Anti-OR11G2 Monoclonal Antibody (DCABH- 201096) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use

Total Page:16

File Type:pdf, Size:1020Kb

Anti-OR11G2 Monoclonal Antibody (DCABH- 201096) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use Anti-OR11G2 monoclonal antibody (DCABH- 201096) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. Immunogen A synthetic peptide of human OR11G2 is used for rabbit immunization. Isotype IgG Source/Host Rabbit Species Reactivity Human Purification Protein A Conjugate Unconjugated Applications WB, ELISA Size 1 mg Buffer In 1x PBS, pH 7.4 Preservative None Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. GENE INFORMATION Gene Name OR11G2 olfactory receptor, family 11, subfamily G, member 2 [ Homo sapiens (human) ] Official Symbol OR11G2 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Synonyms OR11G2; olfactory receptor, family 11, subfamily G, member 2; OR14-34; olfactory receptor 11G2; olfactory receptor OR14-34; Entrez Gene ID 390439 Protein Refseq NP_001005503 UniProt ID Q8NGC1 Chromosome Location 14q11.2 Pathway GPCR downstream signaling; Olfactory Signaling Pathway;Olfactory transduction; Signal Transduction; Signaling by GPCR; Function G-protein coupled receptor activity; olfactory receptor activity; 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 2 © Creative Diagnostics All Rights Reserved.
Recommended publications
  • Chr CNV Start CNV Stop Gene Gene Feature 1 37261312 37269719
    chr CNV start CNV stop Gene Gene feature 1 37261312 37269719 Tmem131 closest upstream gene 1 37261312 37269719 Cnga3 closest downstream gene 1 41160869 41180390 Tmem182 closest upstream gene 1 41160869 41180390 2610017I09Rik closest downstream gene 1 66835123 66839616 1110028C15Rik in region 2 88714200 88719211 Olfr1206 closest upstream gene 2 88714200 88719211 Olfr1208 closest downstream gene 2 154840037 154846228 a in region 3 30065831 30417157 Mecom closest upstream gene 3 30065831 30417157 Arpm1 closest downstream gene 3 35476875 35495913 Sox2ot closest upstream gene 3 35476875 35495913 Atp11b closest downstream gene 3 39563408 39598697 Fat4 closest upstream gene 3 39563408 39598697 Intu closest downstream gene 3 94246481 94410611 Celf3 in region 3 94246481 94410611 Mrpl9 in region 3 94246481 94410611 Riiad1 in region 3 94246481 94410611 Snx27 in region 3 104311901 104319916 Lrig2 in region 3 144613709 144619149 Clca6 in region 3 144613709 144619149 Clca6 in region 4 108673 137301 Vmn1r2 closest downstream gene 4 3353037 5882883 6330407A03Rik in region 4 3353037 5882883 Chchd7 in region 4 3353037 5882883 Fam110b in region 4 3353037 5882883 Impad1 in region 4 3353037 5882883 Lyn in region 4 3353037 5882883 Mos in region 4 3353037 5882883 Penk in region 4 3353037 5882883 Plag1 in region 4 3353037 5882883 Rps20 in region 4 3353037 5882883 Sdr16c5 in region 4 3353037 5882883 Sdr16c6 in region 4 3353037 5882883 Tgs1 in region 4 3353037 5882883 Tmem68 in region 4 5919294 6304249 Cyp7a1 in region 4 5919294 6304249 Sdcbp in region 4 5919294
    [Show full text]
  • The Hypothalamus As a Hub for SARS-Cov-2 Brain Infection and Pathogenesis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.139329; this version posted June 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The hypothalamus as a hub for SARS-CoV-2 brain infection and pathogenesis Sreekala Nampoothiri1,2#, Florent Sauve1,2#, Gaëtan Ternier1,2ƒ, Daniela Fernandois1,2 ƒ, Caio Coelho1,2, Monica ImBernon1,2, Eleonora Deligia1,2, Romain PerBet1, Vincent Florent1,2,3, Marc Baroncini1,2, Florence Pasquier1,4, François Trottein5, Claude-Alain Maurage1,2, Virginie Mattot1,2‡, Paolo GiacoBini1,2‡, S. Rasika1,2‡*, Vincent Prevot1,2‡* 1 Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, DistAlz, UMR-S 1172, Lille, France 2 LaBoratorY of Development and PlasticitY of the Neuroendocrine Brain, FHU 1000 daYs for health, EGID, School of Medicine, Lille, France 3 Nutrition, Arras General Hospital, Arras, France 4 Centre mémoire ressources et recherche, CHU Lille, LiCEND, Lille, France 5 Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and ImmunitY of Lille (CIIL), Lille, France. # and ƒ These authors contriButed equallY to this work. ‡ These authors directed this work *Correspondence to: [email protected] and [email protected] Short title: Covid-19: the hypothalamic hypothesis 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.139329; this version posted June 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Us 2018 / 0305689 A1
    US 20180305689A1 ( 19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 /0305689 A1 Sætrom et al. ( 43 ) Pub . Date: Oct. 25 , 2018 ( 54 ) SARNA COMPOSITIONS AND METHODS OF plication No . 62 /150 , 895 , filed on Apr. 22 , 2015 , USE provisional application No . 62/ 150 ,904 , filed on Apr. 22 , 2015 , provisional application No. 62 / 150 , 908 , (71 ) Applicant: MINA THERAPEUTICS LIMITED , filed on Apr. 22 , 2015 , provisional application No. LONDON (GB ) 62 / 150 , 900 , filed on Apr. 22 , 2015 . (72 ) Inventors : Pål Sætrom , Trondheim (NO ) ; Endre Publication Classification Bakken Stovner , Trondheim (NO ) (51 ) Int . CI. C12N 15 / 113 (2006 .01 ) (21 ) Appl. No. : 15 /568 , 046 (52 ) U . S . CI. (22 ) PCT Filed : Apr. 21 , 2016 CPC .. .. .. C12N 15 / 113 ( 2013 .01 ) ; C12N 2310 / 34 ( 2013. 01 ) ; C12N 2310 /14 (2013 . 01 ) ; C12N ( 86 ) PCT No .: PCT/ GB2016 /051116 2310 / 11 (2013 .01 ) $ 371 ( c ) ( 1 ) , ( 2 ) Date : Oct . 20 , 2017 (57 ) ABSTRACT The invention relates to oligonucleotides , e . g . , saRNAS Related U . S . Application Data useful in upregulating the expression of a target gene and (60 ) Provisional application No . 62 / 150 ,892 , filed on Apr. therapeutic compositions comprising such oligonucleotides . 22 , 2015 , provisional application No . 62 / 150 ,893 , Methods of using the oligonucleotides and the therapeutic filed on Apr. 22 , 2015 , provisional application No . compositions are also provided . 62 / 150 ,897 , filed on Apr. 22 , 2015 , provisional ap Specification includes a Sequence Listing . SARNA sense strand (Fessenger 3 ' SARNA antisense strand (Guide ) Mathew, Si Target antisense RNA transcript, e . g . NAT Target Coding strand Gene Transcription start site ( T55 ) TY{ { ? ? Targeted Target transcript , e .
    [Show full text]
  • Whole-Exome Sequencing Validates a Preclinical Mouse Model for the Prevention and Treatment of Cutaneous Squamous Cell Carcinoma Elena V
    Published OnlineFirst December 6, 2016; DOI: 10.1158/1940-6207.CAPR-16-0218 Research Article Cancer Prevention Research Whole-Exome Sequencing Validates a Preclinical Mouse Model for the Prevention and Treatment of Cutaneous Squamous Cell Carcinoma Elena V. Knatko1, Brandon Praslicka2, Maureen Higgins1, Alan Evans3, Karin J. Purdie4, Catherine A. Harwood4, Charlotte M. Proby1, Aikseng Ooi2, and Albena T. Dinkova-Kostova1,5,6 Abstract Cutaneous squamous cell carcinomas (cSCC) are among the detected in 15 of 18 (83%) cases, with 20 of 21 SNP mutations most common and highly mutated human malignancies. Solar located in the protein DNA-binding domain. Strikingly, multiple UV radiation is the major factor in the etiology of cSCC. Whole- nonsynonymous SNP mutations in genes encoding Notch family exome sequencing of 18 microdissected tumor samples (cases) members (Notch1-4) were present in 10 of 18 (55%) cases. The derived from SKH-1 hairless mice that had been chronically histopathologic spectrum of the mouse cSCC that develops in this exposed to solar-simulated UV (SSUV) radiation showed a medi- model resembles very closely the spectrum of human cSCC. We an point mutation (SNP) rate of 155 per Mb. The majority conclude that the mouse SSUV cSCCs accurately represent the (78.6%) of the SNPs are C.G>T.A transitions, a characteristic histopathologic and mutational spectra of the most prevalent UVR-induced mutational signature. Direct comparison with tumor suppressors of human cSCC, validating the use of this human cSCC cases showed high overlap in terms of both fre- preclinical model for the prevention and treatment of human quency and type of SNP mutations.
    [Show full text]
  • Online Supporting Information S1: Proteins in Each Positive Regulatory Pathway
    Online Supporting Information S1: Proteins in each positive regulatory pathway Index Proteins DLD,GCK,GPI,HK1,HK2,HK3,ACSS1,ACSS2,ADH1A,ADH1B,ADH4,ADH5,ADH6,ADH7,AK R1A1,ALDH1A3,ALDH1B1,ALDH2,ALDH3A1,ALDH3A2,ALDH3B1,ALDH3B2,ALDH7A1,ALD Positive_1 H9A1,ALDOA,ALDOB,ALDOC,BPGM,DLAT,ENO1,ENO2,ENO3,FBP1,FBP2,G6PC,G6PC2,G ALM,GAPDH,LDHA,LDHAL6A,LDHAL6B,LDHB,LDHC,PCK1,PCK2,PDHA1,PDHA2,PDHB,PF KL,PFKM,PFKP,PGAM1,PGAM2,PGAM4,PGK1,PGK2,PGM1,PGM3,PKLR,PKM2,TPI1 CS,DLD,FH,PC,ACLY,ACO1,ACO2,DLAT,DLST,IDH1,IDH2,IDH3A,IDH3B,IDH3G,MDH1 Positive_2 ,MDH2,OGDH,OGDHL,PCK1,PCK2,PDHA1,PDHA2,PDHB,SDHA,SDHB,SDHC,SDHD,SUCLA2 ,SUCLG1,SUCLG2 GPI,PGD,RPE,TKT,ALDOA,ALDOB,ALDOC,DERA,FBP1,FBP2,G6PD,H6PD,PFKL,PFKM,P Positive_3 FKP,PGLS,PGM1,PGM3,PRPS1,PRPS2,RBKS,RPIA,TALDO1,TKTL1,TKTL2 RPE,AKR1B1,DCXR,GUSB,UGDH,UGP2,UGT1A10,UGT2A1,UGT2A3,UGT2B10,UGT2B11,U Positive_4 GT2B17,UGT2B28,UGT2B4,UGT2B7,XYLB FUK,GCK,HK1,HK2,HK3,KHK,MPI,AKR1B1,ALDOA,ALDOB,ALDOC,FBP1,FBP2,FPGT,GM Positive_5 DS,GMPPA,GMPPB,MTMR1,MTMR2,MTMR6,PFKFB1,PFKFB2,PFKFB3,PFKFB4,PFKL,PFKM ,PFKP,PGM2,PHPT1,PMM1,PMM2,SORD,TPI1,TSTA3,UGCGL1,UGCGL2 GAA,GCK,GLA,HK1,HK2,HK3,LCT,AKR1B1,B4GALT1,B4GALT2,G6PC,G6PC2,GALE,GAL Positive_6 K1,GALK2,GALT,GANC,GLB1,LALBA,MGAM,PGM1,PGM3,UGP2 Positive_7 ACACA,ACACB,FASN,MCAT,OLAH,OXSM Positive_8 ACAA2,ECHS1,HADH,HADHA,HADHB,HSD17B4,MECR,PPT1,HSD17B10 ACAA1,ACAA2,ACADL,ACADM,ACADS,ACADSB,ACADVL,ACAT1,ACAT2,ACOX1,ACOX3,AC SL1,ACSL3,ACSL4,ACSL5,ACSL6,ADH1A,ADH1B,ADH4,ADH5,ADH6,ADH7,ALDH1A3,AL Positive_9 DH1B1,ALDH2,ALDH3A1,ALDH3A2,ALDH7A1,ALDH9A1,CPT1A,CPT1B,CPT1C,CPT2,CYP 4A11,CYP4A22,ECHS1,EHHADH,GCDH,HADH,HADHA,HADHB,HSD17B4,HSD17B10
    [Show full text]
  • Online Supporting Information S2: Proteins in Each Negative Pathway
    Online Supporting Information S2: Proteins in each negative pathway Index Proteins ADO,ACTA1,DEGS2,EPHA3,EPHB4,EPHX2,EPOR,EREG,FTH1,GAD1,HTR6, IGF1R,KIR2DL4,NCR3,NME7,NOTCH1,OR10S1,OR2T33,OR56B4,OR7A10, Negative_1 OR8G1,PDGFC,PLCZ1,PROC,PRPS2,PTAFR,SGPP2,STMN1,VDAC3,ATP6V0 A1,MAPKAPK2 DCC,IDS,VTN,ACTN2,AKR1B10,CACNA1A,CHIA,DAAM2,FUT5,GCLM,GNAZ Negative_2 ,ITPA,NEU4,NTF3,OR10A3,PAPSS1,PARD3,PLOD1,RGS3,SCLY,SHC1,TN FRSF4,TP53 Negative_3 DAO,CACNA1D,HMGCS2,LAMB4,OR56A3,PRKCQ,SLC25A5 IL5,LHB,PGD,ADCY3,ALDH1A3,ATP13A2,BUB3,CD244,CYFIP2,EPHX2,F CER1G,FGD1,FGF4,FZD9,HSD17B7,IL6R,ITGAV,LEFTY1,LIPG,MAN1C1, Negative_4 MPDZ,PGM1,PGM3,PIGM,PLD1,PPP3CC,TBXAS1,TKTL2,TPH2,YWHAQ,PPP 1R12A HK2,MOS,TKT,TNN,B3GALT4,B3GAT3,CASP7,CDH1,CYFIP1,EFNA5,EXTL 1,FCGR3B,FGF20,GSTA5,GUK1,HSD3B7,ITGB4,MCM6,MYH3,NOD1,OR10H Negative_5 1,OR1C1,OR1E1,OR4C11,OR56A3,PPA1,PRKAA1,PRKAB2,RDH5,SLC27A1 ,SLC2A4,SMPD2,STK36,THBS1,SERPINC1 TNR,ATP5A1,CNGB1,CX3CL1,DEGS1,DNMT3B,EFNB2,FMO2,GUCY1B3,JAG Negative_6 2,LARS2,NUMB,PCCB,PGAM1,PLA2G1B,PLOD2,PRDX6,PRPS1,RFXANK FER,MVD,PAH,ACTC1,ADCY4,ADCY8,CBR3,CLDN16,CPT1A,DDOST,DDX56 ,DKK1,EFNB1,EPHA8,FCGR3A,GLS2,GSTM1,GZMB,HADHA,IL13RA2,KIR2 Negative_7 DS4,KLRK1,LAMB4,LGMN,MAGI1,NUDT2,OR13A1,OR1I1,OR4D11,OR4X2, OR6K2,OR8B4,OXCT1,PIK3R4,PPM1A,PRKAG3,SELP,SPHK2,SUCLG1,TAS 1R2,TAS1R3,THY1,TUBA1C,ZIC2,AASDHPPT,SERPIND1 MTR,ACAT2,ADCY2,ATP5D,BMPR1A,CACNA1E,CD38,CYP2A7,DDIT4,EXTL Negative_8 1,FCER1G,FGD3,FZD5,ITGAM,MAPK8,NR4A1,OR10V1,OR4F17,OR52D1,O R8J3,PLD1,PPA1,PSEN2,SKP1,TACR3,VNN1,CTNNBIP1 APAF1,APOA1,CARD11,CCDC6,CSF3R,CYP4F2,DAPK1,FLOT1,GSTM1,IL2
    [Show full text]
  • Supplementary Table S1. Genomic Context of Microdeletions Found in All Epilepsy Samples
    Supplementary Table S1. Genomic context of microdeletions found in all epilepsy samples. Chr End Size Start Genes Probes N°Genes Overlaps SampleID HOTSPOT? Phenotype ACAP3,AGRN,ANKRD65,ATAD3A,ATAD3B,ATAD3C,AURKAIP1,B3GAL T6,C1orf159,C1orf233,CCNL2,CDK11B,CPSF3L,CPTP,DVL1,FAM132A ,HES4,ISG15,KLHL17,MIB2,MMP23B,MRPL20,MXRA8,NOC2L,PERM 1,PLEKHN1,PUSL1,RNF223,SAMD11,SCNN1D,SDF4,SLC35E2B,SSU72 ,TAS1R3,TMEM240,TMEM88B,TNFRSF18,TNFRSF4,TTLL10,UBE2J2,V WA1,LINC01342,LOC100130417,LOC102724312,LOC148413,MIR20 1 846808 4679951 3833144 1112 94 0A,MIR200B,MIR429,MIR6726,MIR6727,MIR6808,MMP23A,ACTRT IT-PR-2 AFE NO 2,C1orf86,CALML6,CFAP74,FAM213B,GABRD,GNB1,HES5,MMEL1, MORN1,NADK,PANK4,PEX10,PLCH2,PRDM16,PRKCZ,RER1,SKI,TME M52,TNFRSF14,TTC34,LINC00982,LOC100129534,LOC100996583,L OC115110,MIR4251,ARHGEF16,C1orf174,CCDC27,CEP104,DFFB,LR RC47,MEGF6,SMIM1,TP73,TPRG1L,WRAP73,LINC01134,MIR551A,T P73-AS1,LINC01346,LOC284661 1 4529544 5043734 514191 266 1 AJAP1 E472 RE NO 1 18361468 18853490 492023 419 3 IGSF21,KLHDC7A,LOC101927876 CTR-0001 Ctrl NO 1 50002235 50676365 674131 289 2 AGBL4,ELAVL4 CTR-0002 Ctrl NO 1 76631270 77036326 405057 294 1 ST6GALNAC3 CTR-0003 Ctrl NO 1 80073991 81847639 1773649 1198 1 LOC101927412 CTR-0004 Ctrl NO 1 81563249 82131272 568024 497 1 LOC101927434 CTR-0005 Ctrl NO 1 97005643 97712686 707044 389 3 DPYD,PTBP2,DPYD-AS1 EC-CAE428 GGE NO CDC14A,DBT,DPH5,EXTL2,GPR88,RTCA,SLC30A7,VCAM1,LINC01349 1 100661874 101502850 840977 488 12 CTR-0006 Ctrl NO ,LOC102606465,MIR553,RTCA-AS1 1 104452958 106299533 1846576 1037 2 LOC100129138,LOC101928476
    [Show full text]
  • Identifying Drug Sensitivity Subnetworks with NETPHIX
    bioRxiv preprint doi: https://doi.org/10.1101/543876. this version posted February 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Identifying Drug Sensitivity Subnetworks with NETPHLIX Yoo-Ah Kim *† Rebecca Sarto Basso *†‡ Damian Wojtowicz † Dorit S. Hochbaum ‡ Fabio Vandin §¶ Teresa M. Prztycka †¶ Abstract Phenotypic heterogeneity in cancer is often caused by different patterns of genetic alterations. Under- standing such phenotype-genotype relationships is fundamental for the advance of personalized medicine. One of the important challenges in the area is to predict drug response on a personalized level. The pathway- centric view of cancer significantly advanced the understanding of genotype-phenotype relationships. How- ever, most of network identification methods in cancer focus on identifying subnetworks that include gen- eral cancer drivers or are associated with discrete features such as cancer subtypes, hence cannot be applied directly for the analysis of continuous features like drug response. On the other hand, existing genome wide association approaches do not fully utilize the complex proprieties of cancer mutational landscape. To ad- dress these challenges, we propose a computational method, named NETPHLIX (NETwork-to-PHenotpe mapping LeveragIng eXlusivity), which aims to identify mutated subnetworks that are associated with drug response (or any continuous cancer phenotype). Utilizing properties such as mutual exclusivity and interac- tions among genes, we formulate the problem as an integer linear program and solve it optimally to obtain a set of genes satisfying the constraints. NETPHLIX identified gene modules significantly associated with many drugs, including interesting response modules to MEK1/2 inhibitors in both directions (increased and decreased sensitivity to the drug) that the previous method, which does not utilize network informa- tion, failed to identify.
    [Show full text]
  • Supplementary Methods
    doi: 10.1038/nature06162 SUPPLEMENTARY INFORMATION Supplementary Methods Cloning of human odorant receptors 423 human odorant receptors were cloned with sequence information from The Olfactory Receptor Database (http://senselab.med.yale.edu/senselab/ORDB/default.asp). Of these, 335 were predicted to encode functional receptors, 45 were predicted to encode pseudogenes, 29 were putative variant pairs of the same genes, and 14 were duplicates. We adopted the nomenclature proposed by Doron Lancet 1. OR7D4 and the six intact odorant receptor genes in the OR7D4 gene cluster (OR1M1, OR7G2, OR7G1, OR7G3, OR7D2, and OR7E24) were used for functional analyses. SNPs in these odorant receptors were identified from the NCBI dbSNP database (http://www.ncbi.nlm.nih.gov/projects/SNP) or through genotyping. OR7D4 single nucleotide variants were generated by cloning the reference sequence from a subject or by inducing polymorphic SNPs by site-directed mutagenesis using overlap extension PCR. Single nucleotide and frameshift variants for the six intact odorant receptors in the same gene cluster as OR7D4 were generated by cloning the respective genes from the genomic DNA of each subject. The chimpanzee OR7D4 orthologue was amplified from chimpanzee genomic DNA (Coriell Cell Repositories). Odorant receptors that contain the first 20 amino acids of human rhodopsin tag 2 in pCI (Promega) were expressed in the Hana3A cell line along with a short form of mRTP1 called RTP1S, (M37 to the C-terminal end), which enhances functional expression of the odorant receptors 3. For experiments with untagged odorant receptors, OR7D4 RT and S84N variants without the Rho tag were cloned into pCI.
    [Show full text]
  • Research/0018.1
    http://genomebiology.com/2001/2/6/research/0018.1 Research The human olfactory receptor repertoire comment Sergey Zozulya, ernando Echeverri and Trieu Nguyen Address: Senomyx Inc., 11099 North Torrey Pines Road, La Jolla, CA 92037, USA. Correspondence: Sergey Zozulya. E-mail: [email protected] reviews Published: 1 June 2001 Received: 8 March 2001 Revised: 12 April 2001 Genome Biology 2001, 2(6):research0018.1–0018.12 Accepted: 18 April 2001 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2001/2/6/research/0018 © 2001 Zozulya et al., licensee BioMed Central Ltd (Print ISSN 1465-6906; Online ISSN 1465-6914) reports Abstract Background: The mammalian olfactory apparatus is able to recognize and distinguish thousands of structurally diverse volatile chemicals. This chemosensory function is mediated by a very large family of seven-transmembrane olfactory (odorant) receptors encoded by approximately 1,000 genes, the majority of which are believed to be pseudogenes in humans. deposited research Results: The strategy of our sequence database mining for full-length, functional candidate odorant receptor genes was based on the high overall sequence similarity and presence of a number of conserved sequence motifs in all known mammalian odorant receptors as well as the absence of introns in their coding sequences. We report here the identification and physical cloning of 347 putative human full-length odorant receptor genes. Comparative sequence analysis of the predicted gene products allowed us to identify and define a number of consensus sequence motifs and structural features of this vast family of receptors.
    [Show full text]
  • The Role of Knockout Olfactory Receptor Genes in Odor Discrimination
    G C A T T A C G G C A T genes Article The Role of Knockout Olfactory Receptor Genes in Odor Discrimination Maria Pina Concas 1 , Massimiliano Cocca 1 , Margherita Francescatto 2 , Thomas Battistuzzi 3, Beatrice Spedicati 2 , Agnese Feresin 2 , Anna Morgan 1,*, Paolo Gasparini 1,2 and Giorgia Girotto 1,2 1 Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; [email protected] (M.P.C.); [email protected] (M.C.); [email protected] (P.G.); [email protected] (G.G.) 2 Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; [email protected] (M.F.); [email protected] (B.S.); [email protected] (A.F.) 3 Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; [email protected] * Correspondence: [email protected]. Abstract: To date, little is known about the role of olfactory receptor (OR) genes on smell perfor- mance. Thanks to the availability of whole-genome sequencing data of 802 samples, we identified 41 knockout (KO) OR genes (i.e., carriers of Loss of Function variants) and evaluated their effect on odor discrimination in 218 Italian individuals through recursive partitioning analysis. Furthermore, we checked the expression of these genes in human and mouse tissues using publicly available data and the presence of organ-related diseases in human KO (HKO) individuals for OR expressed in non-olfactory tissues (Fisher test). The recursive partitioning analysis showed that age and the high number (burden) of OR-KO genes impact the worsening of odor discrimination (p-value < 0.05).
    [Show full text]
  • 1 Reference Sequence Number Gene Symbol Alleles Chromosomal
    1 Supplemental Table 1. 10,177 non-synonymous single nucleotide polymorphisms on ParAllele panel; the San Francisco Bay Area Adult Glioma Study Minor Allele Minor Allele Reference Sequence Chromosomal Frequency, Frequency, Number Gene Symbol Alleles Location Minor Allele Case Control P-value* rs8289 FUT6, M6PRBP1 A/G 19p A 0.357798165 0.188073394 0.000141 rs10495960 LHCGR, GTF2A1L A/G 02p A 0.102678571 0.245454545 0.000145 rs1195889 GPR133 A/G 12q A 0.339285714 0.495495495 0.000547 rs11076585 C/T 16q T 0.147321429 0.290178571 0.00055 rs10415562 OR7C1 C/T 19p C 0.294642857 0.183035714 0.000805 rs7955866 FGF23 A/G 12p A 0.163636364 0.049549549 0.001078 rs3765083 MFSD1 A/G 03q A 0.486607143 0.339285714 0.001137 rs12455859 G/T 18p G 0.473214286 0.366071429 0.001248 rs3732548 hCG_1813818 A/C 03p C 0.21875 0.357142857 0.001609 rs1047840 EXO1 A/G 01q A 0.321428571 0.468181818 0.002261 rs10817025 SVEP1 C/T 09q C 0.403061224 0.252747253 0.002461 rs1265054 C6orf15 A/G 06p A 0.382882883 0.468468468 0.002688 rs319522 GPC6 A/G 13q G 0.40625 0.455357143 0.003242 rs7522157 CLCC1, C1orf62 C/T 01p T 0.254464286 0.382882883 0.003275 rs2017467 A/G 11q A 0.068181818 0.155963303 0.003282 rs4272850 TMEM132C A/G 12q A 0.294642857 0.178571429 0.003348 rs10490923 ARMS2 A/G 10q A 0.09375 0.196428571 0.003436 rs1129770 CMYA5 A/G 05q A 0.142857143 0.258928571 0.003448 rs2298771 SCN1A A/G 02q G 0.361607143 0.232142857 0.003505 rs6902416 TRDN C/G 06q G 0.1875 0.09009009 0.004266 rs2502601 SYNJ2 C/T 06q T 0.40625 0.459821429 0.0043 rs4691212 G/T 04q G 0.267857143 0.392857143
    [Show full text]