The NASA Twins Study

Total Page:16

File Type:pdf, Size:1020Kb

The NASA Twins Study RESEARCH ◥ state within the time period of the study. These RESEARCH ARTICLE SUMMARY included changes in telomere length, gene regulation measured in both epigenetic and transcriptional data, gut microbiome compo- HUMAN PHYSIOLOGY sition, body weight, carotid artery dimensions, subfoveal choroidal thickness and peripapillary total retinal thickness, and serum metabolites. The NASA Twins Study: In addition, some factors were significantly af- fected by the stress of re- ◥ A multidimensional analysis of a ON OUR WEBSITE turning to Earth, including Read the full article inflammation cytokines year-long human spaceflight at http://dx.doi. and immune response gene org/10.1126/ networks,aswellascog- science.aau8650 nitive performance. For Francine E. Garrett-Bakelman et al. .................................................. a few measures, persistent changes were observed even after 6 months on INTRODUCTION: To date, 559 humans have microbial shifts, and alterations in gene reg- Earth, including some genes’ expression levels, been flown into space, but long-duration ulation. However, previous studies collected increased DNA damage from chromosomal in- (>300 days) missions are rare (n = 8 total). very limited data, did not integrate simulta- versions, increased numbers of short telomeres, Long-duration missions that will take humans neous effects on multiple systems and data and attenuated cognitive function. to Mars and beyond are planned by public types in the same subject, or were restricted to Downloaded from and private entities for the 2020s and 2030s; 6-month missions. Measurement of the same CONCLUSION: Given that the majority of the therefore, comprehensive studies are needed variables in an astronaut on a year-long mis- biological and human health variables remained now to assess the impact of long-duration sion and in his Earth-bound twin indicated stable, or returned to baseline, after a 340-day spaceflight on the human body, brain, and the biological measures that might be used to space mission, these data suggest that human overall physiology. The space environment determine the effects of spaceflight. Presented health can be mostly sustained over this du- is made harsh and challenging by multiple here is an integrated longitudinal, multidimen- ration of spaceflight. The persistence of the http://science.sciencemag.org/ factors, including confinement, isolation, and sional description of the effects of a 340-day molecular changes (e.g., gene expression) and exposure to environmental stressors such as mission onboard the International Space Station. the extrapolation of the identified risk factors microgravity, radiation, and noise. The selec- forlongermissions(>1year)remainestimates tion of one of a pair of monozygotic (identical) RESULTS: Physiological, telomeric, transcrip- andshouldbedemonstratedwiththesemea- twin astronauts for NASA’s first 1-year mission tomic, epigenetic, proteomic, metabolomic, sures in future astronauts. Finally, changes de- enabled us to compare the impact of the space- immune, microbiomic, cardiovascular, vision- scribed in this study highlight pathways and flight environment on one twin to the simulta- related, and cognitive data were collected mechanismsthatmaybevulnerabletospace- neous impact of the Earth environment on a over 25 months. Some biological functions flight and may require safeguards for longer genetically matched subject. were not significantly affected by spaceflight, space missions; thus, they serve as a guide for including the immune response (T cell recep- targeted countermeasures or monitoring dur- on May 20, 2020 RATIONALE: The known impacts of the space- tor repertoire) to the first test of a vaccination ing future missions.▪ flight environment on human health and per- in flight. However, significant changes in formance, physiology, and cellular and molecular multiple data types were observed in associ- The list of author affiliations is available in the full article online. Email: [email protected] processes are numerous and include bone ation with the spaceflight period; the major- Cite this article as F. E. Garrett-Bakelman et al., Science 364, density loss, effects on cognitive performance, ity of these eventually returned to a preflight eaau8650 (2019). DOI: 10.1126/science.aau8650 Subjects Twins Study Analyses Biochemical Cognition Epigenomics Gene expression Integrative Analyses Immune Results Metabolomics Microbiome Postflight Proteomics Inflight Physiology Preflight Ground Flight Telomeres Multidimensional, longitudinal assays of the NASA Twins Study. (Left and middle) Genetically identical twin subjects (ground and flight) were characterized across 10 generalized biomedical modalities before (preflight), during (inflight), and after flight (postflight) for a total of 25 months (circles indicate time points at which data were collected). (Right) Data were integrated to guide biomedical metrics across various “-omes” for future missions (concentric circles indicate, from inner to outer, cytokines, proteome, transcriptome, and methylome). Garrett-Bakelman et al., Science 364, 144 (2019) 12 April 2019 1of1 RESEARCH ◥ adverse effects of these adaptations are especially RESEARCH ARTICLE clear upon return to Earth. Regular vigorous ex- ercise, combined with adequate nutrition during spaceflight, mitigate some of the spaceflight- HUMAN PHYSIOLOGY induced muscle (9, 12) and bone loss (13) that occur during both short- and long-duration missions. However, recent evidence suggests The NASA Twins Study: that long-duration missions on the International Space Station (ISS) have resulted in some astro- nauts developing ocular changes, including optic A multidimensional analysis of a disc edema and choroidal folds (14, 15), termed spaceflight-associated neuro-ocular syndrome year-long human spaceflight (SANS) (16). The incidence and severity of ocular symptoms varies, and the exact mechanism for Francine E. Garrett-Bakelman1,2*, Manjula Darshi3*, Stefan J. Green4*, the development of SANS is not well understood, Ruben C. Gur5*, Ling Lin6*, Brandon R. Macias7*, Miles J. McKenna8*, which has limited NASA’s ability to develop an Cem Meydan1,9*, Tejaswini Mishra6*, Jad Nasrini5*, Brian D. Piening6*†, effective countermeasure. Lindsay F. Rizzardi10*‡, Kumar Sharma3*, Jamila H. Siamwala11*§, Lynn Taylor8*, Although our understanding of the physio- Martha Hotz Vitaterna12*, Maryam Afkarian13, Ebrahim Afshinnekoo1,9, Sara Ahadi6, logical and functional consequences of 4- to Aditya Ambati6, Maneesh Arya7, Daniela Bezdan1,9, Colin M. Callahan10, Songjie Chen6, 6-month missions has increased greatly over Augustine M. K. Choi1, George E. Chlipala4, Kévin Contrepois6, Marisa Covington14, the 18 years of continuous human presence on Downloaded from Brian E. Crucian14, Immaculata De Vivo15, David F. Dinges5, Douglas J. Ebert7, the ISS, there is almost no experience with Jason I. Feinberg10, Jorge A. Gandara1, Kerry A. George7, John Goutsias10, spaceflight length greater than 6 months. Future missions, however, could be as long as 3 years, George S. Grills1¶, Alan R. Hargens11, Martina Heer16#, Ryan P. Hillary6, including transit to and from Mars and possible Andrew N. Hoofnagle17, Vivian Y. H. Hook11, Garrett Jenkinson10**, Peng Jiang12, exploration of the planet, yet only four indi- Ali Keshavarzian18, Steven S. Laurie7, Brittany Lee-McMullen6, Sarah B. Lumpkins19, viduals have participatedinspaceflightmissions Matthew MacKay1, Mark G. Maienschein-Cline4, Ari M. Melnick1, Tyler M. Moore5, lasting 1 year or more. Moreover, investigations http://science.sciencemag.org/ 1†† 11 7 6 11‡‡ Kiichi Nakahira , Hemal H. Patel , Robert Pietrzyk , Varsha Rao , Rintaro Saito , have not consistently implemented an integrated, 6 11 11 1 Denis N. Salins , Jan M. Schilling , Dorothy D. Sears , Caroline K. Sheridan , cross-discipline study design or utilized multiomic 14 10 6 17 Michael B. Stenger , Rakel Tryggvadottir , Alexander E. Urban , Tomas Vaisar , approaches to biospecimen analyses. Thus, we 11 6 11 20 Benjamin Van Espen , Jing Zhang , Michael G. Ziegler , Sara R. Zwart , have limited knowledge of the full range of the 14 21 22 8 John B. Charles §§, Craig E. Kundrot §§, Graham B. I. Scott §§, Susan M. Bailey §§, interactions of molecular, physiological, and cog- Mathias Basner5§§, Andrew P. Feinberg10§§, Stuart M. C. Lee7§§, nitive dynamics that occur during long-duration Christopher E. Mason1,9,23,24§§, Emmanuel Mignot6§§, Brinda K. Rana11§§, spaceflight. Given the increasing number of Scott M. Smith14§§, Michael P. Snyder6§§, Fred W. Turek12§§ vehicles providing access to spaceflight (17)and proposed missions to Mars, studies are needed To understand the health impact of long-duration spaceflight, one identical twin astronaut to better understand the impact of prolonged was monitored before, during, and after a 1-year mission onboard the International spaceflight on human biology and health. Ge- on May 20, 2020 Space Station; his twin served as a genetically matched ground control. Longitudinal netic, immune system, and metabolic functions assessments identified spaceflight-specific changes, including decreased body mass, are of particular concern given exposure to space telomere elongation, genome instability, carotid artery distension and increased intima- radiations, restricted diet, reduced physical work media thickness, altered ocular structure, transcriptional and metabolic changes, requirements, disrupted circadian rhythms, and DNA methylation changes in immune and oxidative
Recommended publications
  • Webzine L'astrofilo
    WEBZINE DISTRIBUITO WETBRZAIMNIET E D INSTRERIBNUEIT TO TRAMITE INTERNET il mensile dell’astronomo dilettante numero 24 - novembre 2010 l’ A L’INAF apre S gli archivi T R O F I L Astrofotografia senza telescopio O Leonidi 2010 e oltre: le previsioni per tutte le informazioni su questo telescopio e sulla nostra intera produzione di strumenti per astronomia, visita il nostro sito www.northek.it oppure contattaci [email protected] tel. +39 (0)1599521 ? ! A ly S ta U I n n i i e e d d a a m m , o Ritchey-Chrétien n 250 mm f/8.5 tubo truss aperto o chiuso lunghezza 700 mm peso 16 kg il mix ottimale fra qualità e trasportabilità lA ’ STROFILO anno III - numero 24 - novembre 2010 il mensile di scienza e tecnica dedicato all'astronomo dilettante direttore responsabile IN COPERTINA Michele Ferrara La storica Specola dell’Osservatorio Astronomico di Padova ospitata sulla sommità del Torlonga. Questa suggestiva direttore scientifico immagine è stata ottenuta dall’astronomo Enrico Giro con Enrico Maria Corsini una Canon EOS 300D e filtro IR che taglia a 690 nm. editore, redazione, diffusione e pubblicità Astro Publishing di Pirlo L. Via Bonomelli, 106 25049 Iseo (BS) AA.VV. www.astropublishing.com 4 [email protected] Mondo astrofilo servizi internet Aruba S.p.A. SABRINA MASIERO P.zza Garibaldi, 8 14 52010 Soci (AR) L’INAF apre gli archivi registrazione MARCEL CLEMENS Tribunale di Brescia n. 51 del 19/11/2008 20 Astrofotografia senza telescopio abbonamento annuale 12 numeri telematici ALESSANDRO MARINETTI euro ZERO. La rivista viene distribuita gratuitamente.
    [Show full text]
  • Retinoic Acid Enhances the Expression of Interferon-Induced Proteins: Evidence for Multiple Mechanisms of Action
    Oncogene (1997) 15, 2349 ± 2359 1997 Stockton Press All rights reserved 0950 ± 9232/97 $12.00 Retinoic acid enhances the expression of interferon-induced proteins: evidence for multiple mechanisms of action Luis Pelicano1, Fengsheng Li2, Christian Schindler2 and Mounira K Chelbi-Alix1 1CNRS-UPR 9051; 1, avenue Claude Vellefaux, HoÃpital St Louis, 75010 Paris, France; 2Division of Molecular Medicine, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA Retinoic acid (RA) and interferons (IFNs) are negative Tyk2, phosphorylate Stat1, Stat2 and Stat3. The IFN- regulators of cell proliferation. In vitro and in vivo, their stimulated gene factor 3 (ISGF3) is formed between combination leads to a more potent growth inhibition. Stat1 and Stat2 (Stat1 : 2) in association with the DNA- However, the molecular mechanisms by which RA and binding protein, p48, a member of the interferon IFNs potentiate each other are not fully understood. As regulatory factor (IRF) family (Fu et al., 1992; some IFN-induced gene products regulate cell growth Schindler et al., 1992). This complex binds to the and/or antiviral activity, we analysed the eects of RA IFN-stimulated response element (ISRE) found in on their expressions. RA increases the level of promoters of IFNa/b-stimulated genes. In addition, 2'5'oligoadenylate synthetase, p68 kinase, the promyelo- homo- and heterodimers of Stat1 and Stat3 (Stat1 : 1, cytic leukemia protein (PML) and Sp100 in both HL-60 Stat3 : 3 and Stat1 : 3) bind to a palindromic version of and WISH cells. Moreover, RA and IFN act coopera- the IFNg-activated site (GAS), regulating the expres- tively to increase the expression of these proteins.
    [Show full text]
  • Antibody-Based Delivery of Cytokine Payloads to Carbonic Anhydrase IX
    Published OnlineFirst June 18, 2019; DOI: 10.1158/1535-7163.MCT-18-1301 Large Molecule Therapeutics Molecular Cancer Therapeutics Antibody-Based Delivery of Cytokine Payloads to Carbonic Anhydrase IX Leads to Cancer Cures in Immunocompetent Tumor-Bearing Mice Barbara Ziffels1, Marco Stringhini1, Philipp Probst1, Tim Fugmann2, Theo Sturm2, and Dario Neri1 Abstract Antibody–cytokine fusion proteins can have the potential TNF, IL2, or IL12 as payloads cured all mice in their therapy to increase the density and activity of subsets of leukocytes groups, whereas only a subset of mice was cured by the within the tumor mass. Here, we describe the design, produc- antibody-based delivery of IFNa2. Although the antibody tion, and characterization of four novel antibody–cytokine fusion with TNF mediated a rapid hemorrhagic necrosis of fusion proteins directed against human carbonic anhydrase IX, the tumor mass, a slower regression of the neoplastic lesions a highly validated marker of hypoxia that is overexpressed in (which continued after the last injection) was observed with clear cell renal cell carcinoma and other malignancies. As the other fusion proteins, and treated mice acquired protective immunomodulatory payloads we used TNF, IL2, IFNa2 (cor- anticancer immunity. A high proportion of tumor-infiltrating þ responding to products that are in clinical use), and IL12 (as CD8 T cells was specific to the retroviral antigen AH1; this cytokine potently activates T cells and NK cells). Therapy however, the LGPGREYRAL peptide derived from human experiments were performed in BALB/c mice, bearing CT26 carbonic anhydrase IX was also present on tumor cells. The tumors transfected with human carbonic anhydrase IX, in results described herein provide a rationale for the clinical use order to assess the performance of the fusion proteins in an of fully human antibody–cytokine fusions specific to carbonic immunocompetent setting.
    [Show full text]
  • Mechanism of Action Through an IFN Type I-Independent Responses To
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 is online at: average * The Journal of Immunology , 12 of which you can access for free at: 2012; 188:3088-3098; Prepublished online 20 from submission to initial decision 4 weeks from acceptance to publication February 2012; doi: 10.4049/jimmunol.1101764 http://www.jimmunol.org/content/188/7/3088 MF59 and Pam3CSK4 Boost Adaptive Responses to Influenza Subunit Vaccine through an IFN Type I-Independent Mechanism of Action Elena Caproni, Elaine Tritto, Mario Cortese, Alessandro Muzzi, Flaviana Mosca, Elisabetta Monaci, Barbara Baudner, Anja Seubert and Ennio De Gregorio J Immunol cites 33 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/02/21/jimmunol.110176 4.DC1 This article http://www.jimmunol.org/content/188/7/3088.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767
    [Show full text]
  • Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent IFNB1 Expression
    viruses Review Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent IFNB1 Expression Hella Schwanke 1,2 , Markus Stempel 1,2 and Melanie M. Brinkmann 1,2,* 1 Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; [email protected] (H.S.); [email protected] (M.S.) 2 Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany * Correspondence: [email protected]; Tel.: +49-531-6181-3069 Received: 15 June 2020; Accepted: 3 July 2020; Published: 7 July 2020 Abstract: The type I interferon (IFN) response is a principal component of our immune system that allows to counter a viral attack immediately upon viral entry into host cells. Upon engagement of aberrantly localised nucleic acids, germline-encoded pattern recognition receptors convey their find via a signalling cascade to prompt kinase-mediated activation of a specific set of five transcription factors. Within the nucleus, the coordinated interaction of these dimeric transcription factors with coactivators and the basal RNA transcription machinery is required to access the gene encoding the type I IFN IFNβ (IFNB1). Virus-induced release of IFNβ then induces the antiviral state of the system and mediates further mechanisms for defence. Due to its key role during the induction of the initial IFN response, the activity of the transcription factor interferon regulatory factor 3 (IRF3) is tightly regulated by the host and fiercely targeted by viral proteins at all conceivable levels. In this review, we will revisit the steps enabling the trans-activating potential of IRF3 after its activation and the subsequent assembly of the multi-protein complex at the IFNβ enhancer that controls gene expression.
    [Show full text]
  • US Astronaut Hall of Fame® to Welcome the First
    U. S. Astronaut Hall of Fame® To Welcome the First Class of the New Decade Veteran NASA Astronauts Michael E. Lopez-Alegria, Pamela A. Melroy and Scott Kelly to be Inducted at Kennedy Space Center Visitor Complex, May 2020 CAPE CANAVERAL (January 21, 2020) – KENNEDY SPACE CENTER – Veteran astronauts Michael E. Lopez-Alegria, Pamela A. Melroy and Scott Kelly, who have all demonstrated outstanding accomplishments in furthering NASA’s mission of exploration and discovery, have been selected to receive one of the highest honors in their industry. This May, they will be inducted into the United States Astronaut Hall of Fame® at Kennedy Space Center Visitor Complex, and will join the just 99 individuals who currently hold that esteemed honor as the “First Class of the New Decade.” An official ceremony and gala will take place at Kennedy Space Center Visitor Complex on May 16, 2020. Set against the dramatic backdrop of the majestic Space Shuttle Atlantis®, the ceremony will be attended by a roster of astronaut legends. Later that evening, the newest Hall of Fame members will be celebrated at a black-tie event hosted by the Astronaut Scholarship Foundation. “As we enter the year 2020, we are particularly excited to welcome these accomplished astronauts into the United States Astronaut Hall of Fame,” said Curt Brown, space shuttle astronaut and board chairman of the Astronaut Scholarship Foundation, which oversees the selection process. “They exemplify bravery, dedication and passion and their hard work has paved the way for what promises to be an unprecedented new decade of space exploration and interplanetary travel.” Lopez-Alegria, Melroy and Kelly all have had distinguished careers, centered around their love of space and science: Capt.
    [Show full text]
  • Brain Sciences
    brain sciences Article Differential Expression of Genes Related to Innate Immune Responses in Ex Vivo Spinal Cord and Cerebellar Slice Cultures Infected with West Nile Virus Parminder J. S. Vig 1,2,3,*, Deyin Lu 1, Amber M. Paul 4, Ram Kuwar 5, Maria Lopez 1, Dobrivoje S. Stokic 3,6 , A. Arturo Leis 6, Michael R. Garrett 7 and Fengwei Bai 1,4 1 Departments of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA; [email protected] (D.L.); [email protected] (M.L.); [email protected] (F.B.) 2 Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA 3 Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA; [email protected] 4 Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; [email protected] 5 Virginia Commonwealth University, Richmond, VA 23284, USA; [email protected] 6 Methodist Rehabilitation Center, Jackson, MS 39216, USA; [email protected] 7 Experimental Therapeutics and Pharmacology, University of Mississippi Medical Center, Jackson, MS 39216, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-601-984-5513; Fax: +1-601-984-6626 Received: 29 October 2018; Accepted: 18 December 2018; Published: 24 December 2018 Abstract: West Nile virus (WNV) infection results in a spectrum of neurological symptoms, ranging from a benign fever to severe WNV neuroinvasive disease with high mortality. Many who recover from WNV neuroinvasive infection present with long-term deficits, including weakness, fatigue, and cognitive problems. While neurons are a main target of WNV, other cell types, especially astrocytes, play an important role in promoting WNV-mediated central nervous system (CNS) damage.
    [Show full text]
  • Delivering Type I Interferon to Dendritic Cells Empowers Tumor Eradication and Immune Combination Treatments
    Author Manuscript Published OnlineFirst on November 29, 2017; DOI: 10.1158/0008-5472.CAN-17-1980 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Delivering type I interferon to dendritic cells empowers tumor eradication and immune combination treatments Anje Cauwels1†, Sandra Van Lint1†, Franciane Paul2, Geneviève Garcin2, Stefaan De Koker1,5, Alexander Van Parys1, Thomas Wueest3, Sarah Gerlo1, José Van der Heyden1, Yann Bordat2, Dominiek Catteeuw1, Elke Rogge1, Annick Verhee1, Bart Vandekerckhove4, Niko Kley3, Gilles Uzé2‡ & Jan Tavernier1,3‡* 1Cytokine Receptor Laboratory, Flanders Institute of Biotechnology, VIB-UGent Center for Medical Biotechnology, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000 Ghent, Belgium. 2CNRS UMR 5235, University Montpellier, Place Eugène Bataillon, 34095 Montpellier, France. 3Orionis Biosciences, Technologiepark 4, 9052 Zwijnaarde-Gent, Belgium; and Watertown, Boston, USA. 4Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, UZ Gent, MRB2, De Pintelaan 185, 9000 Gent, Belgium 5Present address: eTheRNA Immunotherapies, Arthur de Coninckstraat 11, 3070 Kortenberg, Belgium *To whom correspondence should be addressed: Jan Tavernier, A. Baertsoenkaai 3, 9000 Ghent, Belgium. Phone +32.9.2649302, Fax +32.9.2649340, [email protected] †shared first authors, ‡shared last authors Downloaded from cancerres.aacrjournals.org on September 28, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on November 29, 2017; DOI: 10.1158/0008-5472.CAN-17-1980 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 2 The authors declare no potential conflicts of interest. Running title: Specific DC-targeted IFN allows nontoxic antitumor efficacy This work was supported by UGent Methusalem and Advanced ERC (CYRE, N° 340941) grants to J.T.; an FWO-V grant G009614N to J.T.
    [Show full text]
  • Type I Interferons in Anticancer Immunity
    REVIEWS Type I interferons in anticancer immunity Laurence Zitvogel1–4*, Lorenzo Galluzzi1,5–8*, Oliver Kepp5–9, Mark J. Smyth10,11 and Guido Kroemer5–9,12 Abstract | Type I interferons (IFNs) are known for their key role in antiviral immune responses. In this Review, we discuss accumulating evidence indicating that type I IFNs produced by malignant cells or tumour-infiltrating dendritic cells also control the autocrine or paracrine circuits that underlie cancer immunosurveillance. Many conventional chemotherapeutics, targeted anticancer agents, immunological adjuvants and oncolytic 1Gustave Roussy Cancer Campus, F-94800 Villejuif, viruses are only fully efficient in the presence of intact type I IFN signalling. Moreover, the France. intratumoural expression levels of type I IFNs or of IFN-stimulated genes correlate with 2INSERM, U1015, F-94800 Villejuif, France. favourable disease outcome in several cohorts of patients with cancer. Finally, new 3Université Paris Sud/Paris XI, anticancer immunotherapies are being developed that are based on recombinant type I IFNs, Faculté de Médecine, F-94270 Le Kremlin Bicêtre, France. type I IFN-encoding vectors and type I IFN-expressing cells. 4Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507, F-94800 Villejuif, France. Type I interferons (IFNs) were first discovered more than Type I IFNs in cancer immunosurveillance 5Equipe 11 labellisée par la half a century ago as the factors underlying viral inter­ Type I IFNs are known to mediate antineoplastic effects Ligue Nationale contre le ference — that is, the ability of a primary viral infection against several malignancies, which is a clinically rel­ Cancer, Centre de Recherche 1 des Cordeliers, F-75006 Paris, to render cells resistant to a second distinct virus .
    [Show full text]
  • SPACE for LIFE Human Spaceflight Science Newsletter
    → SPACE FOR LIFE human spaceflight science newsletter Issue 2 | March 2013 In this issue: – Columbus 5 years in orbit – Life Outside the Station – Solar Facility – Life Inside the Station – Five Years of Biology in Columbus – Radiation Dosimetry and Columbus – Columbus and Fluids Research – Technology and Europe’s ISS Laboratory ESA astronaut Hans Schlegel working on the outside of the Columbus laboratory in February 2008 two days after its installation on the International Space Station as part of the STS-122 mission NASA → COLUMBUS 5 Years IN ORBIT In February 2013 the European Columbus laboratory, ESA and Europe’s biggest single contribution to the ISS, reached the landmark of five years on orbit. The arrival of Columbus marked a notable shift in European research potential with the variety of research facilities in Columbus providing the means to undertake longer-term European research activities on the Station and also providing Europe with its full quota of research rights on the ISS. This research potential has been further increased over the past few years with the increase to a six-member crew. With this significant milestone in Columbus activities reached NASA it is time to take a look back at the variety of successful research undertaken with Europe’s permanent research laboratory in Launch of the Columbus laboratory on STS-122 Shuttle Atlantis space over the past five years. on 7 February 2008 from the Kennedy Space Center → LIFE OUTsiDE THE STATioN Astrobiology and Exposure Research on EuTEF Prior to the Columbus launch and becoming an ISS partner with its own on-orbit resources Europe had carried out about 100 experiments on the ISS since 2001, though these were mainly associated with short- duration Soyuz missions involving European astronauts.
    [Show full text]
  • CD40 Enhances Type I Interferon Responses Downstream of CD47 Blockade, Bridging Innate and Adaptive Immunity a C Suresh De Silva, George Fromm, Casey W
    Published OnlineFirst December 18, 2019; DOI: 10.1158/2326-6066.CIR-19-0493 CANCER IMMUNOLOGY RESEARCH | RESEARCH ARTICLE CD40 Enhances Type I Interferon Responses Downstream of CD47 Blockade, Bridging Innate and Adaptive Immunity A C Suresh de Silva, George Fromm, Casey W. Shuptrine, Kellsey Johannes, Arpita Patel, Kyung Jin Yoo, Kaiwen Huang, and Taylor H. Schreiber ABSTRACT ◥ Disrupting the binding of CD47 to SIRPa has emerged as a No evidence of hemolysis, hemagglutination, or thrombocytopenia promising immunotherapeutic strategy for advanced cancers by was observed in vitro or in cynomolgus macaques. Murine SIRPa- potentiating antibody-dependent cellular phagocytosis (ADCP) of Fc-CD40L outperformed CD47 blocking and CD40 agonist anti- targeted antibodies. Preclinically, CD47/SIRPa blockade induces bodies in murine CT26 tumor models and synergized with immune antitumor activity by increasing the phagocytosis of tumor cells by checkpoint blockade of PD-1 and CTLA4. SIRPa-Fc-CD40L acti- macrophages and enhancing the cross-presentation of tumor anti- vated a type I interferon response in macrophages and potentiated þ gens to CD8 T cells by dendritic cells; both of these processes are the activity of ADCP-competent targeted antibodies both in vitro and potentiated by CD40 signaling. Here we generated a novel, two-sided in vivo. These data illustrated that whereas CD47/SIRPa inhibition fusion protein incorporating the extracellular domains of SIRPa and could potentiate tumor cell phagocytosis, CD40-mediated activation CD40L, adjoined by a central Fc domain, termed SIRPa-Fc-CD40L. of a type I interferon response provided a bridge between macro- SIRPa-Fc-CD40L bound CD47 and CD40 with high affinity and phage- and T-cell–mediated immunity that significantly enhanced activated CD40 signaling in the absence of Fc receptor cross-linking.
    [Show full text]
  • Biographical Data
    Biographical Data Lyndon B. Johnson Space Center National Aeronautics and Houston, Texas 77058 Space Administration February 2016 SCOTT J. KELLY (CAPTAIN, USN, RET.) NASA ASTRONAUT Pronunciation: SKOT KEH-lee Follow Scott on Twitter Follow Scott on Instagram Follow Scott on Facebook PERSONAL DATA: Born February 21, 1964 in Orange, New Jersey. He has two children. EDUCATION: Graduated from Mountain High School, West Orange, New Jersey, in 1982; received a Bachelor of Science degree in Electrical Engineering from the State University of New York Maritime College in 1987 and a Master of Science degree in Aviation Systems from the University of Tennessee, Knoxville, in 1996. Click photo for downloadable high-res version ORGANIZATIONS: Associate Fellow, Society of Experimental Test Pilots; Member, Association of Space Explorers SPECIAL HONORS: Two Defense Superior Service Medals, Legion of Merit, Distinguished Flying Cross, Navy Commendation Medal, Navy Achievement Medal, two Navy Unit Commendations, National Defense Service Medal, Southwest Asia Service Medal, Kuwait Liberation Medal, Sea Service Deployment Ribbon, NASA Distinguished Service Medal, NASA Exceptional Service Medal, NASA Outstanding Leadership Medal, three NASA Space Flight Medals, Russian Federation Medal for merit in Space Exploration. Korolev Diploma from the Federation Aeronautique Internationale, 1999. Honorary Doctorate of Science degree from the State University of New York, 2008. EXPERIENCE: Kelly received his commission from the State University of New York Maritime College in May 1987 and was designated a naval aviator in July 1989 at Naval Air Station (NAS) in Beeville, Texas. He then reported to Fighter Squadron 101 at NAS Oceana, Virginia Beach, Virginia, for initial F-14 Tomcat training.
    [Show full text]