Heat Pipes & Vapor Chambers Design Guidelines

Total Page:16

File Type:pdf, Size:1020Kb

Heat Pipes & Vapor Chambers Design Guidelines --- Heat Pipes & Vapor Chambers Design Guidelines Presenter George Meyer CEO, Celsia Inc. We’ll Answer these Questions • Benefits and consequences of solid materials Do I Need 2-Phase? • Some basic rules of thumb Are Vapor Chambers Just • Similarities: design, wicks & performance limits Flat Heat Pipes? • Differences: for moving or spreading heat • Heat pipes: diameter, quantity, and shape What Size Do I Need? • Vapor chambers: sizing • Attaching it to the condenser How Do I Integrate Them? • Mounting it to the heat source/ PCB What Should the Heat • Types of condensers Exchanger Look Like? • Pros and cons How Do I Model • Heat sink ballpark • CFD analysis Thermal Performance? • Excel Model • Proto testing 2 When to Use 2-Phase Devices The Short Answer • Only when the design is conduction limited or • Non-thermal goals such as weight or size can’t be achieved with other materials such as solid aluminum and/or copper. Aluminum Copper Two Phase (baselined at 1X) Base thk: 1X Base thk: 0.5X Base thk: 0.5X Weight: 1X Weight: 3X Weight: 2X Cost: 1X Cost: 1.6X Cost: 1.8X Conduction Loss in the Base: Conduction Loss in the Base: Conduction Loss in the Base: 22o Celsius 17o Celsius. If base same thickness 4o Celsius as Aluminum then 11o C If conduction loss through the base is greater than 10o C, it’s a good sign that you could be conduction limited 3 2-Phase Rules of Thumb 2-phase devices are incredible heat conductors. • 5 to 50 times better conductivity than aluminum or copper using 1 copper/water 2-phase • 1,000 to >50,000 w/mK. Exact figure is primarily dependent on the distance the heat is transported. Important as input for CFD modeling Ideal when heat needs to be moved more than 30-50mm • Remote fin stacks (heat exchangers) are a perfect example 2 If you’re interested in spreading heat to reduce hot spot and/or attach to a local heat exchanger 3 • The ratio of heat spreader to heat source should be on the order of 20:1 greater area As with any heat pipe heat sink design, size the heat pipe with an additional 25% thermal headroom 4 4 2-Phase Similarity: Inner Workings Heat pipes & vapor chambers transfer heat through the phase change of liquid to vapor and back to liquid Liquid is passively pumped from condenser to evaporator by capillary action Used for very efficient heat transport & spreading No noise or moving parts with very high reliability 5 2-Phase Similarity: Wick Structures Power Density Resistance Orientation 2 Sintered <500w/cm 0.15-0.03 Good for freeze/thaw and bent shapes +90o to -90o o 2 Powder Small heat sources up to 1,000 w/cm2 c/w/cm <30 w/cm2 Screen 0.25-0.15 Main use is for very thin heat sinks due to +90o to -5o high evaporator resistance. Limited oc/w/cm2 bending. Grooved <20w/cm2 0.35-0.22 o o Entry level price / performance must be o 2 +90 to 0 gravity aided/neutral. c/w/cm Evaporator Resistance (Typical Two Phase) Grooved +90o -90o 2 Screen C/w/cm o Sintered Powder Power Density w/cm2 6 2-Phase Device Similarity: Performance Limits Capillary Vapor Sonic Entrainment Boiling Limit ‘the limiting factor’ Pressure Device above Cause Operating well Start-up power, designed power Input power Radial heat flux below design temp low temp combo input or at low exceeds design exceeds design temp Vapor flow Large internal Condenser flooded Capillary pump Problem Wick dries out prevented pressure drop with excess fluid breaks down Increase vapor Increase vapor Solution Change working Modify wick Increase wick heat space or operating space or operating fluid structure flux capacity temperature temp Sonic Capillary limit is the ability of a Entrainment Boiling particular wick structure to provide Cap Limit adequate circulation for a given working fluid. It is usually the limiting factor for terrestrial applications. 7 Wick and Vapor Limits Are What Matter Heat Pipe Vapor Chamber • Qmax is determined by the lower of the wick and vapor limits • Wick limit = capillary limit • Vapor limit = combination of sonic and entrainment limits • For heat pipes the wick limit is usually the limiting factor, unless flattened • For vapor chambers the vapor limit is the usually the limiting factor 8 2-Phase Device Similarity: Customization Porous Wick “Standard” Wick • Don’t simply rely on published data from one heat pipe manufacturer • Changes to wick thickness & porosity as well as the amount of working fluid can greatly effect performance • Pore radius, for instance, is increased when a higher Qmax is needed - while shrinking it improves capillary action for applications where the condenser is below the evaporator 9 Orientation Affects Qmax • With standard heat pipes, Qmax drops by 90-95% depending on orientation • Both extremes can be optimized but not in tandem • Increasing the Qmax to work against gravity decreases the Qmax when working with gravity. 10 2-Phase: Effective Thermal Conductivity • Two phase device thermal conductivity increases with the length of the device. • Important to know for CFD modeling. • For industrial applications where powers are higher and the distances may be longer, the numbers are typically from 15,000 to as high as 50,000+, but rarely reach the often cited 100,000 w/mK figure 11 2-Phase Differences: Overview Hybrid 1-Piece Traditional 2-Piece Heat Pipe Vapor Chamber Vapor Chamber Initial Form Small diameter tube 3-10mm Very large diameter tube Upper and lower stamped Factor 20-75mm plates Shapes Round, flattened and/or bent Flattened rectangle, surface Complex shapes in x and y in any direction embossing & z-direction bendable direction, surface embossing Typical 3-8mm diameter or flattened 1.5-4mm thick, up to 100mm W 2.5-4mm thick, up to 100mm Dimensions to 1.5-2.5mm. Length 500mm+ by 400mm L W by 400mm L Mounting to Indirect contact though base Direct contact. Mounting pressure Direct contact. Mounting Heat Source plate unless flat & machined up to 90 PSI pressure up to 90 PSI Relative Cost Very cost effective, but Comparable to 2-4 heat pipes in More expensive than 1-piece increases quickly with large higher power and/or high heat design due to additional diameter, custom wick flux applications tooling cost and labor time, structure, secondary ops but large scale production closes the gap 12 2-Phase Differences: Moving or Spreading Heat? While there’s no hard line of distinction between the two, think of the difference like this… Moving Spreading Local Remote Condenser Condenser Heat Direct Mount Heat Pipes Vapor Chamber Heat Mounting Plate(s) • Linear heat flow • Multidirectional heat flow • Remote condenser, usually • Local condenser, almost always 13 What if BOTH Spreading & Moving Are Important • You’ll typically encounter this problem with challenging applications • High-heat flux • Enclosures tightly packed with electronics • Limited or no air flow Remote Condenser Heat Pipes Mounting Vapor Plate(s) Chamber Heat Heat Outer heat pipes will perform poorly as they Solution: Use vapor chamber alone or in are not directly beneath the heat source combination with heat pipes (to move the heat) 14 When Moving Heat to a Remote Sink 99% of All Applications Use Heat Pipes • Complex shapes often required • Readily available in volume • Easily bendable in any direction • Will work against gravity ± 45° Example #1 – Notebook computer 2 flattened heat pipes cool 3 heat sources • With the right thermal modeling, heat sources can be daisy chained onto one device. • Good example of heat pipe design flexibility. 15 When Spreading Heat to a Local Sink Heat Pipes are a Good Choice If • Plenty of air flow • Normal ambient • Lots of room for fins 2 • Every penny counts! • Nominal power densities <25 w/cm Example – Telecom Equipment Application • For moderate performance applications where spreading needs to be augmented, the use of several heat pipes embedded into the base may be sufficient • The use of heat pipes in the base does not eliminate the conductive losses but will help to reduce them. 16 When Spreading Heat to a Local Sink Vapor Chambers may be the Best choice if • Z direction (height) is limited • High ambient or low air flow • Power densities are high • Every degree counts! Example – Higher GPU power & density required design modification One 3mm thick vapor chamber replaced two 8mm heat pipes. 6 degree C better performance and more even heat distribution across heat source surface • Direct contact to the VC means one less interface and better spreading • Flat design allows for additional fin area • Vapor chamber ideal when several heat sources need to be isothermalized VS 6 oC Cooler 17 When Moving Heat to Remote Sink Vapor Chambers are a Good Choice If • Thermal performance is critical • Ultra-thin VC can allow for more fin area Example #1 – Three 450W RGB Laser Diodes for 3D Projector Three vapor chambers each 70mm W x 300mm L move heat to a common fin stack • Vapor chambers were used in place of heat pipes to reduce conduction loss 18 Spreading & Moving – Some Oddballs Example #1 – Flattened / machined HPs are sometimes used to mimic a vapor chamber Gaming desktop cooling overclocked processors • Heat pipes make direct contact with the heat Limited source, eliminating 2 interface layers Direct ContactSpreading Heat Pipes • If implemented correctly performance can be X Direction good, but cost rises quickly and heat spreading in X direction is still limited Example #2 – Heat pipes and vapor chamber used in combination Small form factor desktop PC cooling Core I7 chip Vapor • VC replaced copper mounting plate Chamber • 5 degree better performance than original design with reduced hot spots 19 Bending & Shaping Heat Pipe 1-PieceHeat Pipes Vapor Chamber 2-Piece Vapor Chamber • Bend radius 3X diameter of heat pipe.
Recommended publications
  • The Art of Electronics
    VOLTAGE REGULATORS AND POWER CIRCUITS 312 Chapter 6 (unregulated) I 3A fuse 3 + heat Figure 6.5. Five volt regulator with outboard pass transistor and crowbar. and the 33 ohm resistor. Its func- fuse somewhere in the power supply, as tion is to short the output if some circuit shown. We will treat overvoltage crowbar fault causes the output voltage to exceed circuits in more detail in Section 6.06. about 6.2 volts (this could happen if one of the resistors in the divider were to open up, for instance, or if some component in the HEAT AND POWER DESIGN 723 were to fail). is an SCR controlled rectifier), a device that is nor- 6.04 Power transistors and heat sinking mally nonconducting but that goes into saturation when the gate-cathode junction As in the preceding circuit, it is often nec- is forward-biased. Once turned on, it will essary to use power transistors or other not turn off again until anode current is re- high-current devices like or power moved externally. In this case, gate current rectifiers that can dissipate many watts. flows when the output exceeds The an inexpensive power tran- voltage plus a diode drop. When that hap- sistor of great popularity, can dissipate as pens, the regulator will go into a much as 1 15 watts if properly mounted. limiting condition, with the output held All power devices are packaged in cases near ground by the SCR. If the failure that that permit contact between a metal sur- produces the abnormally high output also face and an external heat sink.
    [Show full text]
  • Application Note AN-1057
    Application Note AN-1057 Heatsink Characteristics Table of Contents Page Introduction.........................................................................................................1 Maximization of Thermal Management .............................................................1 Heat Transfer Basics ..........................................................................................1 Terms and Definitions ........................................................................................2 Modes of Heat Transfer ......................................................................................2 Conduction..........................................................................................................2 Convection ..........................................................................................................5 Radiation .............................................................................................................9 Removing Heat from a Semiconductor...........................................................11 Selecting the Correct Heatsink........................................................................11 In many electronic applications, temperature becomes an important factor when designing a system. Switching and conduction losses can heat up the silicon of the device above its maximum Junction Temperature (Tjmax) and cause performance failure, breakdown and worst case, fire. Therefore the temperature of the device must be calculated not to exceed the Tjmax. To design a good
    [Show full text]
  • Thermal Management
    Committed to excellence Thermal Management V1.0 Solutions for Heat Transmission Content Thermal Management next generation e-commerce with Introduction/Linecard 2-3 Electronic module malfunctions or failures are usually personal service. down to one particular reason: overheating. This is Order online and receive personalised on-site support. Fans & Blowers ..................... 4-11 because performance and temperature are directly related JAMICON 4-7 to each other. The ongoing trend towards miniaturization DELTA 8-10 and to an increasing efficiency are strengthen this challen- ADDA 11 ge even more. Therefore thermal management should play an essential role already from the beginning of the product Heatsinks ......................... 12-13 development cycle. A well-considered design helps to pave ASSMANN 12-13 the way for efficient products with longer lifetime. Film & Adhesives .................... 14-15 It‘s not easy to find out the best strategy for heat dissipation. FASTER MORE PERSONAL PANASONIC 14 EASIER The huge variety of products requires an individual analysis 3M 15 of the particual demands of our customers. Martin Unsöld Senior Marketing Manager Rutronik will support you, keeping track of the latest trends Relays, Batteries, Fuses, Switches & Thermal Management and technologies in order to achieve the ideal solution for your individual needs. This is based on the technical know-how and experience of our Product Managers and Field Application Engineers cou- pled with the innovative products from our comprehensive Our Product Portfolio Committed to Excellence line card. The portfolio encompasses state-of-the-art fans, thermal interface materials such as thermally conductive Consult – Know-how. Built-in. film, phase change materials or gap fillers and heat sinks.
    [Show full text]
  • Choosing and Fabricating a Heat Sink Design
    Choosing and Fabricating a Heat Sink Design For data and voice communications, speed is now the driving factor in the market. As a result, high frequency devices have become a major element for meeting consumer demands. Further, by combining higher packaging density and intelligent (software driven) PCBs, there is much more power dissipation at both the component and board levels.This situation creates great opportunities and significant challenges for thermal management and electronics packaging. A first step in addressing thermal challenges is to consider heat sink choice and design. Looking at the market, we find a strong presence of extruded heat sinks which can provide only limited thermal performance. Old or off-the-shelf extruded heat sinks do not meet the stringent temperature requirements of today’s ASICs. There’s a sore need for high performance heat sinks that can expand the envelope of heat dissipation in current and near term electronics. With many different types of heat sinks available, the question is: what type of heat sink is suitable for my application? Heat Sink Types Table 1. Definition of Different Heat Sink Manufacturing Processes [1]. The general function of a heat Manufacturing Process Description sink is the same, irrespective of its Individual fins are bonded with epoxy to a pre- fabrication process. Thus, we can Bonded grooved base distinguish between heat sinks by their Fins are pre-folded and then brazed or soldered to manufacturing method. Convoluted (folded fin) a base plate Heat sinks fall into three broad Heat sinks are formed as a result of molten metal Die-Casting categories: solidifying in a prefabricated die Extruded Molten metal is drawn through a die 1.
    [Show full text]
  • Lowering the Sink Temperature for a Desert Solar Air Conditioning System
    Sustainable Development and Planning V 227 Lowering the sink temperature for a desert solar air conditioning system M. A. Serag-Eldin American University in Cairo, Egypt Abstract The paper addresses the problem of cooling air conditioning systems in desert environments where ambient air temperatures are high, and cooling towers should be avoided because of scarcity of water resources. A proposed ground heat-sink is proposed which exploits the highly effective night-time desert cooling by long-wave atmospheric radiation. A simple computer model is presented for the performance of the heat-sink design, which integrates with a load calculation model for a hypothetical zero energy house, in which the air conditioning equipment is solar driven. The load-calculation and thermal-sink models are matched dynamically with the time dependent solar energy characteristics of the selected site, and predicted results are displayed and discussed. Keywords: solar air-conditioning, ZEH, renewable energy, geothermal cooling, heat sinks, COP. 1 Introduction Modern designs for desert Zero energy houses (ZEH) provide all modern comforts, relying on solar energy as the energy source to power the homes energy needs. By far the largest energy load for this environment is the air conditioning load, e.g. Serag-Eldin [1]. Air-conditioning equipment performance is affected heavily by the heat-sink (condenser) temperature, the higher the latter the lower the COP; indeed above a certain temperature the equipment mal-functions and may shut-down altogether to protect itself. Cooling the condenser requires dissipating the heat to a lower temperature environment. The two common methods of cooling are air cooling by atmospheric air (releasing heat to the environment directly) and water cooling by circulating WIT Transactions on Ecology and the Environment, Vol 150, © 2011 WIT Press www.witpress.com, ISSN 1743-3541 (on-line) doi:10.2495/SDP110201 228 Sustainable Development and Planning V water which releases its heat to the environment indirectly through cooling ponds and cooling towers.
    [Show full text]
  • CPU Processor Cooling by Using Microchannel Heat Sink with PCM As Coolant
    Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 6 Issue 11, November - 2017 CPU Processor Cooling by using Microchannel Heat Sink with PCM as Coolant V. P. Gaikwad 1, S. P. More 2 1, 2 Mechanical Department, Textile and Engineering Institute Ichalkaranji, India Abstract— In this work, the potential of using phase change increases as well as they conclude that MCHS was effective materials (PCMs) flowing through microchannel heat sinks for method to cool electronic circuit. These kinds of cooling cooling of computer processor has been studied experimentally. system were used only for steady state operations, but for Present study compares two cooling fluids 1) water 2) Phase transient operations the temperature of processor may go change material with two different aspect ratios of 2 and 3. The beyond the limit of Thermal Design Power (TDP). experiments are performed at various flow rates ranging from 75ml/min to 300ml/min. The results show that cooling systems Utilization of microchannel heat sink with Phase change using PCM are advantageous in comparison to conventional materials (PCM) as coolant can overcome this problem. cooling as well as than water cooling system. The result shows Many geometric configurations of microchannel with that MCHS with PCM slurry as coolant is more effective in different boundary conditions by using single phase fluids compare to conventional cooling as well as than water cooling have been studied for electronic cooling. Also, PCM fluids system. It is possible to achieve lower maximum temperature of have been studied in various configurations at the processor for the same mass flow rate or the same pumping macroscale.
    [Show full text]
  • AN-4166 — Heat Sink Mounting Guide
    www.fairchildsemi.com AN-4166 Heat Sink Mounting Guide Summary Heat Sink Mounting Considerations This document provides guidelines for mounting heat sinks for the proper thermal management of power semiconductor Thermal Resistance and Heat Sink Mounting devices in field applications. This document describes heat- The thermal performance of a package with a heat sink is sink mounting methods, considerations, contact thermal characterized by a junction-to-ambient thermal resistance, resistance, and mounting torque for various packages. Rja, which is the sum of junction-case (Rjc), case-heat sink (Rcs), heat sink (Rsink), and heat sink-ambient (Rsa). Thermal resistance components are shown in Figure 1. Air convection is usually the dominant heat transfer mechanism in electronics. The convection heat transfer strongly depends on the air velocity and the area of the heat- transferring surface. Since air is a good thermal insulator, it is important that a heat sink is used to increase the overall heat transfer area to the ambient, i.e., the overall thermal performance, R heat sink-ambient, as shown in Figure 1. This is especially true for power device packages. Power dissipated Package Silicon Die R junction-case R case-heat sink Heat Sink R heat sink R heat sink-ambient Figure 1. Thermal Resistance Model of an Package Assembly with a Heat Sink © 2014 Fairchild Semiconductor Corporation www.fairchildsemi.com Rev. 1.0.0 • 6/25/14 AN-4166 APPLICATION NOTE Applying the heat sink provides an air gap between the A milled or machined surface is satisfactory if prepared with package and the heat sink due to the inherent surface tools in good working condition.
    [Show full text]
  • New Heat Sink for Railroad Vehicle Power Modules Pdf 1.2 MB
    ELECTRONICS New Heat Sink for Railroad Vehicle Power Modules Isao IWAYAMA*, Tetsuya KUWABARA, Yoshihiro NAKAI, Toshiya IKEDA, Shigeki KOYAMA and Masashi OKAMOTO As countermeasures against global warming and fossil fuel depletion, electric railways have been increasingly installed for their excellent energy efficiency. Sumitomo Electric Industries, Ltd. and its group company A.L.M.T. Corp. have developed a new heat sink that is made of a magnesium silicon carbide composite (MgSiC) to be used for the power modules of railroad vehicles. The MgSiC heat sinks are superior in thermal conductivity and easy to process compared with the conventional heat sink made of aluminum silicon carbide composite (AlSiC). The new heat sink is expected to contribute to the development of advanced power modules. Keywords: heat sink, power modules, MgSiC, composite, thermal conductivity 1. Introduction rials technology. Figure 1 shows linear thermal expansions of typical materials forming various devices in contrast with Electric railways are attracting attention as a means of the linear thermal expansions and thermal conductivities energy-efficient land transportation to solve the problems of advanced function heat sink materials of A.L.M.T. Corp. of global warming and fossil fuel depletion, and the devel- The optimum thermal characteristics of a heat sink mate- opment of railway networks is currently in progress the rial, such as the thermal conductivity and linear thermal world over. expansion, are selected in consideration of structure of the To use energy efficiently, electric railway vehicles use entire device. power devices*1. In particular, devices driving the main power motors generate a great deal of heat, and to prevent them from breaking, a composite material of silicon car- bide (SiC) and aluminum (Al) (referred to as AlSiC in the following) that provides a controlled linear thermal expan- sion and high thermal conductivity is used in heat sinks.
    [Show full text]
  • Thermoelectric Cooler Installation Guide
    Thermoelectric Cooler Installation Guide Contents An Overview of the Methods for Mounting Your Thermoelectric Cooler ............................................... 2 Preparing Surfaces ............................................................................................................................... 2 Mounting with Adhesive Bonding .......................................................................................................... 2 Mounting with the Compression Method ............................................................................................... 2 Mounting with Solder ............................................................................................................................ 3 Connecting Lead Wire to Header .......................................................................................................... 3 Final Cleaning and Inspection ............................................................................................................... 4 Preventing Problems ............................................................................................................................. 4 Document Number: 017-0007 Revision: C Page: 1 of 4 An Overview of the Methods for Mounting conductivity is required. Your Thermoelectric Cooler Step One: Because of the short amount of time needed for epoxy to set up, be certain to have your TECs cleaned and ready to mount before mixing epoxy. Clean COLD SIDE and prepare mounting surfaces on both the TEC and heat sink using IPA, acetone
    [Show full text]
  • Performance Enhancement of Raspberry Pi Server for The
    PERFORMANCE ENHANCEMENT OF RASPBERRY PI SERVER FOR THE APPLICATION OF OIL IMMERSION COOLING by DHAVAL HITENDRA THAKKAR Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON MAY 2016 Copyright © by DHAVAL HITENDRA THAKKAR 2016 All Rights Reserved ii Acknowledgements I would like to thank Dr. DEREJE AGONAFER for giving an opportunity to work on this project and support me on all aspects. I would like to thank NSF I/UCRC for introducing this project. I would like to thank Dr. VEERENDRA MULAY from FACEBOOK for his constant support and motivation to work on this. I would like to thank Mr. JIMIL M. SHAH for being patient with us and supporting us. I would like to thank Dr. ABDOLHOSSEIN HAJI-SHEIKH and Dr. Miguel Amaya for taking time out of his busy schedule to attend my thesis dissertation. I would like to specially thank Mrs. SALLY and Mrs. DEBI for their expert advice and encouragement. I would like to finally thank my parents Mr. HITENDRA and Mrs. ARTI for standing by my side and for believing in me in every aspect. MAY 1, 2016 iii Abstract PERFORMANCE ENHANCEMENT OF RASPBERRY PI SERVER FOR THE APPLICATION OF OIL IMMERSION COOLING Dhaval Hitendra Thakkar, MS The University of Texas at Arlington, 2015 Supervising Professor: Dereje Agonafer The power consumed by Central Processing Unit (CPU) generates the heat which is undesirable and which is further responsible for the damage of Information Technology equipment.
    [Show full text]
  • Heat Transfer Enhancement by Heat Sink Fin Arrangement in Electronic Cooling
    Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 3159-0040 Vol. 2 Issue 3, March - 2015 Heat Transfer Enhancement by Heat Sink Fin Arrangement in Electronic Cooling Mohamed H.A. Elnaggar Engineering Department Palestine Technical College-Deir EL-Balah Gaza Strip, Palestine [email protected] Abstract—This paper presents an analytical increase the probability of failure to electronic investigation of the effect of fins number and fin components. thickness on the performance of heat sink. The In modern electronic components, the processor’s results showed that both the increase in fins surface where most heat is generated is usually small, number and thickness leads to an increase in heat however, for better cooling, the heat must spread over transfer rate, but the increase in fins numbers a larger surface area [5]. significantly has more effect on the heat transfer rate than the increase in fin thickness does. The The space available near the processor is limited. increase in the thickness of fin results in an Hence, low power consumption is desired. The heat increase in the heat transfer rate, but more sink performance has become the focus of many studies. Heat sinks should be designed to have a large increase of the fin thickness results in a decrease surface area since heat transfer takes place at the in the distance between fins. The distance among surface [6]. fins must be maintain to allow the cooling fluid to reach all cooling fins and to allow good heat Additionally, the distance between the fins must be transfer from the heat source to the fins as well.
    [Show full text]
  • Integrated Vapor Chamber Heat Spreader for Power Module Applications
    Proceedings of the ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems InterPACK2017 August 29-September 1, 2017, San Francisco, California, USA IPACK2017-74132 INTEGRATED VAPOR CHAMBER HEAT SPREADER FOR POWER MODULE APPLICATIONS Clayton L. Hose Dimeji Ibitayo Advanced Cooling Technologies, Inc. U.S. Army Research Laboratory 1046 New Holland Avenue Sensors and Electron Devices Directorate Lancaster, PA, USA 2800 Powder Mill Rd [email protected] Adelphi, MD, USA [email protected] Lauren M. Boteler Jens Weyant U.S. Army Research Laboratory Advanced Cooling Technologies, Inc. Sensors and Electron Devices Directorate 1046 New Holland Avenue 2800 Powder Mill Rd Lancaster, PA, USA Adelphi, MD, USA [email protected] [email protected] Bradley Richard Advanced Cooling Technologies, Inc. 1046 New Holland Avenue Lancaster, PA, USA [email protected] ABSTRACT spreaders. Experimental results show a 43°C reduction in This work presents a demonstration of a coefficient of device temperature compared to a standard solid CuMo heat thermal expansion (CTE) matched, high heat flux vapor spreader at a heat flux of 520 W/cm2. chamber directly integrated onto the backside of a direct bond copper (DBC) substrate to improve heat spreading and reduce INTRODUCTION thermal resistance of power electronics modules. Typical vapor There is a strong demand in the power electronics industry chambers are designed to operate at heat fluxes > 25 W/cm2 for modules with higher power densities and increased with overall thermal resistances < 0.20 °C/W. Due to the rising reliability [1-3].
    [Show full text]