunk classes so that with the same dialed and Control Frame 109 digits, several different routing choices would be available. Incoming calls are generally routed from the digital information alone. 1. GENERAL 1.06 After the dialed digits have been registered, 1.01 This section provides a description of the the switching control equipment of the 4A card translator (CT) system used in the 4A or 4M system selects a route that can forward and 4M Toll Switching Systems. It covers the the call to the destination. general method of operation when establishing a connection and a description of the equipment elements. Most of the equipment elements used COMMON CONTROL in a CT office will be used inan electronic translator (ET) office with the exception of decoders and card 1.07 Common control is a term applied to certain translators. The equipment elements peculiar to equipment units in the office which are an ET office and general information pertaining to common to many of the switching frames which the elements are covered separately in Dial Facilities set up a talking connection. A common control Management Practices (DFMPs), Division H, Section system has the ability to store, alter, and reuse 13c(2). Centralized automatic message accounting digits. Some of the common control circuits are: (CAMA) operation is discussed onlywhere necessary markers, senders and link controllers, as well as for clarity. decoders and card translators in a CT office, or decoder channels, distributor registers, and the 1.02 Whenever this section is reissued, the reason stored program control (SPC) in an ET office. for reissue will be listed in this paragraph. Some common control circuits associated with the CAMA portion of the 4A/4M systems are: 1.03 The title for each figure includes a number(s) transverters, billing indexers, recorders, position in parentheses which identifies the paragraph(s) link controllers, and master timers. in which the figure is referenced. 1.08 The common control equipment is used on 1.04 The 4A/4M Toll Switching System is a part each call only long enough to set up a of the distance dialing network for customer talking connection, after which it releases and is and operator dialing of toll calls. The network ready to serve another call. In this manner a few provides for customer dialing of calls to points units of complicated equipment are used for short Page 4 DIVISION H, SECTION 13b(1) periods of time to set up the switches for a translation system. In a CT office, information proportionately large number of calls. for routing calls is contained on metal cards which are stored in card translators. In an ET office, CONNECTORS information for routing calls is stored in the memory store portion of a SPC complex. 1.09 Connectors are used to connect various common control equipment to each other CARD TRANSLATOR temporarily during the process of setting up a call. This is done by a group of multicontact relays in 1.15 The card translator is an electromechanical the connector which cut through a number of leads device which uses metal cards, electron between circuits. Connectors are equipped with a tubes, phototransistors, and transistor amplifiers chain (or preference) circuit which causes the to perform its functions.
Recommended publications
  • No. 1 Crossbar and Crossbar Tandem Systems
    CHAPTER 7 NO. 1 CROSSBAR AND CROSSBAR TANDEM SYSTEMS 7.1 NO. 1 CROSSBAR SYSTEM A. GENERAL The No. 1 Crossbar System was developed in the mid-1930's to overcome some of the disadvantages of the Panel System. For instance, No. 1 Crossbar offered better transmission characteristics by using precious metal contacts in talking path connections; gave one appearance to each s_ubscriber line on the frames for both originating and terminating traffic; and PBX hunting lines could be added without number changes. No. 1 Crossbar also made possible shorter call completing times and required less system maintenance. Since it was expected that this system would be used largely in panel areas, revertive pulsinfi was employed for both incoming and outgoing traff~c. The o. 1 Crossbar System is also a common control system; its originating and terminating equipment each has its own senders which function with the markers to complete subscribers • connections. A simplified view of the overall equipment arrangement is shown in Figure 7-1. ORIG. OFFICE I ,.--.._.;;;.._~~==---r-, I ~_.~ SUBS. ORIG. TERM. SDR. MKR. SDR. Figure 7-1 Simplified Block Diagram - No. 1 Crossbar System 7.1 CH. 7 - NO. 1 CROSSBAR AND CROSSBAR TANDEM SYSTEMS From a traffic standpoint the major No. 1 Crossbar dial system frames may be. divided into two general classes: Originating Equipment Terminating Equipment Line Link Frame Incoming Frame Group District Frame Group Incoming Trunk Frame District Junctor Frame Incoming Link Frame District Link Frame Incoming Link Extension Frame Subscriber Sender Link Terminating Sender link Frame Office Link Frame Terminating Sender Frame Office Extension Frame Terminating Marker Subscriber Sender Frame Connector Frame Originating Marker Connector Terminating Marker Frame Frame Number Group Connector Frame Originating Marker Frame Block Relay Frame Line Distributing Frame Line Choice Connector Frame Line Junctor Connector Frame Line Link Frame Two distributing frames are also provided.
    [Show full text]
  • Historical Perspectives of Development of Antique Analog Telephone Systems Vinayak L
    Review Historical Perspectives of Development of Antique Analog Telephone Systems Vinayak L. Patil Trinity College of Engineering and Research, University of Pune, Pune, India Abstract—Long distance voice communication has been al- ways of great interest to human beings. His untiring efforts and intuition from many years together was responsible for making it to happen to a such advanced stage today. This pa- per describes the development time line of antique telephone systems, which starts from the year 1854 and begins with the very early effort of Antonio Meucci and Alexander Graham magnet core Bell and ends up to the telephone systems just before digiti- Wire 1Coil with permanent Wire 2 zation of entire telecommunication systems. The progress of development of entire antique telephone systems is highlighted in this paper. The coverage is limited to only analog voice communication in a narrow band related to human voice. Diaphragm Keywords—antique telephones, common battery systems, cross- bar switches, PSTN, voice band communication, voice commu- nication, strowger switches. Fig. 1. The details of Meucci’s telephone. 1. Initial Claims and Inventions Since centuries, telecommunications have been of great cally. Due to this idea, many of the scientific community interest to the human beings. One of the dignified per- consider him as one of the inventors of telephone [10]. sonality in the field of telecommunication was Antonio Boursuel used term “make and break” telephone in his Meucci [1]–[7] (born in 1808) who worked relentlessly for work. In 1850, Philip Reis [11]–[13] began work on tele- communication to distant person throughout his life and in- phone.
    [Show full text]
  • The Great Telecom Meltdown for a Listing of Recent Titles in the Artech House Telecommunications Library, Turn to the Back of This Book
    The Great Telecom Meltdown For a listing of recent titles in the Artech House Telecommunications Library, turn to the back of this book. The Great Telecom Meltdown Fred R. Goldstein a r techhouse. com Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data Goldstein, Fred R. The great telecom meltdown.—(Artech House telecommunications Library) 1. Telecommunication—History 2. Telecommunciation—Technological innovations— History 3. Telecommunication—Finance—History I. Title 384’.09 ISBN 1-58053-939-4 Cover design by Leslie Genser © 2005 ARTECH HOUSE, INC. 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. International Standard Book Number: 1-58053-939-4 10987654321 Contents ix Hybrid Fiber-Coax (HFC) Gave Cable Providers an Advantage on “Triple Play” 122 RBOCs Took the Threat Seriously 123 Hybrid Fiber-Coax Is Developed 123 Cable Modems
    [Show full text]
  • The 805A PBX- a Switching Bargain for Small Businesses
    Bell Labs cost of dial stcitches solid-state circuitry. small rC(flliring is to install The 805A PBX- A Switching Bargain For Small Businesses John Lemp, Jr. LL OPERATING COMPANIES have small business com trunks, and those with unrestricted tele- A customers who would like to have a dial pri- phones (having access to both inside and outside vate branch exchange (PBX) of modest size, but trunks) can gain access to the central office to have had to settle for smaller, less useful, manual place outside calls by dialing a single digit. People PBX systems. In many cases, the flexibility pro- using restricted telephones, on the other hand, re- vided by larger, more comprehensive PBX systems quire the attendant's assistance to make outside is not worth the additional cost. But now there is calls; the attendant can complete the call or allow an alternative-the 805A PBX, which has been de- the restricted station user to dial the number signed at the Bell Laboratories Denver location himself. to meet the demand for low-cost basic PBX service. The 805A is the first Bell System PBX that com- The new PBX, which uses existing technology and bines integrated circuitry in the control unit with emphasizes maintainability, has been in produc- a crossbar switching network. Integrated circuits tion for over a year and has gained rapid accept- make the equipment compact, highly reliable, and ance wherever appropriate tariffs have been filed easy to maintain. And the crossbar switch is the -in fact, New Jersey Bell marketing people have same one used in No.
    [Show full text]
  • Bell System Practices Index
    BELL SYSTEM PRACTICES SECTION 460-000-006 AT & TCo Standard Issue 6, February 1979 ALPHABETIC-NUMERIC INDEX STATION, KEY, PBX, AND PRIVATE SERVICE SYSTEMS 1. GENERAL Here is a list of the symbols and the service 1.01 This section provides an alpha-numeric index manual to which they refer. of sections required for the installation and maintenance of customer product equipment and SA-Station Service Manual I apparatus. SB-Station Service Manual II SC-Station Specialties Service Manual I 1.02 This section is reissued to update the SO-Station Specialties Service Manual II alpha-numeric index. CA-Coin Service Manual I CB-Coin Service Manual II 1.03 This index combines the features of both !A-Interconnect Service Manual I alphabetic and numeric indexes. Sections IB-Interconnect Service Manual II can be located by referring first to the common KA-Key Service Manual I nomenclature or ordering nomenclature, then referring KB-Key Service Manual II to a major indention for the type of information KC-Key Service Manual III such as Identification, Installation, Maintenance, PA-Dial PBX Service Manual Reference, Service, etc., and then to the alphabetical or numerical listing. 1.04 Many of the section numbers in this index are preceded by a two letter symbol such as SA. This symbol indicates that the section is contained in a service manual in addition to the standard BSP files. NOTICE Not for use or disclosure outside the Bell System except under written agreement Printed in U.S.A. Page 1 SECTION 460-000-006 AC-TYPE (USED WITH 220-, 226-, 2220-, ADDRESSABLE
    [Show full text]
  • Switching Relations: the Rise and Fall of the Norwegian Telecom Industry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NORA - Norwegian Open Research Archives Switching Relations The rise and fall of the Norwegian telecom industry by Sverre A. Christensen A dissertation submitted to BI Norwegian School of Management for the Degree of Dr.Oecon Series of Dissertations 2/2006 BI Norwegian School of Management Department of Innovation and Economic Organization Sverre A. Christensen: Switching Relations: The rise and fall of the Norwegian telecom industry © Sverre A. Christensen 2006 Series of Dissertations 2/2006 ISBN: 82 7042 746 2 ISSN: 1502-2099 BI Norwegian School of Management N-0442 Oslo Phone: +47 4641 0000 www.bi.no Printing: Nordberg The dissertation may be ordered from our website www.bi.no (Research - Research Publications) ii Acknowledgements I would like to thank my supervisor Knut Sogner, who has played a crucial role throughout the entire process. Thanks for having confidence and patience with me. A special thanks also to Mats Fridlund, who has been so gracious as to let me use one of his titles for this dissertation, Switching relations. My thanks go also to the staff at the Centre of Business History at the Norwegian School of Management, most particularly Gunhild Ecklund and Dag Ove Skjold who have been of great support during turbulent years. Also in need of mentioning are Harald Rinde, Harald Espeli and Lars Thue for inspiring discussion and com- ments on earlier drafts. The rest at the centre: no one mentioned, no one forgotten. My thanks also go to the Department of Innovation and Economic Organization at the Norwegian School of Management, and Per Ingvar Olsen.
    [Show full text]
  • And 9-GSPS, RF-Sampling DAC with JESD204B
    Product Order Technical Tools & Support & Folder Now Documents Software Community DAC38RF86, DAC38RF96 DAC38RF87, DAC38RF97 SLASEF4B –FEBRUARY 2017–REVISED JULY 2017 DAC38RFxx Dual-Channel, Single-Ended, 14-Bit, 6- and 9-GSPS, RF-Sampling DAC With JESD204B Interface and On-Chip GSM PLL 1 Features 3 Description The DAC38RF86/96 is a family of high-performance, 1• 14-Bit Resolution dual-channel, 14-bit, 9-GSPS, RF-sampling digital-to- • Maximum DAC Sample Rate: analog converters (DACs) that are capable of – 9.0 GSPS (DAC38RF86, DAC38RF96) synthesizing wideband signals from 0 to 4.5 GHz. – 6.2 GSPS (DAC38RF87, DAC38RF97) The DAC38RF87/97 is also a family of high- performance, dual-channel, 14-bit, 6-GSPS, RF- • Key Specifications: sampling digital-to-analog converters (DACs) that are – RF Full-Scale Output Power at 2.1 GHz:0 dBm capable of synthesizing wideband signals from 0 to 3 – Spectral Performance, DAC38RF87/97 GHz. A high dynamic range allows the DAC38RFxx – f = 5898.24 MSPS, f = 2.14 GHz family to generate signals for a wide range of DAC OUT applications including 3G/4G signals for wireless – WCDMA ACLR: 73 dBc base-stations and radar. – WCDMA alt-ACLR: 77 dBc The devices feature a low-power JESD204B Interface – Spectral Performance, DAC38RF86/96 with up to 8 lanes with a maximum bit rate of 12.5 – fDAC = 8847.36 MSPS, fOUT = 3.7 GHz Gbps allowing an input data rate of 1.25 GSPS – 20 MHz LTE ACLR: 66 dBc complex per channel. The DAC38RFxx provides two digital up-converters per channel, with multiple – fDAC = 9 GSPS, fOUT = 1.8 GHz, –6 dBFS options for interpolation rates.
    [Show full text]
  • 3D Crossbar Switching Architecture
    Novel Design of Three-Dimensional Crossbar for Future Network on Chip based on Post-Silicon Devices Kumiko Nomura André DeHon Keiko Abe, Shinobu Fujita Department of Computer Science, Corporate R&D Center, Toshiba Corporation, California Institute of Technology, 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki, 212-8582, Pasadena CA91125, USA Japan E-mail: [email protected] Email: {kumiko.nomura, keiko2.abe, shinobu.fujita} @toshiba.co.jp Abstract.We present a novel 3D crossbar for future Network-on Although there have been many concrete designs for 2D –a-Chip implementations. We introduce a routing algorithm for crossbar bus, most of them are locally optimized for each circuit the 3D crossbar circuit and detail two specific 3D crossbar and cannot be applied to 3D circuit design. In this paper, we topologies. We evaluate the defect tolerance of the 3D crossbar describe general design for a 3D crossbar NoC using new 3D and quantify the number of extra layers required to support arbitrary permutations as a function of the defect rate. Further, circuits and explore tradeoffs, which arise optimizing the we estimate the circuit performance and advantages of the 3D crossbar design. Such optimized 3D on-chip crossbars may crossbar circuit based on post-silicon devices. prove beneficial in many parts of a microchip design where data transfer is the performance limiting bottleneck. Keywords; three-dimensional crossbar, post-Si device, network-on-a- chip The contributions of this paper include the following points: x Elaborations and optimization of 3-stage 3D crossbar switching architecture. 1. Introduction x Adaptations of Leighton’s Mesh Routing Algorithm to The performance of recent microchips tends to be dominated by perform routing for a 3-stage, spatial 3D crossbar.
    [Show full text]
  • Bell Laboratories Record Tomer Wishes
    THE PICTURE OF THE FUTURE The Bell System is about to add PICTURE- PHONE® service to the many services it now of- fers customers. A major trial of a Picturephone system is presently under way, and commercial service is scheduled for mid 1970. Because Pic- turephone service is a large undertaking that will have a profound effect on communications, the RECORD is pleased to be able to present this special issue describing the new system for our readers. Special issues have become an important part of the RECORD's continuing story of science and technology at Bell Labs. The first one, in June 1958, dealt with the transistor and marked the tenth anniversary of its invention at Bell Labs. Since then there have been special issues on the TELSTAR® project, No. 1 Ess, and integrated elec- tronics. In addition, there have been single-topic issues devoted to the N-3 and L-4 carrier trans- mission systems. We hope to continue to present such special issues from time to time as a way of highlighting subjects of special importance. Contents PAGE 134 PICTUREPHONE Service-A New Way of Communicating An introduction by Julius P. Molnar, Executive Vice President, Bell Telephone Laboratories. 136 PICTUREPHONE Irwin Dorros A broad view of the PICTUREPHONE system sets the stage for the more detailed discussions that f ollow. 142 Getting the Picture C. G. Davis The acceptance of PICTUREPHONE service depends largely on the equipment that people will see and use-the PICTUREPHONE set itself. 148 Video Service for Business J. R. Harris and R.
    [Show full text]
  • Power and Area Efficient Design of Reconfigurable Crossbar Switch for Binoc Router Mr
    International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1700 ISSN 2229-5518 Power and Area Efficient Design of Reconfigurable Crossbar Switch for BiNoC Router Mr. Ashish Khodwe, Mrs. V. K. Rajput, Prof.C.N.Bhoyar, Prof. Priya M. Nerkar Abstract—Network-on-Chip (NOC) has been proposed as an attractive alternative to traditional dedicated wire to achieve high performance and modularity. Power and Area efficiency is the most important concern in NOC design. Small optimizations in NoC router architecture can show a significant improvement in the overall performance of NoC based systems. Power consumption, area overhead and the entire NoC performance is influenced by the router crossbar switch. This paper presents implementation of 10x10 reconfigurable crossbar switch (RCS) architecture for Dynamic Self-Reconfigurable BiNoC Architecture for Network On Chip. Its main purpose is to increase the performance, flexibility. We implemented a parameterized register transfer level design of reconfigurable crossbar switch (RCS) architecture. The design is parameterized on (i) size of packets, (ii) length and width of physical links, (iii) number, and depth of arbiters, and (iv) switching technique. The paper discusses in detail the architecture and characterization of the various reconfigurable crossbar switch (RCS) architecture components. The characterized values were integrated into the VHDL based RTL design to build the cycle accurate performance model. In this paper we show the result of simple 4 x4 as well as 10x10 crossbar switch .The results include VHDL simulation of RCS on ModelSim tool for 4 x4 crossbar switch and Xilinx ISE 13.1 software tool for 10x10 crossbar switch.
    [Show full text]
  • Digital Switching Digital Switching
    Digital Switching EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Switching A switch transfers signals from one input port to an appropriate output. A basic problem is then how to transfer traffic to the correct output port. In the early telephone network, operators closed circuits manually. In modern circuit switches this is done electronically in digital switches. If no circuit is available when a call is made, it will be blocked (rejected). When a call is finished a connection teardown is required to make the circuit available for another user. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Crossbar Switch A crossbar switch with N input lines and N output lines contains an N x N array of cross points that connect each input line to one output line. In modern switches, each cross point is a semiconductor gate. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Switching Functions Recall basic elements of communications network: Terminals, transmission media, and switches Basic function of any switch is to set up and release connections between transmission channels on an “as- needed basis” Computers are used to control the switching functions of a central office EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Switching Types Two different switching technologies Circuit switching Packet switching EE4367 Telecom. Switching & Transmission Prof. Murat Torlak CircuitCircuit--SwitchedSwitched Network Circuit-Switched network assigns a dedicated communication path between the two stations. It involves Point to Point from terminal node to network Internal Switching and multiplexing among switching nodes. Data Transfer. Circuit Disconnect. •Blocking Networks (voice) Advantages •Non-Blocking Networks (computer) Once connection is established Network is transparent.
    [Show full text]
  • Efficient Configurable Crossbar Switch Design for Noc
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 11, NOVEMBER 2019 ISSN 2277-8616 Efficient Configurable Crossbar Switch Design For Noc Vivek tiwari, Kavita khare Abstract :Network-on-Chip is an emerging paradigm for integrating very high number of Intellectual Property blocks on a single Integrated Chip. Crossbar switch is one of the important parts of NoC. In this paper, 2x1 MUX are used instead of existing crossbar design with 4x1 MUX, to meet the requirement of high speed networks. The proposed design reduces area by 40% and delay by 7.14 % as compared to 2-D cross bar switch as well as conventional crossbar switch. The functional verification and synthesis of proposed cross bar switch design is done by using Xilinx ISE 9.2i Keywords: Network-on-Chip; NoC router; crossbar switch; Xilinx; RTL simulation, MUX; ———————————————————— I.INTRODUCTION Fig.1 (a) shows point to point connection between two Device sizes are continuously reducing as a result of modules through direct link assign to them. In this type advancement in process technology. Due to this multiple connection large number of link will required which will processing elements (PEs) can be integrated into a single a increase size of chip. Because of long communication wire chip, referred as system-on-chip (SoC). SoC technology offers there is excessive signal delay. Fig.1 (b) shows bus based many advantages over conventional approach such as higher communication network which is efficient and flexible compare performance and low power consumption. But in SoC due to to point to point communication. In bus based communication large number of PEs, communication between cores becomes the whole communication network is utilized only by two very complicated.
    [Show full text]