PARK15) in Neurons

Total Page:16

File Type:pdf, Size:1020Kb

PARK15) in Neurons Functional analysis of the parkinsonism-associated protein FBXO7 (PARK15) in neurons Ph.D. Thesis in partial fulfillment of the requirements for the award of the degree "Doctor rerum naturalium" in the Neuroscience Program at the Georg-August-Universität Göttingen Faculty of Biology Submitted by Guergana Ivanova Dontcheva born in Gabrovo, Bulgaria Aachen 2017 Functional analysis of the parkinsonism-associated protein FBXO7 (PARK15) in neurons Ph.D. Thesis in partial fulfillment of the requirements for the award of the degree "Doctor rerum naturalium" in the Neuroscience Program at the Georg-August-Universität Göttingen Faculty of Biology Submitted by Guergana Ivanova Dontcheva born in Gabrovo, Bulgaria Aachen 2017 Members of the Thesis Committee: P.D. Dr. Judith Stegmüller, Reviewer Department of Cellular and Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany Department of Neurology, University Hospital, RWTH Aachen, Germany Prof. Dr. Anastassia Stoykova, Reviewer Department of Molecular Developmental Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany Prof. Dr. Nils Brose Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany Date of submission: 03 May, 2017 Date of oral examination: 23 June, 2017 Affidavit I hereby declare that this Ph.D. Thesis entitled "Functional analysis of the parkinsonism-associated protein FBXO7 (PARK15) in neurons" has been written independently with no external sources or aids other than quoted. Guergana Dontcheva April 2017 Aachen, Germany Table of Contents Table of Contents ................................................................................................................................................................. i List of Figures ...................................................................................................................................................................... iii List of Tables........................................................................................................................................................................ iv Abstract................................................................................................................................................................................. 5 1. Introduction.................................................................................................................................................. 6 1.1. Parkinson's Disease..................................................................................................................................... 6 1.2. The Parkinsonian pyramidal syndrome ................................................................................................... 7 1.3. Fbxo7 and FBXO7......................................................................................................................................... 9 1.3.1. FBXO7 functions in cell cycle and proteostasis...................................................................................... 9 1.3.2. Function of FBXO7 in proteasomal stability .........................................................................................12 1.3.3. Functions of FBXO7 in mitophagy: the PINK1, Parkin and FBXO7 interaction ...............................13 1.4. The Cytoskeleton: stability and dynamics.............................................................................................15 1.4.1. The MAP1B family .....................................................................................................................................16 1.4.2. The role of MAP1B LC1 in microtubular transport..............................................................................17 1.4.3. The Mitochondria-UPS relationship in neurodegenerative disorders.............................................18 1.5. Aim of the study ........................................................................................................................................19 2. Materials and Methods ............................................................................................................................20 2.1. Materials .....................................................................................................................................................20 2.1.1. Laboratory Equipment .............................................................................................................................20 2.1.2. Reagents, Chemicals and Kits..................................................................................................................20 2.1.3. Antibodies...................................................................................................................................................21 2.1.4. Enzymes ......................................................................................................................................................22 2.1.5. Solutions, Media and Buffers ..................................................................................................................23 2.2. Methods......................................................................................................................................................25 2.2.1. Molecular cloning......................................................................................................................................25 i. Molecular cloning of the MAP1S LC expression plasmids ................................................................ 25 ii. Bacterial transformation, inoculation and plasmid verification ....................................................... 27 iii. Molecular cloning of vector-based RNA interference oligonucleotides .......................................... 28 2.2.2. Immortalized cell lines maintenance and transfection ......................................................................29 i. HEK 293T cells passaging: ................................................................................................................. 29 ii. HEK 293T cell transfection: ............................................................................................................... 29 iii. SH-SY5Y cells passaging:.................................................................................................................... 29 iv. SH-SY5Y transfection:........................................................................................................................ 30 2.2.3. Primary cortical cell culture generation, maintenance and transfection .......................................30 i. Primary cortical culture generation .................................................................................................. 30 ii. Primary cortical culture transfection ................................................................................................ 31 2.2.4. Immunocytochemistry .............................................................................................................................31 2.2.5. Axonal and total dendritic length analysis............................................................................................31 2.2.6. Biochemical Methods ...............................................................................................................................32 i. Cell lysis ............................................................................................................................................. 32 ii. Protein concentration determination............................................................................................... 32 iii. Co-immunoprecipitation................................................................................................................... 32 iv. Ubiquitination assay/ Interaction strength assay ............................................................................. 33 v. Quantitative mass spectrometry sample preparation ..................................................................... 33 vi. SDS-PAGE and Western Blotting ....................................................................................................... 34 i fl/fl 2.2.7. NEX-Cre;Fbxo7 mouse line generation and genotyping ................................................................35 i. Generation of NEX-Cre;Fbxo7fl/fl transgenic mice ............................................................................ 35 ii. Isolation of genomic DNA ................................................................................................................. 35 iii. Genotyping........................................................................................................................................ 36 2.2.8. Immunohistochemistry ............................................................................................................................37 i. Transcardial perfusion and fixation of mouse brains ....................................................................... 37 ii. Post-fixation paraffin embedding and sectioning............................................................................. 37 iii. Deparaffinization, rehydration and antigen retrie val....................................................................... 38 iv. Immunohistological staining of tissues embedded in paraffin......................................................... 38 v. Nuclear
Recommended publications
  • PINK1, Parkin, and DJ-1 Mutations in Italian Patients with Early-Onset Parkinsonism
    European Journal of Human Genetics (2005) 13, 1086–1093 & 2005 Nature Publishing Group All rights reserved 1018-4813/05 $30.00 www.nature.com/ejhg ARTICLE PINK1, Parkin, and DJ-1 mutations in Italian patients with early-onset parkinsonism Christine Klein*,1,2,9, Ana Djarmati1,2,3,9, Katja Hedrich1,2, Nora Scha¨fer1,2, Cesa Scaglione4, Roberta Marchese5, Norman Kock1,2, Birgitt Schu¨le1,2, Anja Hiller1, Thora Lohnau1,2, Susen Winkler1,2, Karin Wiegers1,2, Robert Hering6, Peter Bauer6, Olaf Riess6, Giovanni Abbruzzese5, Paolo Martinelli4 and Peter P Pramstaller7,8 1Department of Neurology, University of Lu¨beck, Lu¨beck, Germany; 2Department of Human Genetics, University of Lu¨beck, Lu¨beck, Germany; 3Faculty of Biology, University of Belgrade, Belgrade, Serbia; 4Institute of Neurology, University of Bologna, Bologna, Italy; 5Department of Neurology, University of Genova, Genova, Italy; 6Department of Medical Genetics, University of Tu¨bingen, Tu¨bingen, Germany; 7Department of Neurology, General Regional Hospital, Bolzano-Bozen, Italy; 8Department of Genetic Medicine, EURAC-Research, Bolzano-Bozen, Italy Recessively inherited early-onset parkinsonism (EOP) has been associated with mutations in the Parkin, DJ-1, and PINK1 genes. We studied the prevalence of mutations in all three genes in 65 Italian patients (mean age of onset: 43.275.4 years, 62 sporadic, three familial), selected by age at onset equal or younger than 51 years. Clinical features were compatible with idiopathic Parkinson’s disease in all cases. To detect small sequence alterations in Parkin, DJ-1, and PINK1, we performed a conventional mutational analysis (SSCP/ dHPLC/sequencing) of all coding exons of these genes.
    [Show full text]
  • REPORT Genome-Wide Linkage Analysis of a Parkinsonian-Pyramidal Syndrome Pedigree by 500 K SNP Arrays
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REPORT Genome-wide Linkage Analysis of a Parkinsonian-Pyramidal Syndrome Pedigree by 500 K SNP Arrays Seyedmehdi Shojaee,1 Farzad Sina,4 Setareh Sadat Banihosseini,5 Mohammad Hossein Kazemi,5 Reza Kalhor,6 Gholam-Ali Shahidi,4 Hossein Fakhrai-Rad,7 Mostafa Ronaghi,7 and Elahe Elahi2,3,* Robust SNP genotyping technologies and data analysis programs have encouraged researchers in recent years to use SNPs for linkage studies. Platforms used to date have been 10 K chip arrays, but the possible value of interrogating SNPs at higher densities has been con- sidered. Here, we present a genome-wide linkage analysis by means of a 500 K SNP platform. The analysis was done on a large pedigree affected with Parkinsonian-pyramidal syndrome (PPS), and the results showed linkage to chromosome 22. Sequencing of candidate genes revealed a disease-associated homozygous variation (R378G) in FBXO7. FBXO7 codes for a member of the F-box family of proteins, all of which may have a role in the ubiquitin-proteosome protein-degradation pathway. This pathway has been implicated in various neurodegenerative diseases, and identification of FBXO7 as the causative gene of PPS is expected to shed new light on its role. The per- formance of the array was assessed and systematic analysis of effects of SNP density reduction was performed with the real experimental data. Our results suggest that linkage in our pedigree may have been missed had we used chips containing less than 100,000 SNPs across the genome.
    [Show full text]
  • Genes Implicated in Familial Parkinson's Disease Provide a Dual
    International Journal of Molecular Sciences Review Genes Implicated in Familial Parkinson’s Disease Provide a Dual Picture of Nigral Dopaminergic Neurodegeneration with Mitochondria Taking Center Stage Rafael Franco 1,2,† , Rafael Rivas-Santisteban 1,2,† , Gemma Navarro 2,3,† , Annalisa Pinna 4,*,† and Irene Reyes-Resina 1,†,‡ 1 Department Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain; [email protected] (R.F.); [email protected] (R.R.-S.); [email protected] (I.R.-R.) 2 Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, 28031 Madrid, Spain; [email protected] 3 Department Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain 4 National Research Council of Italy (CNR), Neuroscience Institute–Cagliari, Cittadella Universitaria, Blocco A, SP 8, Km 0.700, 09042 Monserrato (CA), Italy * Correspondence: [email protected] † These authors contributed equally to this work. ‡ Current address: RG Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr 6, 39118 Magdeburg, Germany. Abstract: The mechanism of nigral dopaminergic neuronal degeneration in Parkinson’s disease (PD) Citation: Franco, R.; Rivas- is unknown. One of the pathological characteristics of the disease is the deposition of α-synuclein Santisteban, R.; Navarro, G.; Pinna, (α-syn) that occurs in the brain from both familial and sporadic PD patients. This paper constitutes a A.; Reyes-Resina, I. Genes Implicated narrative review that takes advantage of information related to genes (SNCA, LRRK2, GBA, UCHL1, in Familial Parkinson’s Disease VPS35, PRKN, PINK1, ATP13A2, PLA2G6, DNAJC6, SYNJ1, DJ-1/PARK7 and FBXO7) involved in Provide a Dual Picture of Nigral familial cases of Parkinson’s disease (PD) to explore their usefulness in deciphering the origin of Dopaminergic Neurodegeneration dopaminergic denervation in many types of PD.
    [Show full text]
  • A Genome-Wide Screen in Mice to Identify Cell-Extrinsic Regulators of Pulmonary Metastatic Colonisation
    FEATURED ARTICLE MUTANT SCREEN REPORT A Genome-Wide Screen in Mice To Identify Cell-Extrinsic Regulators of Pulmonary Metastatic Colonisation Louise van der Weyden,1 Agnieszka Swiatkowska, Vivek Iyer, Anneliese O. Speak, and David J. Adams Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom ORCID IDs: 0000-0002-0645-1879 (L.v.d.W.); 0000-0003-4890-4685 (A.O.S.); 0000-0001-9490-0306 (D.J.A.) ABSTRACT Metastatic colonization, whereby a disseminated tumor cell is able to survive and proliferate at a KEYWORDS secondary site, involves both tumor cell-intrinsic and -extrinsic factors. To identify tumor cell-extrinsic metastasis (microenvironmental) factors that regulate the ability of metastatic tumor cells to effectively colonize a metastatic tissue, we performed a genome-wide screen utilizing the experimental metastasis assay on mutant mice. colonisation Mutant and wildtype (control) mice were tail vein-dosed with murine metastatic melanoma B16-F10 cells and microenvironment 10 days later the number of pulmonary metastatic colonies were counted. Of the 1,300 genes/genetic B16-F10 locations (1,344 alleles) assessed in the screen 34 genes were determined to significantly regulate pulmonary lung metastatic colonization (15 increased and 19 decreased; P , 0.005 and genotype effect ,-55 or .+55). mutant While several of these genes have known roles in immune system regulation (Bach2, Cyba, Cybb, Cybc1, Id2, mouse Igh-6, Irf1, Irf7, Ncf1, Ncf2, Ncf4 and Pik3cg) most are involved in a disparate range of biological processes, ranging from ubiquitination (Herc1) to diphthamide synthesis (Dph6) to Rho GTPase-activation (Arhgap30 and Fgd4), with no previous reports of a role in the regulation of metastasis.
    [Show full text]
  • Mitochondrial Quality Control Beyond PINK1/Parkin
    www.impactjournals.com/oncotarget/ Oncotarget, 2018, Vol. 9, (No. 16), pp: 12550-12551 Editorial Mitochondrial quality control beyond PINK1/Parkin Sophia von Stockum, Elena Marchesan and Elena Ziviani Neurons strictly rely on proper mitochondrial E3 ubiquitin ligase Parkin to depolarized mitochondria, function and turnover. They possess a high energy where it ubiquitinates several target proteins on the requirement which is mostly fueled by mitochondrial outer mitochondrial membrane (OMM) leading to their oxidative phosphorylation. Moreover the unique proteasomal degradation and serving as a signal to recruit morphology of neurons implies that mitochondria need the autophagic machinery [1] (Figure 1, upper left corner). to be transported along the axons to sites of high energy A large number of studies on PINK1/Parkin mitophagy are demand. Finally, due to the non-dividing state of neurons, based on treatment of cell lines with the uncoupler CCCP cellular mitosis cannot dilute dysfunctional mitochondria, collapsing the mitochondrial membrane potential (ΔΨm), which can produce harmful by-products such as reactive as well as overexpression of Parkin, conditions that are far oxygen species (ROS) and thus a functioning mechanism from physiological [1]. Furthermore, Parkin translocation of quality control (QC) is essential. The critical impact of to mitochondria in neuronal cells occurs only under certain mitochondria on neuronal function and viability explains stimuli and is much slower, possibly due to their metabolic their involvement in several neurodegenerative diseases state and low endogenous Parkin expression [2]. Thus, in such as Parkinson’s disease (PD) [1]. recent years several studies have highlighted pathways Mitophagy, a selective form of autophagy, is of mitophagy induction that are independent of PINK1 employed by cells to degrade dysfunctional mitochondria and/or Parkin and could act in parallel or addition to the in order to maintain a healthy mitochondrial network, latter.
    [Show full text]
  • S Disease Genes Parkin, PINK1, DJ1: Mdsgene Systematic Review
    REVIEW Genotype-Phenotype Relations for the Parkinson’s Disease Genes Parkin, PINK1, DJ1: MDSGene Systematic Review Meike Kasten, MD,1,2 Corinna Hartmann, MD,1 Jennie Hampf, MD,1 Susen Schaake, BSc,1 Ana Westenberger, PhD,1 Eva-Juliane Vollstedt, MD,1 Alexander Balck, MD,1 Aloysius Domingo, MD, PhD,1 Franca Vulinovic, PhD,1 Marija Dulovic, MD, PhD,1 Ingo Zorn,3 Harutyun Madoev,1 Hanna Zehnle,1 Christina M. Lembeck, BSc,1 Leopold Schawe, BSc,1 Jennifer Reginold, BSc,4 Jana Huang, BHS,4 Inke R. Konig,€ PhD,5 Lars Bertram, MD,3,6 Connie Marras, MD, PhD,4 Katja Lohmann, PhD,1 Christina M. Lill, MD, MSc,1 and Christine Klein, MD1* 1Institute of Neurogenetics, University of Lubeck,€ Lubeck,€ Germany 2Department of Psychiatry and Psychotherapy, University of Lubeck,€ Lubeck,€ Germany 3Lubeck€ Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics & Integrative and Experimental Genomics, University of Lubeck,€ Lubeck,€ Germany 4The Morton and Gloria Shulman Movement Disorders Centre and the Edmond J Safra Program in Parkinson’s Disease, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada 5Institute of Medical Biometry and Statistics, University of Lubeck,€ Lubeck,€ Germany 6School of Public Health, Faculty of Medicine, Imperial College London, London, UK ABSTRACT: This first comprehensive MDSGene early onset (median age at onset of ~30 years for car- review is devoted to the 3 autosomal recessive Parkin- riers of at least 2 mutations in any of the 3 genes) of an son’s disease forms: PARK-Parkin, PARK-PINK1, and overall clinically typical form of PD with excellent treat- PARK-DJ1.
    [Show full text]
  • FBXO7 Sensitivity of Phenotypic Traits Elucidated by a Hypomorphic Allele
    Edinburgh Research Explorer FBXO7 sensitivity of phenotypic traits elucidated by a hypomorphic allele Citation for published version: Ballesteros Reviriego, C, Clare, S, Arends, M, Cambridge, EL, Swiatkowska, A, Caetano, S, Abu-Helil, B, Kane, L, Harcourt, K, Goulding, D, Gleeson, D, Ryder, E, Doe, B, White, JK, van der Weyden, L, Dougan, G, Adams, DJ & Speak, AO 2019, 'FBXO7 sensitivity of phenotypic traits elucidated by a hypomorphic allele', PLoS ONE, vol. 14, no. 3. https://doi.org/10.1371/journal.pone.0212481 Digital Object Identifier (DOI): 10.1371/journal.pone.0212481 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: PLoS ONE General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 RESEARCH ARTICLE FBXO7 sensitivity of phenotypic traits elucidated by a hypomorphic allele Carmen Ballesteros Reviriego1, Simon Clare1, Mark J. Arends2, Emma L. Cambridge1, Agnieszka Swiatkowska1, Susana Caetano1, Bushra Abu-Helil1, Leanne Kane1, Katherine Harcourt1, David A. Goulding1, Diane Gleeson1, Edward Ryder1, Brendan Doe1, Jacqueline K.
    [Show full text]
  • Myelinating Glia-Specific Deletion of Fbxo7 in Mice Triggers Axonal Degeneration in the Central Nervous System Together with Peripheral Neuropathy
    5606 • The Journal of Neuroscience, July 10, 2019 • 39(28):5606–5626 Neurobiology of Disease Myelinating Glia-Specific Deletion of Fbxo7 in Mice Triggers Axonal Degeneration in the Central Nervous System Together with Peripheral Neuropathy Sabitha Joseph,1 Siv Vingill,2 XOlaf Jahn,3 Robert Fledrich,4 XHauke B. Werner,5 XIstvan Katona,6 XWiebke Mo¨bius,7 Misˇo Mitkovski,8 Yuhao Huang,1 Joachim Weis,6 Michael W. Sereda,9 XJo¨rg B. Schulz,1,10,11 XKlaus-Armin Nave,5 and X Judith Stegmu¨ller1,11 1Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany, 2Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3QX, United Kingdom, 3Proteomics Group, Max Planck Institute of Experimental Medicine, 37075 Go¨ttingen, Germany, 4Institute of Anatomy, Department of Neuropathology, University Hospital Leipzig, 04103 Leipzig, Germany, 5Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Go¨ttingen, Germany, 6Department of Neuropathology, RWTH University Hospital, 52074 Aachen, Germany, 7Electron Microscopy Facility, Max Planck Institute of Experimental Medicine, 37075 Go¨ttingen, Germany, 8Light Microscopy Facility, Max Planck Institute of Experimental Medicine, 37075 Go¨ttingen, Germany, 9Molecular and Translational Neurology, Max Planck Institute of Experimental Medicine, 37075 Go¨ttingen, Germany, 10JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Ju¨lich GmbH and RWTH Aachen University, 52074 Aachen, Germany, and 11Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, 52074 Aachen, Germany Myelination of axons facilitates the rapid propagation of electrical signals and the long-term integrity of axons. The ubiquitin- proteasome system is essential for proper protein homeostasis, which is particularly crucial for interactions of postmitotic cells.
    [Show full text]
  • PINK1 Content in Mitochondria Is Regulated by ER-Associated Degradation
    Research Articles: Cellular/Molecular PINK1 Content in Mitochondria is Regulated by ER-Associated Degradation https://doi.org/10.1523/JNEUROSCI.1691-18.2019 Cite as: J. Neurosci 2019; 10.1523/JNEUROSCI.1691-18.2019 Received: 5 July 2018 Revised: 14 June 2019 Accepted: 6 July 2019 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2019 the authors ͳ PINK1 Content in Mitochondria is Regulated by ER-Associated ʹ Degradation ͵ Ͷ Cristina Guardia-Laguarta1,3,7, Yuhui Liu1,3,7, Knut H. Lauritzen1,3,6, Hediye Erdjument- ͷ Bromage4, Brittany Martin1,3, Theresa C. Swayne8, Xuejun Jiang5 and Serge ͸ Przedborski1,2,3,8,* ͹ ͺ Departments of 1Pathology & Cell Biology, 2Neurology and 3the Center for Motor Neuron ͻ Biology and Diseases, and 8Herbert Irving Comprehensive Cancer Center, Columbia ͳͲ University, New York, NY 10032. 4Department of Cell Biology, New York University School of ͳͳ Medicine, New York, NY 10016. 5Program in Cell Biology, Memorial Sloan Kettering Cancer ͳʹ Center, New York, NY 10065. 6Institute of Basic Medical Science, University of Oslo, Norway. ͳ͵ 7These authors contributed equally ͳͶ 8 Lead contact ͳͷ * Correspondence should be addressed to Dr. Serge Przedborski, Room P&S 5-420, ͳ͸ Columbia University Medical Center, 630 West 168 Street, New York, NY 10032, USA.
    [Show full text]
  • Functional Characterization of Novel Rhot1 Variants, Which Are Associated with Parkinson’S Disease
    FUNCTIONAL CHARACTERIZATION OF NOVEL RHOT1 VARIANTS, WHICH ARE ASSOCIATED WITH PARKINSON’S DISEASE DISSERTATION zur Erlangung des Grades eines DOKTORS DER NATURWISSENSCHAFTEN DER MATHEMATISCH-NATURWISSENSCHAFTLICHEN FAKULTÄT und DER MEDIZINISCHEN FAKULTÄT DER EBERHARD-KARLS-UNIVERSITÄT TÜBINGEN vorgelegt von DAJANA GROßMANN aus Wismar, Deutschland Mai 2016 II PhD-FSTC-2016-15 The Faculty of Sciences, Technology and Communication The Faculty of Science and Medicine and The Graduate Training Centre of Neuroscience DISSERTATION Defense held on 13/05/2016 in Luxembourg to obtain the degree of DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN BIOLOGIE AND DOKTOR DER EBERHARD-KARLS-UNIVERISTÄT TÜBINGEN IN NATURWISSENSCHAFTEN by Dajana GROßMANN Born on 14 August 1985 in Wismar (Germany) FUNCTIONAL CHARACTERIZATION OF NOVEL RHOT1 VARIANTS, WHICH ARE ASSOCIATED WITH PARKINSON’S DISEASE. III IV Date of oral exam: 13th of May 2016 President of the University of Tübingen: Prof. Dr. Bernd Engler …………………………………… Chairmen of the Doctorate Board of the University of Tübingen: Prof. Dr. Bernd Wissinger …………………………………… Dekan der Math.-Nat. Fakultät: Prof. Dr. W. Rosenstiel …………………………………… Dekan der Medizinischen Fakultät: Prof. Dr. I. B. Autenrieth .................................................. President of the University of Luxembourg: Prof. Dr. Rainer Klump …………………………………… Supervisor from Luxembourg: Prof. Dr. Rejko Krüger …………………………………… Supervisor from Tübingen: Prof. Dr. Olaf Rieß …………………………………… Dissertation Defence Committee: Committee members: Dr. Alexander
    [Show full text]
  • Loss-Of-Function of Human PINK1 Results in Mitochondrial Pathology and Can Be Rescued by Parkin
    The Journal of Neuroscience, November 7, 2007 • 27(45):12413–12418 • 12413 Neurobiology of Disease Loss-of-Function of Human PINK1 Results in Mitochondrial Pathology and Can Be Rescued by Parkin Nicole Exner,1 Bettina Treske,1 Dominik Paquet,1 Kira Holmstro¨m,2 Carola Schiesling,2 Suzana Gispert,3 Iria Carballo-Carbajal,2 Daniela Berg,2 Hans-Hermann Hoepken,3 Thomas Gasser,2 Rejko Kru¨ger,2 Konstanze F. Winklhofer,4 Frank Vogel,5 Andreas S. Reichert,6,7 Georg Auburger,3 Philipp J. Kahle,1,2 Bettina Schmid,1 and Christian Haass1 1Center for Integrated Protein Science Munich and Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Alzheimer’s and Parkinson’s Disease Research, Ludwig-Maximilians-University, 80336 Munich, Germany, 2Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, 72076 Tu¨bingen, Germany, 3Section of Molecular Neurogenetics, Department of Neurology, Johann Wolfgang Goethe University Medical School, 60590 Frankfurt, Germany, 4Adolf-Butenandt-Institute, Department of Biochemistry, Neurobiochemistry Group, Ludwig-Maximilians-University, 80336 Munich, Germany, 5Max-Delbru¨ck-Center for Molecular Medicine, 13092 Berlin, Germany, 6Adolf-Butenandt-Institute, Physiological Chemistry, Ludwig- Maximilians-University, 81377 Munich, Germany, and 7Cluster of Excellence Macromolecular Complexes, Mitochondrial Biology, Johann Wolfgang Goethe University, 60590 Frankfurt, Germany Degeneration of dopaminergic neurons in the substantia nigra is characteristic for Parkinson’s disease (PD), the second most common neurodegenerative disorder. Mitochondrial dysfunction is believed to contribute to the etiology of PD. Although most cases are sporadic, recentevidencepointstoanumberofgenesinvolvedinfamilialvariantsofPD.Amongthem,aloss-of-functionofphosphataseandtensin homolog-induced kinase 1 (PINK1; PARK6) is associated with rare cases of autosomal recessive parkinsonism. In HeLa cells, RNA interference-mediated downregulation of PINK1 results in abnormal mitochondrial morphology and altered membrane potential.
    [Show full text]
  • Abstracts [PDF]
    Beyond the Identification of Transcribed Sequences 2002 Workshop Beyond the Identification of Transcribed Sequences: Functional, Evolutionary and Expression Analysis 12th International Workshop October 25-28, 2002 Washington, DC Sponsored by the U.S. Department of Energy Home * List of Abstracts * Speakers Meeting Objective Program Planning Committee: The 12th workshop in this series was held in Tom Freeman, MRC Human Genome Washington D.C., Friday evening, October 25 through Programme, Hinxton, UK Monday afternoon, October 28, 2002. Interested Katheleen Gardiner, Eleanor Roosevelt Institute, investigators actively engaged in any aspect of the Denver, CO, USA functional, expression or evolutionary analysis of Bernhard Korn, German Cancer Research Center, transcribed sequences were invited to send an abstract. Heidelberg, Germany Blair Hedges, Penn State University, University Topics discussed include but are not limited to: Park, PA, USA mammalian gene and genome organization as Sherman Weissman, Yale University, New determined from the construction of transcriptional Haven, CT, USA maps and genomic sequence analysis; expression Thomas Werner, Institute for Saeugertiergenetik, analysis of novel mammalian genes; analysis of Oberschleissheim, Germany genomic sequence, including gene and regulatory sequence prediction and verification, and annotation for For Questions or Additional Information, public databases; expression and mutation analysis, and contact: comparative mapping and genomic sequence analysis in model organisms (e.g. yeast,
    [Show full text]