Functional Data Analysis • Explore Related Articles • Search Keywords Jane-Ling Wang,1 Jeng-Min Chiou,2 and Hans-Georg Muller¨ 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster Cotter, Simon and Roberts, Gareth and Stuart, Andrew and White, David 2013 MIMS EPrint: 2014.71 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 Statistical Science 2013, Vol. 28, No. 3, 424–446 DOI: 10.1214/13-STS421 c Institute of Mathematical Statistics, 2013 MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster S. L. Cotter, G. O. Roberts, A. M. Stuart and D. White Abstract. Many problems arising in applications result in the need to probe a probability distribution for functions. Examples include Bayesian nonparametric statistics and conditioned diffusion processes. Standard MCMC algorithms typically become arbitrarily slow under the mesh refinement dictated by nonparametric description of the un- known function. We describe an approach to modifying a whole range of MCMC methods, applicable whenever the target measure has density with respect to a Gaussian process or Gaussian random field reference measure, which ensures that their speed of convergence is robust under mesh refinement. Gaussian processes or random fields are fields whose marginal distri- butions, when evaluated at any finite set of N points, are RN -valued Gaussians. The algorithmic approach that we describe is applicable not only when the desired probability measure has density with respect to a Gaussian process or Gaussian random field reference measure, but also to some useful non-Gaussian reference measures constructed through random truncation. -
Intrinsic Riemannian Functional Data Analysis
Submitted to the Annals of Statistics INTRINSIC RIEMANNIAN FUNCTIONAL DATA ANALYSIS By Zhenhua Lin and Fang Yao University of California, Davis and University of Toronto In this work we develop a novel and foundational framework for analyzing general Riemannian functional data, in particular a new de- velopment of tensor Hilbert spaces along curves on a manifold. Such spaces enable us to derive Karhunen-Loève expansion for Riemannian random processes. This framework also features an approach to com- pare objects from different tensor Hilbert spaces, which paves the way for asymptotic analysis in Riemannian functional data analysis. Built upon intrinsic geometric concepts such as vector field, Levi-Civita con- nection and parallel transport on Riemannian manifolds, the devel- oped framework applies to not only Euclidean submanifolds but also manifolds without a natural ambient space. As applications of this framework, we develop intrinsic Riemannian functional principal com- ponent analysis (iRFPCA) and intrinsic Riemannian functional linear regression (iRFLR) that are distinct from their traditional and ambient counterparts. We also provide estimation procedures for iRFPCA and iRFLR, and investigate their asymptotic properties within the intrinsic geometry. Numerical performance is illustrated by simulated and real examples. 1. Introduction. Functional data analysis (FDA) advances substantially in the past two decades, as the rapid development of modern technology enables collecting more and more data continuously over time. There is rich literature spanning more than seventy years on this topic, in- cluding development on functional principal component analysis such as Rao (1958); Kleffe (1973); Dauxois, Pousse and Romain (1982); Silverman (1996); Yao, Müller and Wang (2005a); Hall and Hosseini-Nasab (2006); Zhang and Wang (2016), and advances on functional linear regression such as Yao, Müller and Wang (2005b); Hall and Horowitz (2007); Yuan and Cai (2010); Kong et al. -
A Reproducing Kernel Hilbert Space Approach to Functional Linear
The Annals of Statistics 2010, Vol. 38, No. 6, 3412–3444 DOI: 10.1214/09-AOS772 c Institute of Mathematical Statistics, 2010 A REPRODUCING KERNEL HILBERT SPACE APPROACH TO FUNCTIONAL LINEAR REGRESSION By Ming Yuan1 and T. Tony Cai2 Georgia Institute of Technology and University of Pennsylvania We study in this paper a smoothness regularization method for functional linear regression and provide a unified treatment for both the prediction and estimation problems. By developing a tool on si- multaneous diagonalization of two positive definite kernels, we obtain shaper results on the minimax rates of convergence and show that smoothness regularized estimators achieve the optimal rates of con- vergence for both prediction and estimation under conditions weaker than those for the functional principal components based methods developed in the literature. Despite the generality of the method of regularization, we show that the procedure is easily implementable. Numerical results are obtained to illustrate the merits of the method and to demonstrate the theoretical developments. 1. Introduction. Consider the following functional linear regression mod- el where the response Y is related to a square integrable random function X( ) through · (1) Y = α0 + X(t)β0(t) dt + ε. ZT Here α is the intercept, is the domain of X( ), β ( ) is an unknown slope 0 T · 0 · function and ε is a centered noise random variable. The domain is assumed T to be a compact subset of an Euclidean space. Our goal is to estimate α0 arXiv:1211.2607v1 [math.ST] 12 Nov 2012 Received March 2009; revised November 2009. 1Supported in part by NSF Grant DMS-MPSA-0624841 and NSF CAREER Award DMS-0846234. -
Mixture Inner Product Spaces and Their Application to Functional Data Analysis
MIXTURE INNER PRODUCT SPACES AND THEIR APPLICATION TO FUNCTIONAL DATA ANALYSIS Zhenhua Lin1, Hans-Georg Muller¨ 2 and Fang Yao1;3 Abstract We introduce the concept of mixture inner product spaces associated with a given separable Hilbert space, which feature an infinite-dimensional mixture of finite-dimensional vector spaces and are dense in the underlying Hilbert space. Any Hilbert valued random element can be arbi- trarily closely approximated by mixture inner product space valued random elements. While this concept can be applied to data in any infinite-dimensional Hilbert space, the case of functional data that are random elements in the L2 space of square integrable functions is of special interest. For functional data, mixture inner product spaces provide a new perspective, where each realiza- tion of the underlying stochastic process falls into one of the component spaces and is represented by a finite number of basis functions, the number of which corresponds to the dimension of the component space. In the mixture representation of functional data, the number of included mix- ture components used to represent a given random element in L2 is specifically adapted to each random trajectory and may be arbitrarily large. Key benefits of this novel approach are, first, that it provides a new perspective on the construction of a probability density in function space under mild regularity conditions, and second, that individual trajectories possess a trajectory-specific dimension that corresponds to a latent random variable, making it possible to use a larger num- ber of components for less smooth and a smaller number for smoother trajectories. -
Perturbations of Operators with Application to Testing Equality of Covariance Operators
Perturbations of Operators with Application to Testing Equality of Covariance Operators. by Krishna Kaphle, M.S. A Dissertation In Mathematics and Statistics Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philoshopy Approved Frits H. Ruymgaart Linda J. Allen Petros Hadjicostas Peggy Gordon Miller Interim Dean of the Graduate School August, 2011 c 2011, Krishna Kaphle Texas Tech University, Krishna Kaphle, August-2011 ACKNOWLEDGEMENTS This dissertation would not have been possible without continuous support of my advisor Horn Professor Dr. Firts H. Ruymgaart. I am heartily thankful to Dr. Ruym- gaart for his encouragement, and supervision from the research problem identification to the present level of my dissertation research. His continuous supervision enabled me not only to bring my dissertation in this stage but also to develop an understand- ing of the subject. I am lucky to have a great person like him as my advisor. I am grateful to Horn. Professor Dr. Linda J. Allen for her help throughout my stay at Texas Tech. I would also like to thank Dr. Petros Hadjicostas for encouragement and several valuable remarks during my research. I am also heartily thankful to Dr. David Gilliam for his support and help on writing Matlab code. I am pleased to thank those who made this dissertation possible. Among those, very important people are Dr. Kent Pearce, chair, Dr. Ram Iyer, graduate advisor, and all the staffs of Department of Mathematics and Statistics, who gave me the moral, financial, and technological supports required during my study. -
JOINT MEASURES and CROSS-COVARIANCE OPERATORS(L)
TRANSACTIONSOF THE AMERICANMATHEMATICAL SOCIETY Volume 186, December 1973 JOINT MEASURESAND CROSS-COVARIANCE OPERATORS(l) BY CHARLESR. BAKER ABSTRACT. Let H. (resp., H ) be a real and separable Hubert space with Borel O'field T (resp., rj, and let (H. X //-, T, X T.) be the product measurable space generated by the measurable rectangles. This paper develops relations between probability measures on (H. x H , V x T.), i.e., joint measures, and the projections of such measures on (H., T.) and (H , Y ). In particular, the class of all joint Gaussian measures having two specified Gaussian measures as projections is characterized, and conditions are ob- tained for two joint Gaussian measures to be mutually absolutely continuous. The cross-covariance operator of a joint measure plays a major role in these results and these operators are characterized. Introduction. Let H. (resp., A7 ) be a real and separable Hubert space with inner product (•, *)j (resp.,(', -)2) and Borel o-field Tj (resp., TJ. Let Tj x T denote the o-field generated by the measurable rectangles AxB,A£rj,B£ I"^. Define H. x //, = {(u, v): u in H., v in H A. f/j x H is a real linear space, with addition and scalar multiplication defined by (u, v) + (z, y) = (u + z, v + y) and k(u, v) = (ka, k\). H. x H2 is a separable Hubert space under the inner product [•, •] defined by [(u, v), (t, z)] = (u, t)j + (v, z)2; moreover, the open sets under the norm obtained from this inner product generate Tj x T2 [10]. -
Sampled Forms of Functional PCA in Reproducing Kernel Hilbert Spaces.” DOI:10.1214/ 12-AOS1033SUPP
The Annals of Statistics 2012, Vol. 40, No. 5, 2483–2510 DOI: 10.1214/12-AOS1033 c Institute of Mathematical Statistics, 2012 SAMPLED FORMS OF FUNCTIONAL PCA IN REPRODUCING KERNEL HILBERT SPACES By Arash A. Amini and Martin J. Wainwright1 University of California, Berkeley We consider the sampling problem for functional PCA (fPCA), where the simplest example is the case of taking time samples of the underlying functional components. More generally, we model the sampling operation as a continuous linear map from H to Rm, where the functional components to lie in some Hilbert subspace H of L2, such as a reproducing kernel Hilbert space of smooth functions. This model includes time and frequency sampling as special cases. In con- trast to classical approach in fPCA in which access to entire functions is assumed, having a limited number m of functional samples places limitations on the performance of statistical procedures. We study these effects by analyzing the rate of convergence of an M-estimator for the subspace spanned by the leading components in a multi-spiked covariance model. The estimator takes the form of regularized PCA, and hence is computationally attractive. We analyze the behavior of this estimator within a nonasymptotic framework, and provide bounds that hold with high probability as a function of the number of statistical samples n and the number of functional samples m. We also derive lower bounds showing that the rates obtained are minimax optimal. 1. Introduction. The statistical analysis of functional data, commonly referred to as functional data analysis (FDA), is an established area of statis- tics with a great number of practical applications; see the books [26, 27] and references therein for various examples. -
Intrinsic Riemannian Functional Data Analysis
The Annals of Statistics 2019 Vol. 47, No. 6, 3533{3577 DOI: 10.1214/18-AOS1787 © Institute of Mathematical Statistics, 2019 INTRINSIC RIEMANNIAN FUNCTIONAL DATA ANALYSIS By Zhenhua Lin† and Fang Yao∗,‡ National University of Singapore† and Peking University‡ In this work we develop a novel and foundational framework for analyzing general Riemannian functional data, in particular a new de- velopment of tensor Hilbert spaces along curves on a manifold. Such spaces enable us to derive Karhunen{Lo`eve expansion for Riemannian random processes. This framework also features an approach to com- pare objects from different tensor Hilbert spaces, which paves the way for asymptotic analysis in Riemannian functional data analysis. Built upon intrinsic geometric concepts such as vector field, Levi{Civita connection and parallel transport on Riemannian manifolds, the de- veloped framework applies to not only Euclidean submanifolds but also manifolds without a natural ambient space. As applications of this framework, we develop intrinsic Riemannian functional principal component analysis (iRFPCA) and intrinsic Riemannian functional linear regression (iRFLR) that are distinct from their traditional and ambient counterparts. We also provide estimation procedures for iRF- PCA and iRFLR, and investigate their asymptotic properties within the intrinsic geometry. Numerical performance is illustrated by sim- ulated and real examples. 1. Introduction. Functional data analysis (FDA) advances substan- tially in the past two decades, as the rapid development of modern technol- ogy enables collecting more and more data continuously over time. There Received October 2017; revised October 2018. ∗Fang Yao's research is partially supported by National Natural Science Foundation of China Grant 11871080, a Discipline Construction Fund at Peking University and Key Laboratory of Mathematical Economics and Quantitative Finance (Peking Univer- sity), Ministry of Education. -
Data Representation from Finite to Infinite-Dimensional Settings
From Covariance Matrices to Covariance Operators Data Representation from Finite to Infinite-Dimensional Settings Ha` Quang Minh Pattern Analysis and Computer Vision (PAVIS) Istituto Italiano di Tecnologia, ITALY November 30, 2017 H.Q. Minh (IIT) Covariance matrices & covariance operators November 30, 2017 1 / 99 Acknowledgement Collaborators Marco San Biagio Vittorio Murino H.Q. Minh (IIT) Covariance matrices & covariance operators November 30, 2017 2 / 99 From finite to infinite dimensions H.Q. Minh (IIT) Covariance matrices & covariance operators November 30, 2017 3 / 99 Part I - Outline Finite-dimensional setting Covariance Matrices and Applications 1 Data Representation by Covariance Matrices 2 Geometry of SPD matrices 3 Machine Learning Methods on Covariance Matrices and Applications in Computer Vision H.Q. Minh (IIT) Covariance matrices & covariance operators November 30, 2017 4 / 99 Part II - Outline Infinite-dimensional setting Covariance Operators and Applications 1 Data Representation by Covariance Operators 2 Geometry of Covariance Operators 3 Machine Learning Methods on Covariance Operators and Applications in Computer Vision H.Q. Minh (IIT) Covariance matrices & covariance operators November 30, 2017 5 / 99 From finite to infinite-dimensional settings H.Q. Minh (IIT) Covariance matrices & covariance operators November 30, 2017 6 / 99 Part II - Outline Infinite-dimensional setting Covariance Operators and Applications 1 Data Representation by Covariance Operators 2 Geometry of Covariance Operators 3 Machine Learning Methods on Covariance -
Sparse Estimation for Functional Semiparametric Additive Models Peijun Sang, Richard A
Journal of Multivariate Analysis 168 (2018) 105–118 Contents lists available at ScienceDirect Journal of Multivariate Analysis journal homepage: www.elsevier.com/locate/jmva Sparse estimation for functional semiparametric additive models Peijun Sang, Richard A. Lockhart, Jiguo Cao * Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada V5A1S6 article info a b s t r a c t Article history: We propose a functional semiparametric additive model for the effects of a functional Received 5 January 2018 covariate and several scalar covariates and a scalar response. The effect of the functional Available online 11 July 2018 covariate is modeled nonparametrically, while a linear form is adopted to model the effects of the scalar covariates. This strategy can enhance flexibility in modeling the effect of MSC: the functional covariate and maintain interpretability for the effects of scalar covariates 62G08 simultaneously. We develop the method for estimating the functional semiparametric Keywords: additive model by smoothing and selecting non-vanishing components for the functional Functional data analysis covariate. Asymptotic properties of our method are also established. Two simulation Functional linear model studies are implemented to compare our method with various conventional methods. We Functional principal component analysis demonstrate our method with two real applications. Crown Copyright ' 2018 Published by Elsevier Inc. All rights reserved. 1. Introduction High-dimensional data sets of large volume and complex structure are rapidly emerging in various fields. Functional data analysis, due to its great flexibility and wide applications in dealing with high-dimensional data, has received considerable attention. One important problem in functional data analysis is functional linear regression (FLR). -
Karhunen-Lo\Eve Decomposition of Gaussian Measures on Banach
KARHUNEN-LOEVE` DECOMPOSITION OF GAUSSIAN MEASURES ON BANACH SPACES XAVIER BAY AND JEAN-CHARLES CROIX Abstract. The study of Gaussian measures on Banach spaces is of active in- terest both in pure and applied mathematics. In particular, the spectral theo- rem for self-adjoint compact operators on Hilbert spaces provides a canonical decomposition of Gaussian measures on Hilbert spaces, the so-called Karhunen- Lo`eve expansion. In this paper, we extend this result to Gaussian measures on Banach spaces in a very similar and constructive manner. In some sense, this can also be seen as a generalization of the spectral theorem for covariance operators associated to Gaussian measures on Banach spaces. In the special case of the standard Wiener measure, this decomposition matches with Paul L´evy’s construction of Brownian motion. 1. Preliminaries on Gaussian measures Let us first remind a few properties of Gaussian measures on Banach spaces. Our terminology and notations are essentially taken from [2] (alternative presentations can be found in [7], [15] or [5]). In this work, we consider a separable Banach space X, equipped with its Borel σ-algebra (X). Note that every probability measure on (X, (X)) is Radon and that BorelB and cylindrical σ-algebras are equal in this setting.B A probability measure γ on (X, (X)) is Gaussian if and only if for all f X∗ (the topological dual space of X), theB pushforward measure γ f −1 (of γ through∈ f) is a Gaussian measure on (R, (R)). Here, we only consider◦ the case γ centered for simplicity (the general caseB being obtained through a translation). -
Topics in Functional Data Analysis and Machine Learning Predictive Inference
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Topics in functional data analysis and machine learning predictive inference Haozhe Zhang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Statistics and Probability Commons Recommended Citation Zhang, Haozhe, "Topics in functional data analysis and machine learning predictive inference" (2019). Graduate Theses and Dissertations. 17626. https://lib.dr.iastate.edu/etd/17626 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Topics in functional data analysis and machine learning predictive inference by Haozhe Zhang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Statistics Program of Study Committee: Yehua Li, Co-major Professor Dan Nettleton, Co-major Professor Ulrike Genschel Lily Wang Zhengyuan Zhu The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright c Haozhe Zhang, 2019. All rights reserved. ii DEDICATION I would like to dedicate this dissertation to my parents, Baiming Zhang and Jiany- ing Fan, and my significant other, Shuyi Zhang, for their endless love and unwavering support.