PDF Linkchapter

Total Page:16

File Type:pdf, Size:1020Kb

PDF Linkchapter Index Acquasparta Formation (AF), 505 fossil record, 197, 206 AF. Acquasparta Formation lake sedimentation phase, 200 AgredaSee Alloformation, 265, 270 Araripe-Potiguar depression (NE Brazil) deposition, 276 lacustrine phases, 197-206 facies associations and thicknesses, 271-273 sedimentary basins and sequences, 198-199 Agua Grande fault, 220 tectonic setting, 197 Aguil6n Formation (Central Iberian Range-NE Spain) Aratu local stage, 229 facies distribution, 288-289 Arches, sediment thickness and, 103 facies distribution, vertical, 293 Artoles Formation, 295 facies, principal, 292 Atafona Member, 226 lake unit paleoenvironments, 289 Aygyrshol Formation, 62 main fault, 288 thickness distribution, 288 Aguil6n subbasin (Central Iberian Range-NE Spain) Badejo Structural High, 229 facies distribution and stratigraphy, 289 Badlands (S. Dakota), field sites, 350. Chadron geologic subbasin, 285 Formation See also main listric fault, 287 Balbuena subgroup. Salta group outcrops, 286 Barbalha, 205 See Aix-en-Provence region Barungoi sequences, 52 basin architecture, 320 Basalts sedimentation context, 320-321 Columbia River, 364-365 lacustrine carbonate accumulation, 320 Etendeka, 178 Aktau Formation, 59 flood, 55, 167-168, 178 lower part, 63 Kalkrand, 167 Aktau Mountain Karoo, 167-168 lithostratigraphic units, 59 Neogene and Quaternary, 55 lithostratigraphy, paleontology, and depositional Bayunshirere sequences, 52 phases, 62 Beauce limestones (France). Paris Basin (Beauce Alac6n Formation, facies distribution and limestones) See stratigraphy, 284 Beaufort Group, 87, 100 Albian phase, 203-206 Bembridge Limestone Formation, 369-370 Alkaline lake deposits, 167-168 biomicrites, 372 Alluvial fan brecciated-nodular, 372 facies association, 511 carbonate facies, 374-375 ponds, 67-70 clotted-peloidal-ooidal, 372-374 Altai basins (Mongolia), 48 facies and cyclicity, 370-371 Anaerobic degradation, 20 important localities, 370 Andina Basin (Argentina), 323-327 intraclastic, 372 basin evolution, 327 laminar (Crustose), 374 Cretaceous-Lower Tertiary deposits, 324 lithologies, 372-374 Salta Group distribution, 324 marls and marly, 372 sedimentation processes, 327 muds and siliciclastic lithologies, 374 setting and stratigraphy, 323 silicified with microlenticular gypsum Yacoraite Formation, 323-324 pseudomorphs, 374 Angaran palynoflora! province (Mongolia), 36 succession, 373 Anoxia development, 310 Biomarkers, 21, 23 Anyao Formation Bioturbation preservation, 93 flute marks in turbidites, 192 Black Hills (S. Dakota) fossil record, 191 aquifers, 355 Jurassic lake deposits, 189 crystalline core, 355 regional setting, 189 field sites, 350 sedimentary facies, 189-190 modern flow systems, 355 stacking pattern, 190 Paleozoic carbonates, 353 turbidite lacustrine deposits, 192 uplift, 355 Aquigulake Group, 125 Blesa Formation Araripe Basin (NE Brazil), 197-199, 203-206 depositional sequence, 280, 282 Aptian lake deposits, 206 facies sequence, distribution, and stratigraphy, formation columns, 201 283-284 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3837068/9781629810713_backmatter.pdf by guest on 26 September 2021 Index 637 lithostratigraphic synthesis, 281 sedimentary environments, 264-274 members, 279 stratigraphy, 263-264, 266 sedimentation, 280 subbasins, 266 Blomidon Formation, 160-161 Campos Basin (Brazil) fossil record, 160 acoustic-lithologic units, 226-241 mudstones and sandstones, 162 bioclastic carbonate lacustrine facies models, 245-254 Bogda Shan, 126 biostratigraphic interval characteristics, 246 uplift, 123 deposition, 241-243, 245 west flank, 127 facies associations, 246-248 Bouma sequences, 189, 362 geologic setting, 245-246 Breccia formation, in situ, 94 index map, 226 Brejo Santo Formation, 197 Lower Cretaceous stratigraphy, 245-246 lithologic column, 201 main structural elements, 246 Bristol Dry Lake (California) paleoenvironmental synthesis, 253-254 alluvial fan, 598-599 rift and transitional phase stratigraphy, 227-228 basin age and hydrochemistry, 600-602 rift phase structural features, 245 core age correlation, 603 rift, south-dipping, 230 depositional environments, 598-600 rift stage units, 2311 233-235 facies distribution, 600 stratigraphy, 225-228 geologic setting, 597-598 tectono-stratigraphic evolution, 241 major ion concentrations, 602 unit highs and low, 229-230 playa hydrology and margin, 599-600 units A-J, 226-241 salt pan, 599-600 units, transitional, 230 sedimentology, stratigraphy, and Candeias Formation, 214 hydrochemistry, 597-603 synrift system, 211 stratigraphic framework and sections, 600-601 Cangfanggou Group, 115 water-wells and cores, 598 Carbonates Buxin Group, lithostratigraphy, 332 Cascante-Ademuz zone, 499 interbedded fine-grained, 134-135 lacustrine, 47, 181, 186, 320, 501-502 Cabiunas Formation, 226, 229 lake sequences, shallowing-upward, 353 Calcaire de Rognac Formation, 319 Nilga Basin, 47 characterized, 320-321 Paleozoic, 353 regions, 317-319 Carboniferous and Permian lakes (Mongolia) stratigraphy, 318 biostratigraphic information, 36 Calcaire de Vitrolles episode, 320 facies details, 36 Calcaire de Vitrolles Formation, 319 fossil record, 36 Canet section, 321 geochemical characterization, 38 characterized, 320-321 tectonic overview, 36 detailed section, 320 Cascade Range (Washington, U.S.) Calcaire du Berry (COB), 389-394 Eocene wrench-fault step-over basin, 359-366 fossils, 390 geological setting, 359-361 geochemistry, 389 lacustrine facies, 363-365 limestone types, 392 Nahahum Canyon Member, 361-362 lithologic section at La Chevalerie Quarry, 393 paleolimnology, 363 outcrop exposures, 390 thermal maturity, 363-365 paleoenvironmental interpretation, 394 Cascante-Ademuz zone, 497-502 sedimentology, 389 carbonate lacustrine systems, 501-502 stratigraphy, 389 carbonates, 499 Calcaire Lacustre de Touraine (CLT), 343-344 coal (lignite), 500 Eocene exposures and sections, 344-345 evaporite lacustrine systems, 502 subbasins, 344-345 evaporites, 499-500 Calcaires de Beauce Formation lacustrine facies, 499-500 Oligocene-Miocene, 417-422 lacustrine systems, 501-502 Pithiviers area stratigraphy, 420 Libros, stratigraphic framework, 500 Calcariola-Fosso Canalicchio unit (CFCU), 527 mudstones, 500 Camarillas Formation, 295 Case Strinati Lake, 530-531 Cameros Basin (Northern Spain) Castellar Formation, 295 alloformations, 267-269 facies distribution, 297, 300 continental deposits, 263 main facies, 299 continental infilling, 274-275 sedimentary evolution, 297-299 domain, 257 sedimentologic model, 301 eastern and western, 263-265 COB. Calcaire du Berry fossil record, 264, 274 CentralSee Iberian domain, 258 paleogeographic maps for alloformations, 274-276 CFCU. Calcariola-Fosso Canalicchio unit paleogeographic source areas, 264-265 ChadronSee Formation (Badlands, S. Dakota) Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3837068/9781629810713_backmatter.pdf by guest on 26 September 2021 638 Index calcretes controversy, 350 Daheyen Formation, 129 carbonate, 349-352 Death Valley (California) depositional environment, 352 basins. Furnace Creek Formation geological setting, 349 ephemeralSee lake and pond associations, 73 implications, 353-355 lake, 591 lacustrine limestones and tubas, 349-355 wadi fan, dune, and temporary lake deposits, 72 lithofacies, 351-352 Degradation, anaerobic, 20 lithology, 349-350 Depositional sequences, 7 paleontology, 352 Desert lake deposits, temporary, 67 stratigraphic correlation of sections, 352 Dilution, 20 stratigraphy and age, 350-351 Distensive basins, lacustrine tufa and travertine deposition in late Eocene, 354 and, 311 Konservat-Lagerstiitten White River Group, 349 Doros Formation (Namibia), 88-89 Chemeron Formation facies architecture, 95 diatom assemblages and distribution, 468 facies variations, 103 floras, 469-470 fluvio-lacustrine succession, 95 Cherts, Magadi-type, 183 fossil record, 93 Chignecto subbasin, 159 geometry and extent, 89 location, 160 lake development, 90-93 Chilean Altiplano lake sediments, 87-88 geologic and geographic setting, 625 nearshore fluvial setting with ephemeral saline lake Late Quaternary lacustrine deposition, 625-634 intervals, 93 morphostructural units in lakes, 626 regional tectonostratigraphic framework, 89 China Lake, 591 rift zone model, 101 Chuladyr Formation, 60 sedimentologic log, 92 lacustrine deposition and, 63 sedimentologic relationships, 104 Chumstick Formation Drying-upward, cycles and trend, 82 basin, measured sections, 360 Dumfries Basin, 67-70 burial temperatures, 364 alluvial fan, 69 divisions, 359-361 environments, 72 extent, 364 fan toe, desert floor, interdune pond, and lake paleocurrent data of members, 362 deposits, 71 stratigraphic relationships of members, 361 sheetflood and playa deposits, 73 vitrinite reflectance values, 366 Dwyka Group, 177 CLAMP. Climate-Leaf Analysis Multivariate sequence, 168 ProgramSee Dzumbain sequence (Mongolia), 45, 47, 51 Clastic sediment input, 20 Climate, lake size and, 7 Climate-Leaf Analysis Multivariate Program Eagle Creek fault zone, 366 (CLAMP), 427 Early Jurassic rift valley, 167-168 CLT. Calcaire Lacustre de Touraine East Govi fossil record, 48 Coal depositsSee (Mongolia), 48 Ebro Basin (NE Spain), 407-414 Colorado Plateau, 181 alluvial and lacustrine facies, 400 Columbia River Basalt, 364-365 geologic maps and setting, 395-396, 407-408 Coquinas sequence halite precipitation, 401 bioclastic bars, beaches, and sheets, 248-249 lacustrine evolution, 396-402 bioherms, 248, 252 lacustrine vs. alluvial units, 408 calcarenite, 248-249 Oligocene-Miocene
Recommended publications
  • Living Lakes Goals 2019 - 2024 Achievements 2012 - 2018
    Living Lakes Goals 2019 - 2024 Achievements 2012 - 2018 We save the lakes of the world! 1 Living Lakes Goals 2019-2024 | Achievements 2012-2018 Global Nature Fund (GNF) International Foundation for Environment and Nature Fritz-Reichle-Ring 4 78315 Radolfzell, Germany Phone : +49 (0)7732 99 95-0 Editor in charge : Udo Gattenlöhner Fax : +49 (0)7732 99 95-88 Coordination : David Marchetti, Daniel Natzschka, Bettina Schmidt E-Mail : [email protected] Text : Living Lakes members, Thomas Schaefer Visit us : www.globalnature.org Graphic Design : Didem Senturk Photographs : GNF-Archive, Living Lakes members; Jose Carlo Quintos, SCPW (Page 56) Cover photo : Udo Gattenlöhner, Lake Tota-Colombia 2 Living Lakes Goals 2019-2024 | Achievements 2012-2018 AMERICAS AFRICA Living Lakes Canada; Canada ........................................12 Lake Nokoué, Benin .................................................... 38 Columbia River Wetlands; Canada .................................13 Lake Ossa, Cameroon ..................................................39 Lake Chapala; Mexico ..................................................14 Lake Victoria; Kenya, Tanzania, Uganda ........................40 Ignacio Allende Reservoir, Mexico ................................15 Bujagali Falls; Uganda .................................................41 Lake Zapotlán, Mexico .................................................16 I. Lake Kivu; Democratic Republic of the Congo, Rwanda 42 Laguna de Fúquene; Colombia .....................................17 II. Lake Kivu; Democratic
    [Show full text]
  • Early Cretaceous) Wessex Formation of the Isle of Wight, Southern England
    A new albanerpetontid amphibian from the Barremian (Early Cretaceous) Wessex Formation of the Isle of Wight, southern England STEVEN C. SWEETMAN and JAMES D. GARDNER Sweetman, S.C. and Gardner, J.D. 2013. A new albanerpetontid amphibian from the Barremian (Early Cretaceous) Wes− sex Formation of the Isle of Wight, southern England. Acta Palaeontologica Polonica 58 (2): 295–324. A new albanerpetontid, Wesserpeton evansae gen. et sp. nov., from the Early Cretaceous (Barremian) Wessex Formation of the Isle of Wight, southern England, is described. Wesserpeton is established on the basis of a unique combination of primitive and derived characters relating to the frontals and jaws which render it distinct from currently recognized albanerpetontid genera: Albanerpeton (Late Cretaceous to Pliocene of Europe, Early Cretaceous to Paleocene of North America and Late Cretaceous of Asia); Celtedens (Late Jurassic to Early Cretaceous of Europe); and Anoualerpeton (Middle Jurassic of Europe and Early Cretaceous of North Africa). Although Wesserpeton exhibits considerable intraspecific variation in characters pertaining to the jaws and, to a lesser extent, frontals, the new taxon differs from Celtedens in the shape of the internasal process and gross morphology of the frontals in dorsal or ventral view. It differs from Anoualerpeton in the lack of pronounced heterodonty of dentary and maxillary teeth; and in the more medial loca− tion and direction of opening of the suprapalatal pit. The new taxon cannot be referred to Albanerpeton on the basis of the morphology of the frontals. Wesserpeton currently represents the youngest record of Albanerpetontidae in Britain. Key words: Lissamphibia, Albanerpetontidae, microvertebrates, Cretaceous, Britain. Steven C.
    [Show full text]
  • Pterosaur Distribution in Time and Space: an Atlas 61
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]
  • Fast-Running Theropods Tracks from the Early Cretaceous of La Rioja, Spain
    Fast-Running Theropods Tracks From the Early Cretaceous of La Rioja, Spain Pablo Navarro-Lorbés ( [email protected] ) Universidad de La Rioja (UR), C/ Luis de Ulloa Javier Ruiz Universidad Complutense de Madrid Ignacio Díaz-Martínez Universidad Nacional de Río Negro-IIPG Erik Isasmendi Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) Patxi Sáez-Benito Centro de Interpretación Paleontológica de La Rioja, C/ Mayor, 10, 26525, Igea, La Rioja Luis Viera Centro de Interpretación Paleontológica de La Rioja, C/ Mayor, 10, 26525, Igea, La Rioja Xabier Pereda-Suberbiola Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) Angélica Torices Universidad de La Rioja (UR), C/ Luis de Ulloa Research Article Keywords: Fast-running theropods tracks, Early Cretaceous, La Rioja, Spain, Theropod behaviour, biodynamics, aleontology, biomechanical models Posted Date: August 5th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-764084/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract Theropod behaviour and biodynamics are intriguing questions that paleontology has been trying to resolve for a long time. The lack of extant groups with similar bipedalism has made it hard to answer some of the questions on the matter, yet theoretical biomechanical models have shed some light on the question of how fast theropods could run and what kind of movement they showed. The study of dinosaur tracks can help answer some of these questions due to the very nature of tracks as a product of the interaction of these animals with the environment. Two trackways belonging to fast-running theropods from the Lower Cretaceous Enciso Group of Igea (La Rioja) are presented here and compared with other fast-running theropod trackways published to date.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE JOSÉ M. GASCA, PERSONAL SUMMARY Surname Gasca Name José Manuel Date of birth April 8, 1981 Place of birth Zaragoza, Spain CONICET‐ Museo Olsacher. Affiliation Zapala (8340 Neuquén, Argentina) Mobile number +54 2942 660 880 (Argentina) Mobile number (Spain) +34 699 697707 and WhatsApp E‐mail [email protected] Personal blog cretaceousfossils.blogspot.com.es RG profile https://www.researchgate.net/profile/Jose_Gasca ACADEMIC Ph.D. in Geology. University of Zaragoza, Spain. March, 2015. PhD Title: Contributions to the knowledge of the lower Barremian (Lower Cretaceous) dinosaurs from Teruel, Spain: fossil associations, systematics, palaeobiodiversity and palaeobiogeographical affinities. Director: José Ignacio Canudo (University of Zaragoza). Score: Sobresaliente Cum Laude M.Sc. in Geology. University of Zaragoza, Spain, September, 2008. B.A. in Geology. University of Zaragoza, Spain, February, 2007. RESEARCH FELLOWSHIPS PostDoctoral Fellowship of CONICET , Argentina. Since April 2016 until now. Director: Dr. Leonardo Salgado. Workplace: Natural Science Museum of Zapala (Neuquén province, Argentina). Doctoral Fellowship of the regional Government of Aragón, Spain. September 2008‐ August 2012. Director: José I. Canudo. Workplace: University of Zaragoza (Spain). OTHER FELLOWSHIPS, CURATION AND PROFESSIONAL EXPERIENCE Technical assistance and coordination in the installation of the new exhibition of the Natural Science Museum of the University of Zaragoza, Spain. Position: freelancer. Client: University of Zaragoza. September, 2014 – December, 2014. Fossil preparation (dinosaur bones). Position: freelancer. Client: Deparment of Cultural Heritage, Government of Aragón, Spain. September, 2014 – December, 2014. Management tasks, social networks, guided tours and curation in the Natural Science Museum of the University of Zaragoza, Spain. Position: fellowship. October, 2012 – September, 2013 (1 year, 30 hours a week).
    [Show full text]
  • Fluid Escape Structures As Possible Indicators of Past Gas Hydrate
    DOI: 10.1590/2317‑4889201720160090 ARTICLE Fluid escape structures as possible indicators of past gas hydrate dissociation during the deposition of the Barremian sediments in the Recôncavo Basin, NE, Brazil Estruturas de escape de fluidos como possíveis indicadoras de uma paleo‑dissociação de hidratos de gás durante a deposição de sedimentos do Barremiano na Bacia do Recôncavo, NE, Brasil Antonio Fernando Menezes Freire1*, Carlson de Matos Maia Leite2, Flávio Miranda de Oliveira2, Márcio Ferreira Guimarães2, Paulo da Silva Milhomem2, Raphael Pietzsch3, Roberto Salvador Francisco d’Ávila4 ABSTRACT: Empty elliptical vesicles are observed in outcrops RESUMO: Vesículas elípticas ocas são observadas em afloramentos de areni- of Barremian very fine clayey sandstone to siltstone lacustrine tos argilosos muito finos e siltitos lacustrinos do Membro Pitanga da Formação slurry deposits of the Pitanga Member (Maracangalha Forma‑ Maracangalha, expostos na Ilha de Maré, sudeste da Bacia do Recôncavo, Es- tion), exposed in the Maré Island, Southern Recôncavo Basin, tado da Bahia, Brasil. Essas rochas foram depositadas em condições subaquo- Brazil. These sedimentary features have been traditionally in‑ sas e são consideradas depósitos gravitacionais do tipo slurry. Essas feições têm terpreted as water escape structures triggered by the diapirism sido tradicionalmente interpretadas como sendo estruturas de escape de água, of the underlying shales of the Candeias Formation. This work resultado da ação do diapismo de folhelhos sotopostos da Formação Candeias. proposes that vesicles were generated during massive gas hydrate Este trabalho propõe que as vesículas foram geradas durante uma intensa dis- dissociation as a result of tectonic activity in a paleolake system. sociação de hidratos de gás em resposta à atividade tectônica existente naquele Tectonic uplift would have triggered both the reduction of the sistema lacustre.
    [Show full text]
  • Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal)
    Alexandre Renaud Daniel Guillaume Licenciatura em Biologia celular Mestrado em Sistemática, Evolução, e Paleobiodiversidade Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal) Dissertação para obtenção do Grau de Mestre em Paleontologia Orientador: Miguel Moreno-Azanza, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Co-orientador: Octávio Mateus, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Júri: Presidente: Prof. Doutor Paulo Alexandre Rodrigues Roque Legoinha (FCT-UNL) Arguente: Doutor Hughes-Alexandres Blain (IPHES) Vogal: Doutor Miguel Moreno-Azanza (FCT-UNL) Júri: Dezembro 2018 MICROVERTEBRATES OF THE LOURINHÃ FORMATION (LATE JURASSIC, PORTUGAL) © Alexandre Renaud Daniel Guillaume, FCT/UNL e UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa tem o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. ACKNOWLEDGMENTS First of all, I would like to dedicate this thesis to my late grandfather “Papi Joël”, who wanted to tie me to a tree when I first start my journey to paleontology six years ago, in Paris. And yet, he never failed to support me at any cost, even if he did not always understand what I was doing and why I was doing it. He is always in my mind. Merci papi ! This master thesis has been one-year long project during which one there were highs and lows.
    [Show full text]
  • La Cantalera: an Exceptional Window Onto the Vertebrate Biodiversity of the Hauterivian-Barremian Transition in the Iberian Peninsula
    ISSN (print): 1698-6180. ISSN (online): 1886-7995 www.ucm.es/info/estratig/journal.htm Journal of Iberian Geology 36 (2) 2010: 205-224 doi:10.5209/rev_JIGE.2010.v36.n2.8 La Cantalera: an exceptional window onto the vertebrate biodiversity of the Hauterivian-Barremian transition in the Iberian Peninsula La Cantalera: una excepcional ventana a la biodiversidad del tránsito Hauteriviense- Barremiense en la Península Ibérica J.I. Canudo1, J.M. Gasca1, M. Aurell2, A. Badiola1, H.-A. Blain3, P. Cruzado-Caballero1, D. Gómez- Fernández1, M. Moreno-Azanza1, J. Parrilla1, R. Rabal-Garcés1, J. I. Ruiz-Omeñaca1,4 1Grupo Aragosaurus (http://www.aragosaurus.com). Universidad de Zaragoza. 50009 Zaragoza, Spain. [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] 2Estratigrafía. Universidad de Zaragoza. 50009 Zaragoza. Spain. [email protected] 3Institut Català de Paleoecologia Humana y Evolució Social (Unitat asociada al CSIC). Universitat Rovira i Virgili. 43005 Tarragona. Spain. [email protected] 4Museo del Jurásico de Asturias (MUJA). 33328 Colunga. Asturias. Spain. [email protected] Received: 15/11/09 / Accepted: 30/06/10 Abstract La Cantalera is an accumulation site for fossil vertebrates consisting mainly of teeth and isolated postcranial remains. It has the greatest vertebrate biodiversity of any site from the Hauterivian-Barremian transition in the Iberian Peninsula. Up to now, 31 vertebrate taxa have been recognized: an osteichthyan (Teleostei indet.), two amphibians (Albanerpetonidae indet. and Discoglos- sidae indet.), a chelonian (Pleurosternidae? indet.), a lizard (Paramacellodidae? indet.), four crocodylomorphs (cf. Theriosuchus sp., Bernissartiidae indet., Goniopholididae indet., cf.
    [Show full text]
  • Lake Baikal Bibliography, 1989- 1999
    UC San Diego Bibliography Title Lake Baikal Bibliography, 1989- 1999 Permalink https://escholarship.org/uc/item/7dc9945d Author Limnological Institute of RAS SB Publication Date 1999-12-31 eScholarship.org Powered by the California Digital Library University of California Lake Baikal Bibliography, 1989- 1999 This is a bibliography of 839 papers published in English in 1989- 1999 by members of Limnological Institute of RAS SB and by their partners within the framework of the Baikal International Center for Ecological Research. Some of the titles are accompanied by abstracts. Coverage is on different aspects of Lake Baikal. Adov F., Takhteev V., Ropstorf P. Mollusks of Baikal-Lena nature reserve (northern Baikal). // World Congress of Malacology: Abstracts; Washington, D.C.: Unitas Malacologica; 1998: 6. Afanasyeva E.L. Life cycle of Epischura baicalensis Sars (Copepoda, Calanoida) in Lake Baikal. // VI International Conference on Copepoda: Abstracts; July 29-August 3, 1996; Oldenburg/Bremerhaven, Germany. Konstanz; 1996: 33. Afanasyeva E.L. Life cycle of Epischura baicalensis Sars (Copepoda, Calanoida) in Lake Baikal. // J. Mar. Syst.; 1998; 15: 351-357. Epischura baicalensis Sars is a dominant pelagic species of Lake Baikal zooplankton. This is endemic to Lake Baikal and inhabits the entire water column. It produces two generations per year: the winter - spring and the summer. These copepods develop under different ecological conditions and vary in the duration of life stages, reproduction time, maturation of sex products and adult males and females lifespan. The total life period of the animals from each generation is one year. One female can produce 10 egg sacks every 10 - 20 days during its life time.
    [Show full text]
  • Rift-Valley-1.Pdf
    R E S O U R C E L I B R A R Y E N C Y C L O P E D I C E N T RY Rift Valley A rift valley is a lowland region that forms where Earth’s tectonic plates move apart, or rift. G R A D E S 6 - 12+ S U B J E C T S Earth Science, Geology, Geography, Physical Geography C O N T E N T S 9 Images For the complete encyclopedic entry with media resources, visit: http://www.nationalgeographic.org/encyclopedia/rift-valley/ A rift valley is a lowland region that forms where Earth’s tectonic plates move apart, or rift. Rift valleys are found both on land and at the bottom of the ocean, where they are created by the process of seafloor spreading. Rift valleys differ from river valleys and glacial valleys in that they are created by tectonic activity and not the process of erosion. Tectonic plates are huge, rocky slabs of Earth's lithosphere—its crust and upper mantle. Tectonic plates are constantly in motion—shifting against each other in fault zones, falling beneath one another in a process called subduction, crashing against one another at convergent plate boundaries, and tearing apart from each other at divergent plate boundaries. Many rift valleys are part of “triple junctions,” a type of divergent boundary where three tectonic plates meet at about 120° angles. Two arms of the triple junction can split to form an entire ocean. The third, “failed rift” or aulacogen, may become a rift valley.
    [Show full text]
  • Teruel, Spain)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232388110 A systematic reassessment of Early Cretaceous multituberculates from Galve (Teruel, Spain) Article in Cretaceous Research · February 2011 DOI: 10.1016/j.cretres.2010.10.003 CITATIONS READS 12 34 3 authors: Ainara Badiola José Ignacio Canudo Universidad del País Vasco / Euskal Herriko… University of Zaragoza 15 PUBLICATIONS 109 CITATIONS 430 PUBLICATIONS 3,138 CITATIONS SEE PROFILE SEE PROFILE Gloria Cuenca-Bescós University of Zaragoza 300 PUBLICATIONS 4,166 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: José Ignacio Canudo letting you access and read them immediately. Retrieved on: 29 July 2016 Author's personal copy Cretaceous Research 32 (2011) 45e57 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes A systematic reassessment of Early Cretaceous multituberculates from Galve (Teruel, Spain) Ainara Badiola*, José Ignacio Canudo, Gloria Cuenca-Bescós Grupo Aragosaurus-IUCA,1 Paleontología, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain article info abstract Article history: This paper includes a systematic reassessment of the Early Cretaceous (late Hauterivianeearly Barre- Received 19 April 2010 mian) multituberculate fossils of Galve (Teruel, Spain), previously studied by Crusafont-Pairó and Adr- Accepted in revised form 1 October 2010 over, and Crusafont-Pairó and Gibert in 1966 and 1976, respectively, as well the study of other Available online 4 November 2010 unpublished specimens found in the revised collection of Institut Català de Paleontologia (ICP). We here include for the first time the emended descriptions and comparisons as well as the SEM photographs of Keywords: all the specimens found in the collection and update the biostratigraphic data that they have provided.
    [Show full text]
  • Study of Isolated Teeth of Theropod Dinosaurs
    Gradu Amaierako Lana / Trabajo Fin de Grado Geologiako Gradua / Grado en Geología Dinosauru teropodoen hortzen azterketa/ Study of isolated teeth of theropod dinosaurs Errioxako Behe Kretazeoko espinosauruak Iberiar Penintsulako testuinguruan / Spinosaurids of the Early Cretaceous of La Rioja in an Iberian context Egilea/Autor/a: Erik Isasmendi Mata Zuzendaria/Director/a: Xabier Pereda Suberbiola and Ainara Badiola Kortabitarte Leioa, 2017ko ekainaren 26a /Leioa, 26 de Junio de 2017 INDEX: 1. ABSTRACT/ LABURPENA ....................................................................................................2 2. INTRODUCTION .................................................................................................................2 3. AIMS .................................................................................................................................3 4. PALEONTOLOGICAL BACKGROUND ....................................................................................4 4.1. DINOSAURIA ..............................................................................................................4 4.2. THEROPODA ..............................................................................................................5 4.2.1. SPINOSAURIDAE.................................................................................................5 4.2.1.1. SPINOSAURID TEETH ......................................................................................6 5. SETTING ............................................................................................................................8
    [Show full text]