Chemical Production Rates of Intermediate Hydrocarbons in a Methane/Air Diffusion Flame

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Production Rates of Intermediate Hydrocarbons in a Methane/Air Diffusion Flame Twenty-first Symposium(International) on Combustion/TheCombustion Institute, 1986/pp. 1057-1065 CHEMICAL PRODUCTION RATES OF INTERMEDIATE HYDROCARBONS IN A METHANE/AIR DIFFUSION FLAME J. HOUSTON MILLER Department of Chemistry George Washington University Washington, DC 20052 W. GARY MALLARD AND KERMIT C. SMYTH Center for Fire Research National Bureau of Standards Gaithersburg, MD 20899 The net production and destruction rates for acetylene, diacetylene, butadiene, and benzene have been determined from measurements of species concentration, temperature, and velocity in a methane/air diffusion flame. In addition, profile measurements of the methyl radical are used to compute profiles of hydrogen atoms. These results provide an initial evaluation of proposed models of hydrocarbon chemical growth routes in diffusion flames, and indicate that the vinyl radical plays a key role in the formation of benzene. Evidence is also presented for acetylene participation in surface growth processes on small soot particles. I. Introduction composition is not sufficient to predict the concentrations of intermediate hydrocarbons, The identification of the formation mecha- such as acetylene and benzene, and soot nism of large hydrocarbons produced during particles 17. Therefore, in this paper an analysis combustion is one of the most challenging is undertaken combining detailed species pro- problems in high temperature chemistry. De- file measurements, temperature, and convec- spite the complexity of chemical growth reac- tive velocity measurements to calculate produc- tions in flames, there have been significant tion and destruction rates for intermediate recent gains in our understanding. Extensive hydrocarbons. The experimental values for the profile measurements have led to a detailed net production/destruction rates are compared description of the chemical structure of pre- with estimated rates of chemical growth reac- mixed flames 1-13. These results have been tions in order to evaluate possible formation combined with the time-temperature history in routes of aromatic hydrocarbon species. one-dimensional flame systems to produce simple models for molecular growth. Modelling efforts have also been undertaken using shock II. Experimental results tube data 14-16. Most practical combustion systems are diffu- Detailed species profiles have been measured sion flames. Here, in contrast to shock tubes in an atmospheric pressure methane/air diffu- and premixed flames, our knowledge of the sion flame using both mass spectrometric and soot formation process is much less complete. optical techniques 17. A Wolfhard-Parker burn- This is due in part to the lack of data which are er was utilized, consisting of a central fuel slot required for a detailed modelling of diffusion and two adjacent slots for air. Two flame sheets flames and in part to the inherently more were formed at the fuel/air interfaces, and all complex interactions between transport and species profiles were symmetric about the chemical processes in these systems. burner centerline. Profiles of stable flame Recently, concentration measurements have species were collected with a direct-sampling been reported for molecular species, including mass spectrometer equipped with a quartz intermediate hydrocarbons, in. laminar meth- microprobe (orifice diameter ~140 ~.m). Cali- ane/air diffusion flames 17'18. Our work has bration of the major species (methane, oxygen, shown that a knowledge of the local chemical nitrogen, carbon dioxide, carbon monoxide, 1057 1058 COMBUSTION GENERATED POLLUTANTS water, and hydrogen) led to a mass balance 20 ' ' ' ' I .... I ' ' ' ' I .... across the flame (total mole fraction = 1.01 -+ 0.04). In addition, absolute concentrations of acetylene, butadiene, and toluene were deter- mined using a direct calibration procedure. Profiles of methylacetylene (and/or allene), vinylacetylene, diacetylene, triacetylene, ben- zene, and naphthalene were also measured and calibrated indirectly 17. In a related series of measurements 19, a quartz microprobe was modified so that iodine vapor could be introduced into the inside of the ! J/ t l/: ',ltt, t,'I,H/, ', quartz tube. Sampled methyl radicals react quantitatively in the til~ of the scavenger probe to form methyl iodide z~ which can then be detected in the mass spectrometer. The optical measurements included laser- -0!0''' "?17' ' ' 0 .... ; .... 10 induced fluorescence,, multiphoton ionization, LATERAL POSITION, rnrn photodissociation, and Rayleigh scattering in- vestigations of the methane/air diffusion FIG. 1. Isothermal contours (solid lines) calculated flame 17'23. These studies have produced pro- from uncorrected thermocouple measurements and files of relative OH and methyl radical concen- streamlines (dashed lines) calculated from the velocity trations, as well as larger hydrocarbon species measurements for the methane/air flame. and small soot particles. Temperature profiles were measured with an 1.0 i .... r .... r .... uncoated 125 I~m diameter fine wire Pt/Pt- [CtHt] 10% Rh thermocouple. Corrections due to radia- o [C,H,]xS tion effects were estimated to be less than 7% at o [C=Ht] x3 the highest temperatures in this flame 17, while + lC4H=]xlO catalytic effects are expected to be small 24 and in g the opposite direction. For equilibrium and kinetic calculations discussed in Section IV, the x z original temperature data were corrected for the estimated radiation effect. Both the horizon- ~ 0.5 tal and vertical components of the convective velocity were determined using laser Doppler =, velocimetry. The gradients in concentration and =o temperature in this flame are steepest in the lateral direction. Therefore, profile data points were collected every 0.2 mm horizontally and every 2 mm in the vertical direction. 0.0 Figure 1 illustrates the temperature and -10 -5 0 5 10 velocity fields for this flame. Shown as solid LATERAL POSITION, mm lines are isothermal contours determined from the thermocouple profiles. Also shown are FIG. 2. Mass spectrometric profile measurements streamlines of convective velocity calculated of several minor species: acetylene, benzene, diacety- from the two measured velocity components. lene, and butadiene at a height of 9 mm above the The streamlines exhibit trajectories which origi- burner. nate in the lean region of the flame, cross the high temperature, primary reaction zones, and continue into the fuel-rich regions. III. Production Rate Calculation Figure 2 presents profiles collected for sev- eral intermediate hydrocarbons: acetylene, A. Procedure benzene, diacetylene, and butadiene. Peak con- centrations for these species are 6200, 800, 570, A primary goal of this work is to apply kinetic and 1 l0 parts per million, respectively, at this modelling to a methane/air diffusion flame; height. Profiles obtained for the other interme- that is, to compare the predictions of models diate hydrocarbons all exhibit concentration which have been used to describe premixed maxima in the same region of the flame. flame and shock tube results with our diffusion PRODUCTION RATES IN DIFFUSION FLAMES 1059 flame data (see Section IV, below). A viable first term in Eq.2 (concentration-driven diffu- model must not only account for the steady sion) dominates the second (thermal diffusion), state concentrations in species involved in and the contributions of thermal diffusion to chemical growth processes, but also for the mass transport can be ignored. The horizontal chemical flux of these species in the flame. To temperature gradients in our flame are steep in make this comparison, the net chemical pro- certain locations (2000-3000 K/cm), and thus dttction and destruction rates for individual thermal diffusion cannot be dismissed. To criti- species have been computed from concentra- cally evaluate the importance of thermal diffu- tion, temperature, and velocity measurements, sion, kr has been calculated as a function of as described below. temperature and composition for a variety of A laminar flame is a steady-state system, and binary mixtures. Our results indicate that the thus the value of any macroscopic variable does ratio kT/xi is insensitive to the concentration of not change with time at a particular spatial the minor component. Further, at high tem- location. Therefore, the net flux for each species peratures (> 1000 K), kr/xi is relatively indepen- into a given volume element due to convective dent of temperature. Therefore, it is possible to and diffusive transport must be balanced by a select a value of kT/xi which represents a "worst corresponding change in the species concentra- case" for the thermal diffusion contribution to tion due to chemical reactions: the calculated production rate for a given species in order to test the hypothesis that Ri = V[Ni (v + Vi)]. (l) thermal diffusion is not significant. (See next section) Here , Ri is the net chemical rate, Ni is the species concentration, v is the convective veloc- B. Production Rate Calculation Results ity, and Vi is the net diffusion velocity of the species into the local mixture. The rate of Figure 3 presents the diffusive (concentra- chemical production is computed by numerical tion-driven and thermal) and convective contri- differentiation of Eq. 1 using profile data at a butions to the calculated production/destruction particular height, H, as well as data from H --2- 2 rate for acetylene at a height of 9 mm above the mm. Due to extreme sensitivity to noise in this burner. Convection transports material across calculation, it
Recommended publications
  • Reliable Structures and Energetics for Two New Delocalized Pбббp
    PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics Reliable structures and energetics for two new delocalized pÁÁÁp prototypes: cyanogen dimer and diacetylene dimerwz Brian W. Hopkins, Adel M. ElSohly and Gregory S. Tschumper* Received 22nd November 2006, Accepted 3rd January 2007 First published as an Advance Article on the web 7th February 2007 DOI: 10.1039/b616878g Two new prototype delocalized pÁÁÁp complexes are introduced: the dimers of cyanogen, (NRC–CRN)2, and diacetylene, (HCRC–CRCH)2. These dimers have properties similar to larger delocalized pÁÁÁp systems such as benzene dimer but are small enough that they can be probed in far greater detail with high accuracy electronic structure methods. Parallel-slipped and T-shaped structures of both cyanogen dimer and diacetylene dimer have been optimized with 15 different procedures. The effects of basis set size, theoretical method, counterpoise correction, and the rigid monomer approximation on the structure and energetics of each dimer have been examined. MP2 and CCSD(T) optimized geometries for all four dimer structures are reported, as well as estimates of the CCSD(T) complete basis set (CBS) interaction energy for every optimized geometry. The data reported here suggest that future optimizations of delocalized pÁÁÁp clusters should be carried out with basis sets of triple-z quality. Larger basis sets and the expensive counterpoise correction to the molecular geometry are not necessary. The rigid monomer approximation has very little effect on structure and energetics of these dimers and may be used without consequence. Due to a consistent cancellation of errors, optimization with the MP2 method leads to CCSD(T)/CBS interaction energies that are within 0.2 kcal molÀ1 of those for structures optimized with the CCSD(T) method.
    [Show full text]
  • A Photoionization Reflectron Time‐Of‐Flight Mass Spectrometric
    Articles ChemPhysChem doi.org/10.1002/cphc.202100064 A Photoionization Reflectron Time-of-Flight Mass Spectrometric Study on the Detection of Ethynamine (HCCNH2) and 2H-Azirine (c-H2CCHN) Andrew M. Turner,[a, b] Sankhabrata Chandra,[a, b] Ryan C. Fortenberry,*[c] and Ralf I. Kaiser*[a, b] Ices of acetylene (C2H2) and ammonia (NH3) were irradiated with 9.80 eV, and 10.49 eV were utilized to discriminate isomers energetic electrons to simulate interstellar ices processed by based on their known ionization energies. Results indicate the galactic cosmic rays in order to investigate the formation of formation of ethynamine (HCCNH2) and 2H-azirine (c-H2CCHN) C2H3N isomers. Supported by quantum chemical calculations, in the irradiated C2H2:NH3 ices, and the energetics of their experiments detected product molecules as they sublime from formation mechanisms are discussed. These findings suggest the ices using photoionization reflectron time-of-flight mass that these two isomers can form in interstellar ices and, upon spectrometry (PI-ReTOF-MS). Isotopically-labeled ices confirmed sublimation during the hot core phase, could be detected using the C2H3N assignments while photon energies of 8.81 eV, radio astronomy. 1. Introduction acetonitrile (CH3CN; 1) and methyl isocyanide (CH3NC; 2) ‘isomer doublet’ (Figure 2) – the methyl-substituted counterparts of For the last decade, the elucidation of the fundamental reaction hydrogen cyanide (HCN) and hydrogen isocyanide (HNC) – has pathways leading to structural isomers – molecules with the been detected toward the star-forming region SgrB2.[4,8–9] same molecular formula, but distinct connectivities of atoms – However, none of their higher energy isomers has ever been of complex organic molecules (COMs) in the interstellar identified in any astronomical environment: 2H-azirine (c- [10–14] [15–19] medium (ISM) has received considerable interest from the NCHCH2; 3), ethynamine (HCCNH2; 4), ketenimine [1–3] [20] [21] astrochemistry and physical chemistry communities.
    [Show full text]
  • Formation of Fulvene in the Reaction of C2H with 1,3-Butadiene
    UC Berkeley UC Berkeley Previously Published Works Title Formation of fulvene in the reaction of C2H with 1,3-butadiene Permalink https://escholarship.org/uc/item/34x2s372 Authors Lockyear, JF Fournier, M Sims, IR et al. Publication Date 2015-02-15 DOI 10.1016/j.ijms.2014.08.025 Peer reviewed eScholarship.org Powered by the California Digital Library University of California International Journal of Mass Spectrometry 378 (2015) 232–245 Contents lists available at ScienceDirect International Journal of Mass Spectrometry journal homepage: www.elsevier.com/locate/ijms Formation of fulvene in the reaction of C2H with 1,3-butadiene Jessica F. Lockyear a,1, Martin Fournier b,c, Ian R. Sims b, Jean-Claude Guillemin c, Craig A. Taatjes d, David L. Osborn d, Stephen R. Leone a,* a Departments of Chemistry and Physics, University of California at Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA b Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes CEDEX,France c Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes CEDEX 7, France d Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, CA 94551-0969, USA ARTICLE INFO ABSTRACT Article history: Products formed in the reaction of C2H radicals with 1,3-butadiene at 4 Torr and 298 K are probed using Received 30 May 2014 photoionization time-of-flight mass spectrometry. The reaction takes place in a slow-flow reactor, and Received in revised form 21 July 2014 products are ionized by tunable vacuum-ultraviolet light from the Advanced Light Source.
    [Show full text]
  • The Synthesis of a Polydiacetylene to Create a Novel Sensory Material
    SELDE, KRISTEN A., M.S. The Synthesis of a Polydiacetylene to Create a Novel Sensory Material. (2007) Directed by Dr. Darrell Spells. 47pp. Sensory materials that respond to chemical and mechanical stimuli are under development in many laboratories. There are many significant uses of polydiacetylene compounds as sensory material. They have been applied to drug delivery, drug design, biomolecule development, cosmetics, and national security. In this study, experiments were carried out toward the development of a novel sensory material based on the established synthetic research on polydiacetylene compounds. Synthetic routes toward sensory materials with different head groups, different carbon chains lengths, and the incorporation of molecular imprints were explored. Diacetylene moieties, which can be used for polymer vesicle formation, were prepared by two main routes. In one route, 1-iodo-1-octyne and 1-iodo-1-dodecyne were prepared as starting materials for the synthesis of two diacetylene compounds (Diacetylene I and Diacetylene II). In the other route, a mesityl alkyne was used to prepare 5-iodo-1-pentyne, which was then used to prepare a triethylamino alkyne. This in turn was used to synthesize a diacetylene (Diacetylene III). Although each diacetylene product was formed, purification by column chromatography was found to be difficult. Experiments in vesicle formation, with and without molecular imprints, were also carried out using commercially available diacetylenes . THE SYNTHESIS OF A POLYDIACETYLENE TO CREATE A NOVEL SENSORY
    [Show full text]
  • Guidance Document Peroxide-Forming Chemicals
    Guidance Document Peroxide-Forming Chemicals Some chemicals can form peroxides under normal storage conditions. Some of the peroxide chemicals are unstable, especially when dried or concentrated, and can explode violently when subjected to heat, light or mechanical shock. In addition, some of the inadvertently formed peroxides can initiate other unexpected violent reactions (e.g. polymerizations) with other chemicals. When possible and practical for your work, purchase chemicals that have inhibitors added by the manufacturer. Label peroxide-forming chemicals with date received and date opened. Store peroxide-formers in airtight opaque containers with screw caps. Consider oxygen exclusion methods such as purging with inert gas or sealing containers with parafilm. Inspect containers for signs of peroxide formation. Do not open a container which has crystals or a visible cloudiness. Call EHS to come remove it. The friction caused by opening a lid can cause an explosion. Liquids can be tested for presence of peroxide. This is especially important prior to distilation. Most explosions of peroxide forming chemicals occur when a material is distilled to dryness. Peroxide test kits are available from chemical vendors. Contact EHS for additional guidance. Classification Table for Peroxide-Forming Chemicals Class I:: Unsaturated materials, especially those of low molecular weight, may polymerize violently and hazardously due to peroxide initiation. These chemicals can spontaneously decompose, becoming explosive after exposure to air with concentration. Discard unopened containers within 3 months. Opened containers should be tested for peroxides every 2 months. Acrylic acid Tetrafluoroethylene Acrylonitrile Vinyl acetate 1,3-Butadiene Vinyl acetylene Chlorobutadiene (chloroprene) Vinyl chloride Chlorotrifluoroethylene Vinyl pyridine Methyl methacrylate Vinylidiene chloride Styrene Class II: The following chemicals are a peroxide hazard upon concentration (distillation/evaporation).
    [Show full text]
  • Chemical Reactivity of Naphthalenecarboxylate-Protected
    Article pubs.acs.org/JPCC Chemical Reactivity of Naphthalenecarboxylate-Protected Ruthenium Nanoparticles: Intraparticle Charge Delocalization Derived from Interfacial Decarboxylation † † † ‡ ‡ † ‡ Limei Chen, Peiguang Hu, Christopher P. Deming, Wei Li, Ligui Li, and Shaowei Chen*, , † Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States ‡ New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China ABSTRACT: Ruthenium nanoparticles were prepared by thermolytic reduction of RuCl3 in 1,2-propanediol containing sodium 2-naphthalenecarboxylate. Transmission electron microscopic measurements showed that the average diameter of the resulting 2- naphthalenecarboxylate-protected ruthenium nanoparticles (RuCOONA) was 1.30 ± 0.27 nm. Interestingly, hydrothermal treatment of the nanoparticles at controlled temperatures led to decarboxylation at the metal−ligand interface, and the naphthalenyl moieties became directly bonded to the metal cores, which was confirmed by infrared and X-ray photoelectron spectroscopic measurements. In comparison with the as-produced RuCOONA nanoparticles, the decarboxylated nanoparticles (RuNA) exhibited markedly different optical and electronic properties, as manifested by an apparent red shift of the photoluminescence profiles, which was ascribed to electronic coupling between the particle-bound naphthalene groups. Electrochemical measurements exhibited consistent results where a negative shift was observed of the formal potential of the particle-bound naphthalene moieties. This was attributed to intraparticle charge delocalization that led to extended spilling of nanoparticle core electrons to the naphthalene moieties. ■ INTRODUCTION Conjugated metal−ligand interfacial bonds may also be produced by exploiting the unique interfacial reactivity of Organically capped metal nanoparticles have been attracting organic ligands on nanoparticle surfaces.
    [Show full text]
  • Chromatic Studies of a Polymerizable Diacetylene Hydrogen Bonding Self-Assembly: a “Self-Folding” Process to Explain the Chromatic Changes of Polydiacetylenes
    3972 Langmuir 1999, 15, 3972-3980 Chromatic Studies of a Polymerizable Diacetylene Hydrogen Bonding Self-Assembly: A “Self-Folding” Process To Explain the Chromatic Changes of Polydiacetylenes Qun Huo, K. C. Russell,† and Roger M. Leblanc* Center for Supramolecular Science, Department of Chemistry, University of Miami, P.O. Box 249118, Coral Gables, Florida 33124 Received January 11, 1999. In Final Form: March 9, 1999 In the present study, a new diacetylene compound (PDATAZ), which readily forms a complementary hydrogen bonding self-assembly at the air-water interface or in the solid state with barbituric acid (BA) or cyanuric acid (CA), was designed and synthesized. The photopolymerization studies of PDATAZ and its assembly with BA or CA have revealed some important insights on the chromatic properties of polydiacetylenes. It was found that the chromatic property of polydiacetylenes is determined by whether the polymer chain is capable of adopting a linear chainlike shape. With the continuous increase of the length of the polymer chain, the original linear polyenyne backbone starts to “self-fold” to a “zigzag” structure due to the free rotation of single bonds within the polymer chain. The efficient π-electron delocalization along the polyenyne backbone is interrupted by this process, leading to a chromatic change from the blue to red form of polydiacetylenes. If there are strong intermolecular interactions existing between the polar groups of the side chains, such as the complementary hydrogen bonding network between the triaminotriazine (TAZ) moiety of the diacetylene amphiphile and its complementary components, the movement of the side chains is restricted and the folding process of the polymer backbone is inhibited.
    [Show full text]
  • Molecular Design and Self-Assembly of Polydiacetylene for Biosensors and Sensor Arrays
    Molecular Design and Self-assembly of Polydiacetylene for Biosensors and Sensor Arrays by Ji Seok Lee A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Macromolecular Science and Engineering) in The University of Michigan 2011 Doctoral Committee: Professor Jinsang Kim, Chair Professor L. Jay Guo Professor Kenichi Kuroda Professor David C. Martin Jiseok Lee © 2011 All Rights Reserved ACKNOWLEDGMENTS I would like to thank my advisor, Professor Jinsang Kim. He guided me with a great patience for my experimental kowledge as well as my presentation skill improvement. He has always encouraged me even when I made mistakes. I would like to give my sincere respect to Prof Kim for his generous concern. I could not have published good journals, enjoyed the research and successfully finished the doctoral program without his advice. I also would like to thank my committee members, Prof Martin, Prof Kuroda and Prof Guo. Under their guidance, I could draw a big picture of my research and train myself as a scientist not a technician. It was a great honor for me to do my research under their thoughtful guidance. I also thanks to Prof Laine and Nonna. I could finish my degree as a Macro student by his permission. Also Nonna helped me a lot for every student business. She saved me a lot of times from troubles. I would like to thank all of my lab members. It was good experience for me to work with them. The past members of the Kim’s group, Dr Kim and Dr Jo gave me a lot of advice.
    [Show full text]
  • Theoretical Studies on Hydrogen Bonding in ~--Electron Systems: a Note on the Structural Features of Diacetylene-Hydrogen Fluoride Complexes
    Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 100, No. 4, August 1988, pp. 293-295 (~) Printed in India. Theoretical studies on hydrogen bonding in ~--electron systems: A note on the structural features of diacetylene-hydrogen fluoride complexes CHITRANI MEDHI and S P BHATTACHARYYA Department of Physical Chemistry. Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India. MS received 7 December 1987; revised 27 April 1988 Abstract. Ab initio supermolecularSCF calculations at the STO-3G level are reported for the diacetylene-hydrogenfluoride complexes. The reverse ~-complex is predicted to have somewhat higher stability and H-bond"strength than the r Keywords. Ab initio supermolecular SCF calculations; intermolecular interactions; diacetylene-hydrogen fluoride complexes; hydrogen bonding in It-systems. 1. Introduction The possibility of hydrogen-bonding interaction with ~--bonded systems has attracted considerable attention in the recent years (Barnes et al 1973; McDonald et al 1980; Legon et al 1981; Andrews et al 1982a, b). Of special interest have been systems having ~'-bonds in conjugation (Baiocchi et al 1983; Andrews et al 1985; Patten and Andrews 1985). Infrared spectroscopic measurements on conjugated diene-hydrogen fluoride complexes in a solid argon matrix indicate that the HF submolecule oscillates appreciably around its average position in the complex (Patten and Andrews 1985). It points to a model in which the HF submolecule probably oscillates between the two equivalent ~'-systems in the diene. Diacetylene also has got two equivalent ~r-systems held in conjugation with the difference that the distance between the two ~r-sites is much larger, thereby reducing the probability of exchange of an HF submolecule between the two ~'-bonds.
    [Show full text]
  • Reaction of Allyl Radical with Acetylene
    石 油 学 会 誌 J. Japan Petrol. Inst., 23, (2), 133-138 (1980) 133 Reaction of Allyl Radical with Acetylene Daisuke NOHARA* and Tomoya SAKAI* The title reaction was performed at 580-740℃, employing biallyl as the source of the allyl radical. The main product of addition of allyl radical to acetylene was cyclopentadiene, and the selectivity attained was more than 90 percent of the total C5 products. Such acyclic product as 1,4-pentadiene was scarcely formed in distinct contrast with the result of the addition of allyl radical to ethylene, in which almost equal amounts of 1-pentene and cyclopentene were formed. The product distribution of the title reaction was reported, and a scheme for the product forma- tion was proposed. From the kinetic analysis, the overall activation energy of reaction for the formation of cyclopentadiene from allyl radical and acetylene was estimated. The present experiment on thermal reaction of 1. Introduction biallyl with acetylene was undertaken to examine Allyl radical has been suggested as playing the the possibility of cycloaddition of allyl radical to role of diene1) in the cyclization reaction with the triple bond. Cyclopentadiene, one of the ex- olefins to form C5-cyclic products analogous to pected C5 compounds in the present reaction, was butadiene which thermally combines with olefins formed in high selectivity, i.e., ca. 40 percent of to yield C6-cyclic compounds. In the pyrolysis all products, including the products from the thermal of ethylene2), C6-cyclic compounds were formed reaction of acetylene itself. The selectivity was mostly through the Diels-Alder reaction between formed to be as high as 60 percent, excluding the butadiene and ethylene, the butadiene being one products from the reaction of acetylene itself.
    [Show full text]
  • Microhydration and the Enhanced Acidity of Free Radicals
    molecules Article Microhydration and the Enhanced Acidity of Free Radicals John C. Walton EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews KY16 9ST, UK; [email protected]; Tel.: +44-(0)1334-463864 Received: 31 January 2018; Accepted: 14 February 2018; Published: 14 February 2018 Abstract: Recent theoretical research employing a continuum solvent model predicted that radical centers would enhance the acidity (RED-shift) of certain proton-donor molecules. Microhydration studies employing a DFT method are reported here with the aim of establishing the effect of the solvent micro-structure on the acidity of radicals with and without RED-shifts. Microhydration cluster structures were obtained for carboxyl, carboxy-ethynyl, carboxy-methyl, and hydroperoxyl radicals. The numbers of water molecules needed to induce spontaneous ionization were determined. The hydration clusters formed primarily round the CO2 units of the carboxylate-containing radicals. Only 4 or 5 water molecules were needed to induce ionization of carboxyl and carboxy-ethynyl radicals, thus corroborating their large RED-shifts. Keywords: free radicals; acidity; DFT computations; hydration 1. Introduction A transient-free radical is necessarily reactive at the site (X) of its unpaired electron (upe). In addition, a free radical with a structure containing a proton donor group may undergo ionic dissociation to a radical anion and a proton: • • − + XH2WAH! XH2WA + H in which W is a connector or spacer group, and A is the site of the departing proton. Effectively, the free radicals in this category can function as Br'nsted acids. More than 40 years ago, Hayon and Simic drew attention to the fact that free radicals could be more acidic than parent compounds [1].
    [Show full text]
  • Heriot-Watt University Benchmarking Two-Photon Absorption with CC3
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Heriot Watt Pure Heriot-Watt University Heriot-Watt University Research Gateway Benchmarking two-photon absorption with CC3 quadratic response theory, and comparison with density-functional response theory Paterson, Martin J; Christiansen, O ; Pawlowski, F ; Jorgensen, P ; Hattig, C ; Helgaker, T ; Salek, P Published in: Journal of Chemical Physics DOI: 10.1063/1.2163874 Publication date: 2006 Link to publication in Heriot-Watt Research Gateway Citation for published version (APA): Paterson, M., Christiansen, O., Pawlowski, F., Jorgensen, P., Hattig, C., Helgaker, T., & Salek, P. (2006). Benchmarking two-photon absorption with CC3 quadratic response theory, and comparison with density- functional response theory. Journal of Chemical Physics, 124(5), -. [054322]. 10.1063/1.2163874 THE JOURNAL OF CHEMICAL PHYSICS 124, 054322 ͑2006͒ Benchmarking two-photon absorption with CC3 quadratic response theory, and comparison with density-functional response theory ͒ Martin J. Patersona and Ove Christiansen Department of Chemistry, University of Århus, DK-8000 Århus C, Denmark Filip Pawłowski Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway Poul Jørgensen Department of Chemistry, University of Århus, DK-8000 Århus C, Denmark Christof Hättig Forschungszentrum Karlsruhe, Institute of Nanotechnology, P.O. Box 3640, D-76021 Karlsruhe, Germany Trygve Helgaker Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway Paweł Sałek Laboratory of Theoretical Chemistry, The Royal Institute of Technology, SE-10691 Stockholm, Sweden ͑Received 10 November 2005; accepted 9 December 2005; published online 7 February 2006͒ We present a detailed study of the effects of electron correlation on two-photon absorption calculated by coupled cluster quadratic response theory.
    [Show full text]