Geotechnical Investigations for the Ponnaiyar- Palar Intra State Link Canal Project (Borrow Area and Along the Canal Alignment)

Total Page:16

File Type:pdf, Size:1020Kb

Geotechnical Investigations for the Ponnaiyar- Palar Intra State Link Canal Project (Borrow Area and Along the Canal Alignment) International Journal of Innovations in Engineering and Technology (IJIET) http://dx.doi.org/10.21172/ijiet.81.052 Geotechnical Investigations for the Ponnaiyar- Palar Intra State Link Canal Project (Borrow Area and along the Canal Alignment) Shahid Noor Corresponding Author and Scientist ‘C’, Central Soil and Materials Research Station, Ministry of Water Resources, RD & GR, Government of India, Olof Palme Marg, Hauz Khas, New Delhi-110016. Dr. R. Chitra Scientist ‘E’, Central Soil and Materials Research Station, Ministry of Water Resources, RD & GR, Government of India, Olof Palme Marg, Hauz Khas, New Delhi-110016 Dr. Manish Gupta Scientist ‘D’, Central Soil and Materials Research Station, Ministry of Water Resources, RD & GR, Government of India, Olof Palme Marg, Hauz Khas, New Delhi-110016 Dr. Amardeep Singh Scientist ‘C’, Central Soil and Materials Research Station, Ministry of Water Resources, RD & GR, Government of India, Olof Palme Marg, Hauz Khas, New Delhi-110016 Abstract - Rainfall is the important element of Indian economy. Although the monsoons effect most part of India, the amount of rainfall varies from heavy to scanty on different parts. There is great regional and temporal variation in the distribution of rainfall. Over 80% of the annual rainfall is received in the four rainy months of June to September. The average annual rainfall is about 125 cm, but it has great spatial variations. This lead to excess rainfall in one region which results the flood and water shortage in other region which leads to the drought in other region. The interlinking project are envisaged with aim to transfer the water from the water surplus region the water deficit region. The Ponnaiyar (Nedungal Anicut) - Palar Intra-state Link Project of Tamil Nadu envisages diversion of 99 Mm3 of flood water of Ponnaiyar river available at Krishnagiri dam to the Palar River. The main objective of the link Project is to improve the Groundwater potential to stabilize the existing command area and stabilize the enroute command areas of Tamil Nadu state. The geotechnical investigation for the proposed Ponnaiyar (Nedungal Anicut) - Palar Intra-state Link Project was undertaken by CSMRS. The paper presents the soil investigations carried out along the canal alignment of the proposed link canal. Key Words: Geotechnical Investigations, Borrow Area Investigations, Foundation Investigations, Trial Pits, Shear, Link Canal, Compaction, Consolidation Disclaimer: The views expressed in this paper are strictly individual views of the author and do not, in any way, represent the views of the department/organization where they are presently working. I. INTRODUCTION India is a vast country and is highly diversified in terms of natural resources and socio-economic setup. Moreover, its water resources are unevenly distributed in space and time. With increasing population and increasing aspiration Volume 8 Issue 1 – February 2017 380 ISSN: 2319 - 1058 International Journal of Innovations in Engineering and Technology (IJIET) http://dx.doi.org/10.21172/ijiet.81.052 for improved standard of living, there is an acute pressure on the demand and availability of water. In India, the river-linking project in a sensible and scientific manner will not only allow the prevention of the colossal wastage of a vitally important natural resource, flood and inundation by detaining flowing surface water of rainy seasons, but also ensure availability of water to drier areas, combating both flood and drought simultaneously. Moreover, it will generate 34,000 MW of hydropower and irrigation to an additional 35 million hectares (135,135 square miles) of land (Sharon Gourdji, Carrie Knowlton & Kobi Platt). II. INTERLINKING OF RIVERS IN INDIA Human societies have always tried to expand the spatial extent of availability of water by the diversion of streams or rivers. The idea of drawing water from the rivers in eastern India, which have larger run-off, in comparison to certain places in the peninsular region, where the precipitation levels are much lower, can be seen as an extension of that practice. The country receives about 4,000 cu km of water as precipitation annually. However, unlike the precipitation patterns in the temperate regions of the world, precipitation in India is characterized by acute variations in both space and time. A large part of the total precipitation on the country is received in the Himalayan catchments of the Ganga and Brahmaputra rivers. The distribution of precipitation over India is predominantly governed by the Monsoon, as a result of which the northeastern quarter of the country receives substantially larger precipitation, in comparison with the northwestern, western and southern parts. Though the west-flowing rivers originating from the Western Ghats have substantial runoff, the spatial scope for their wider utilization is limited (Upali A. Amarasinghe et.al). For assessing the water resources of India, the area of the country has been divided in 24 river-basins in which the west flowing rivers from the Western Ghats have all been clubbed as one. On the basis of the National Perspective on water resource development, the interlinking project has two components - the Himalayan and the Peninsular (NWDA web site). The Himalayan component includes construction of storage dams on the main tributaries of Ganga and Brahmaputra to transfer 'surplus' water to the west. The Peninsular component involves connecting rivers like Godavari and Mahanadi that have 'surplus' water with rivers like Krishna and Cauvery. A total of 31 link are envisaged, out of which 14 links will be in the Himalayan component and 17 links will be in the Peninsular component (Figure 1). III. PONNAIYAR - PALAR INTRA STATE LINK CANAL PROJECT The Ponnaiyar (Nedungal Anicut) - Palar Intra-State Link Project, Tamil Nadu envisages diversion of 99 Mm3 of flood flows/spill waters of Ponnaiyar river available at Krishnagiri dam from the existing Nedungal Anicut, located at 16 km downstream of Krishnagiri Dam, to the Palar River. The main objective of the link canal project is to improve the groundwater potential for stabilizing the existing command area up to 9500 ha. which is presently irrigated through open wells and bore wells in water-short Vaniyambadi taluk of Vellore district in Palar basin and feeding enroute system of water tanks (Eris) for stabilising the enroute command areas in Krishnagiri and Vellore districts of Tamil Nadu state. Apart the above, a quantum of about 3.882 Mm3 of water is planned for domestic water supply to enroute villages of 1.52 lakh population. The Ponnaiyar (Nedungal Anicut ) – Palar Link Canal off-takes from the left bank of the existing Nedungal Anicut at FSL 434.450 m and outfalls at 419.666 m into Kal Ar of Godd Ar, which is a tributary of Palar river near Natrampalli village of Vaniyambadi taluk. The total length of the link canal is 54.15 km. The canal passes by gravity through Pochampalli & Krishnagiri taluks of Krishnagiri district and Tirupattur taluk of Vellore district of Tamil Nadu. The canal is designed as unlined canal with trapezoidal section to carry the designed discharge of 68 cumecs with a uniform bed width of 25.0 m and full supply depth of 2.45 m. Uniform bed slope of 1:4500 is adopted for the entire length of the link canal. The link canal crosses 62 CD/CM structures enroute including one head regulator at off-take point and one out-fall structure at tail end. The main features and cross drainage structures along the canal alignment of proposed Ponnaiyar (Nedungal Anicut) - Palar Intra State Link Canal Project, Tamil Nadu are given in Table 1 a & 1 b. Volume 8 Issue 1 – February 2017 381 ISSN: 2319 - 1058 International Journal of Innovations in Engineering and Technology (IJIET) http://dx.doi.org/10.21172/ijiet.81.052 Figure 1 Proposed Interlinking of Rivers Projects in India IV. BENEFITS FROM THE PROJECT The Ponnaiyar (NedungalAnicut) - Palar Intra-state Link Project of Tamil Nadu is planned as a multipurpose project with flood control, water supply and irrigation benefit in the downstream of Krisnagiri dam. The project is planned to divert the 99 Mm3 of flood flows/spill waters of Ponnaiyar river available at Krishnagiri dam at 50% dependability from the existing Nedungal Anicut, located at 16 km downstream of Krishnagiri Dam, to the Palar River (CSMRS 2015). The project will improve the groundwater potential and will stabilize the existing command area to an extent of 9500 ha which is presently being irrigated through open wells and bore wells in water-short Vaniyambadi taluk of Vellore district in Palar basin apart from feeding enroute system water tanks (Eris) for stabilizing the enroute command areas in Krishnagiri and Vellore districts of Tamil Nadu state. A quantum of about 3.882 Mm3 of water is planned for domestic water supply to enroute villages for about 1.52 lakh population. Table 1a : Main Features of the Link Canal Table 1 b : Cross Drainage structures along the Canal Alignment S. No. Feature Characteristics S. No. Feature Nos. 1 Length of the canal 54.15 km 1 Head Regulator at Off take 1 No. Trapezoidal / CR cum Escape at RD 29.55km 2 Shape/type of canal 2 1 No. Unlined canal at Bargur Ar.pe 3 FSL at Off-take +434.450 m 3 CR/Outfall Structure 1 No. 4 Bed slope of the canal 1 in 4500 4 Aqueducts 6 Nos. Full supply depth 5 2.45 m 5 Canal Syphon 6 Nos. (FSD) 6 FSL at Outfall +419.666 m 6 Super Passages 2 Nos. Bed width of the 7 25 m 7 SLRB 16 Nos. canal Side slopes of the 8 1.5H:1V 8 DLRB 18 Nos. canal 9 Maximum carrying 68 cumec 9 Outlets 5 Nos. Volume 8 Issue 1 – February 2017 382 ISSN: 2319 - 1058 International Journal of Innovations in Engineering and Technology (IJIET) http://dx.doi.org/10.21172/ijiet.81.052 capacity of the canal 10 Undertunnels 5 Nos.
Recommended publications
  • Irrigation Facilities at Feasible Locations and Modernising, Improving and Rehabilitating the Existing Irrigation Infrastructure Assumes Great Importance
    PUBLIC WORKS DEPARTMENT WATER RESOURCES DEPARTMENT PERFORMANCE BUDGET 2015-2016 © Government of Tamil Nadu 2016 PUBLIC WORKS DEPARTMENT WATER RESOURCES DEPARTMENT 1.0. General Management of water resources is vital to the holistic development of the State due to the growing drinking water needs and industrialisation, in addition to the needs of fisheries, environmental flows and community uses. Taking into account the limited availability of water and increasing demand for various uses, the need for creating new irrigation facilities at feasible locations and modernising, improving and rehabilitating the existing irrigation infrastructure assumes great importance. The Government is continuously striving to improve the service delivery of the irrigation system and to increase the productivity, through improving the water use efficiency, participation of farmers in operation and maintenance, canal automation, benchmarking studies and performance evaluation studies and building the capacity of Water Resources Department officials and farmers. In addition, the Government is taking up various schemes, viz., Rivers Inter-linking schemes, Artificial Recharge Schemes, Flood Management Programme, Coastal protection works, Restoration of Traditional water bodies, Augmenting drinking water supply, etc., to harness, develop and effectively utilise the seasonal flood flows occurring over a short period of time during monsoon. 1 2.0. Outlay and Expenditure for the year 2015-2016 The performance as against budgetary provisions for the year of 2015–2016,
    [Show full text]
  • Final Report
    FINAL REPORT MAJOR RESEARCH PROJECT UNIVERSITY GRANTS COMMISSION, NEW DELHI [Rc.A13/OCA-UGC/8594/2011-29.06.2011, F.No.40-297/2011 (SR) 11.09.2014. AU: DO&CAS: UGC project: 2014] TITLE OF THE PROJECT ―Micro Level Mapping of Morphological Changes in the Beaches Caused by Tsunami in between Cuddalore and Nagapattinam, Tamilnadu, East Coast of India‖ Submitted by Dr. R.KARIKALAN Principal Investigator DEPARTMENT OF GEOLOGY ALAGAPPA UNIVERESITY KARAIKUDI – 630003 TAMILNADU INDIA 2015 1 ALAGAPPA UNIVERSITY Department of Geology (A State University Established in 1985) KARAIKUDI - 630 003, Tamil Nadu, India www.alagappauniversity.ac.in 2017 2018 2018 2018 2019 Graded as Category-1 India Rank : 20 Accredited with Swachh Campus A+ Grade by NAAC & Rank : 28 BRICS Rank: 104 (CGPA : 3.64) Rank : 4 Asia Rank : 216 Granted Autonomy ===================================================================== Dr. R. KARIKALAN Associate Professor and Head Certificate I Dr. R.KARIKALAN, declare that the work presented in this report is original and carried throughout independently by me during the complete tenure of major research project of UGC, New Delhi. 2 ACKNOWLEDGEMENTS I would like to thank University Grants Commission, New Delhi for granting me this project under Major Research Project Scheme. It is great privilege to express my profound and deep sense of gratitude to Vice Chancellor, Alagappa University, Karaikudi, for his guidance and valuable support extended for me, to complete this Major Research Project work. This research work could not have been completed without outstanding help offered to me by The Registrar, Alagappa University, Karaikudi. I wish to express my thanks to all my friends who helped me a lot during the period of this project.
    [Show full text]
  • 1 Issues Pertaining to Peninsular Rivers Wing Interstate Matters: (A) Mullaperiyar Dam Issue 1. on 29-10-1886, a Lease In
    Issues pertaining to Peninsular Rivers wing i. Interstate matters: (a) Mullaperiyar Dam Issue 1. On 29‐10‐1886, a lease indenture for 999 years was made between Maharaja of Travancore and Secretary of State for India for Periyar irrigation works. By another agreement in 1970, Tamil Nadu was permitted to generate power also. The Mullaperiyar Dam was constructed during 1887‐1895. Its full reservoir level is 152 ft and it provides water through a tunnel to Vaigai basin in Tamil Nadu for irrigation benefits in 68558 ha area. 2. In 1979, reports appeared in Kerala Press about damage to Periyar Dam. On 25th November, 1979 Chairman, CWC held meeting with the officers of Irrigation and Electricity, Deptt. of Kerala and PWD of Tamil Nadu and some emergency medium term measures and long‐term measures for strengthening of Periyar Dam were decided. A second meeting under the Chairmanship of Chairman, CWC was held on 29th April 1980 and it was opined that after the completion of emergency and medium term measures, the water level in the reservoir can be raised up to 145 ft. 3. The matter became sub‐judice with several petitions. On the directions of the Supreme Court in its order dated 28.4.2000, Minister (WR) convened the Inter‐State meeting on 19.5.2000 and as decided in the meeting, an Expert Committee under Member (D&R), CWC with representatives from both States was constituted in June 2000 to study the safety of the dam. The Committee in its report of March, 2001 opined that with the strengthening measures implemented, the water level can be raised from 136 ft.
    [Show full text]
  • WATER RESOURCE MANAGEMENT Evaluating the Benefits and Costs of Developmental Interventions in the Water Sector in Andhra Pradesh
    WATER RESOURCE MANAGEMENT Evaluating the Benefits and Costs of Developmental Interventions in the Water Sector in Andhra Pradesh Cost-Benefit Analysis Dr. Dinesh AUTHORS: Kumar Executive Director Institute for Resource Analysis and Policy (IRAP), Hyderabad © 2018 Copenhagen Consensus Center [email protected] www.copenhagenconsensus.com This work has been produced as a part of the Andhra Pradesh Priorities project under the larger, India Consensus project. This project is undertaken in partnership with Tata Trusts. Some rights reserved This work is available under the Creative Commons Attribution 4.0 International license (CC BY 4.0). Under the Creative Commons Attribution license, you are free to copy, distribute, transmit, and adapt this work, including for commercial purposes, under the following conditions: Attribution Please cite the work as follows: #AUTHOR NAME#, #PAPER TITLE#, Andhra Pradesh Priorities, Copenhagen Consensus Center, 2017. License: Creative Commons Attribution CC BY 4.0. Third-party-content Copenhagen Consensus Center does not necessarily own each component of the content contained within the work. If you wish to re-use a component of the work, it is your responsibility to determine whether permission is needed for that re-use and to obtain permission from the copyright owner. Examples of components can include, but are not limited to, tables, figures, or images. Evaluating the Benefits and Costs of Developmental Interventions in the Water Sector Andhra Pradesh Priorities An India Consensus Prioritization
    [Show full text]
  • Need to Ensure Adequate Availability of Water in Palar River in Tamil Nadu and Also Expedite Pennayar - Palar Link Canal Project
    an> Title: Need to ensure adequate availability of water in Palar River in Tamil Nadu and also expedite Pennayar - Palar Link Canal Project. SHRI B. SENGUTTUVAN (VELLORE): River Palar, an inter-State river, originating in Karnataka, runs to a distance of 53 kms in Karnataka, 30 kms in Andhra Pradesh and 222 kms in Tamil Nadu. The river is covered under Schedule-A of the Madras-Mysore Agreement. As per Clause II of Agreement upstream State cannot construct any dam or reservoir without consent of the downstream State. During the monsoons, where adequate rainfall is received, the waters of the river replenish more than one thousand tanks, ponds and lakes on either side of its banks, which are the sources of water of drinking and irrigation in Vellore and Kancheepuram Districts. The Palar ayacut supports cultivation of roughly 4.2 lakh acres of lands. However, due to the construction of Check-dams across the river by neighbouring States of Karnataka and Andhra Pradesh, the water flow in the river has completely ceased leaving the land patched, dry and drought-stricken. To compound the problems, the Andhra Pradesh Government is raising the height of check dam in Perumpallam village on the very border of Tamil Nadu State to a height of 12 feet and more with a view to converting it into a reservoir. This would seriously impede water flow in the Palar and deprive Tamil Nadu of the much needed Palar water. In order to protect the ayacutdars, the inter-state Palar River has to be nationalised removing all dams and barriers constructed across it and the 52 km long Pennayar-Palar Link Canal Project has to be implemented expeditiously.
    [Show full text]
  • The Madras Presidency, with Mysore, Coorg and the Associated States
    : TheMADRAS PRESIDENG 'ff^^^^I^t p WithMysore, CooRGAND the Associated States byB. THURSTON -...—.— .^ — finr i Tin- PROVINCIAL GEOGRAPHIES Of IN QJofttell HttinerHitg Blibracg CHARLES WILLIAM WASON COLLECTION CHINA AND THE CHINESE THE GIFT OF CHARLES WILLIAM WASON CLASS OF 1876 1918 Digitized by Microsoft® Cornell University Library DS 485.M27T54 The Madras presidencypresidenc; with MysorMysore, Coor iliiiiliiiiiiilii 3 1924 021 471 002 Digitized by Microsoft® This book was digitized by Microsoft Corporation in cooperation witli Cornell University Libraries, 2007. You may use and print this copy in limited quantity for your personal purposes, but may not distribute or provide access to it (or modified or partial versions of it) for revenue-generating or other commercial purposes. Digitized by Microsoft® Provincial Geographies of India General Editor Sir T. H. HOLLAND, K.C.LE., D.Sc, F.R.S. THE MADRAS PRESIDENCY WITH MYSORE, COORG AND THE ASSOCIATED STATES Digitized by Microsoft® CAMBRIDGE UNIVERSITY PRESS HonBnn: FETTER LANE, E.G. C. F. CLAY, Man^gek (EBiniurBi) : loo, PRINCES STREET Berlin: A. ASHER AND CO. Ji-tipjifl: F. A. BROCKHAUS i^cto Sotfe: G. P. PUTNAM'S SONS iBomlaj sriB Calcutta: MACMILLAN AND CO., Ltd. All rights reserved Digitized by Microsoft® THE MADRAS PRESIDENCY WITH MYSORE, COORG AND THE ASSOCIATED STATES BY EDGAR THURSTON, CLE. SOMETIME SUPERINTENDENT OF THE MADRAS GOVERNMENT MUSEUM Cambridge : at the University Press 1913 Digitized by Microsoft® ffiambttige: PRINTED BY JOHN CLAY, M.A. AT THE UNIVERSITY PRESS. Digitized by Microsoft® EDITOR'S PREFACE "HE casual visitor to India, who limits his observations I of the country to the all-too-short cool season, is so impressed by the contrast between Indian life and that with which he has been previously acquainted that he seldom realises the great local diversity of language and ethnology.
    [Show full text]
  • Water Demand Management in Areas of Groundwater Over-Exploitation
    ENGINEERING KNOWLEDGE AND RESEARCH PROGRAMME (KaR 8332) Water demand management in areas of groundwater over-exploitation WATER DEMAND MANAGEMENT STRATEGY FORMULATION FINAL REPORT FEBRUARY 2006 in association with VRV Consultants (P) Ltd, Chennai, India Jouzy & Partners, Amman, Jordan DFID R8332 Water demand management in areas of groundwater over-exploitation WATER DEMAND MANAGEMENT - STRATEGY FORMULATION FINAL REPORT - February 2006 __________________________________________________________________________ Contents MAIN REPORT Page No. PREFACE 1 S. SUMMARY 3 1. INTRODUCTION 7 1.1 Purpose of the Report 7 1.2 International perspective 9 1.3 Water sector strategies 11 2. WATER DEMAND MANAGEMENT 15 2.1 Definition 15 2.2 Potential measures 15 2.2.1 Previous studies 15 2.2.2 Broad categories of water demand management measures 17 2.3 Potential impacts 19 3. THE POOR AND VULNERABLE 21 3.1 Water, poverty and vulnerability 21 3.1.1 The sustainable livelihoods approach 21 3.1.2 Water-Poverty links 23 3.1.3 Vulnerability assessment 24 4. STRATEGY FORMULATION 27 4.1 General 27 4.1.1 Policy review 27 4.1.2 Strategy formulation 28 4.2 Institutional and community aspects 31 4.3 Poor and vulnerable identified 34 4.4 Data requirements 35 4.5 Water demand management options defined 37 4.6 Enabling and supporting measures 40 4.7 Water savings and unit cost of water saved 41 4.7.1 General 41 4.7.2 Financial and economic aspects 42 4.8 Impact of demand management measures 43 01 June 2006 i DFID R8332 Water demand management in areas of groundwater over-exploitation WATER DEMAND MANAGEMENT - STRATEGY FORMULATION FINAL REPORT - February 2006 __________________________________________________________________________ 4.9 Comparison of measures and their likelihood of success 45 4.9.1 Impact of measures 45 4.9.2 Pre-conditions and likelihood of success 46 5.
    [Show full text]
  • Techofworld.In Techofworld.In
    Techofworld.In Techofworld.In Indira Sagar Dam of Madhya Pradesh has been constructed on which river? 1.Penna river 2.Krishna river 3.Narmada river 4.Palar river 5.None of these Answer Answer –3.Narmada river Rihand Dam has been constructed on Rihand river in which Indian state? 1.Tamil Nadu 2.Karnataka 3.Andhra Pradesh 4.Uttar Pradesh 5.None of these Answer Answer – 4.Uttar Pradesh In which stated the Sardar Sarovar Dam has been constructed on Narmada river? 1.Tamil Nadu 2.Madhya Pradesh 3.Andhra Pradesh 4.Uttar Pradesh 5.None of these Answer Answer – 5.None of these – Gujarat Ukai Dam located in Gujarat has been constructed on which river? 1.Tapi river 2.Penna river 3.Narmada river 4.Karjan river 5.None of these Answer Answer – 1.Tapi river Techofworld.In Techofworld.In Nagarjuna Sagar Dam in Andhra Pradesh is built on which river? 1.Periyar river 2.Penna river 3.Narmada river 4.Krishna river 5.None of these Answer Answer – 4.Krishna river Pong Dam of Himachal Pradesh has been constructed on which river? 1.Beas river 2.Tapi river 3.Gola river 4.Subansiri river 5.None of these Answer Answer – 1.Beas river Srisailam dam on Krishna river is located in which state? 1.Tamil Nadu 2.Karnataka 3.Madhya Pradesh 4.Gujarat 5.None of these Answer Answer – 5.None of these – Andhra Pradesh Supa Dam on Kali Nadi river is located in_________. 1.Himachal Pradesh 2.Arunachal Pradesh 3.Punjab 4.Karnataka 5.None of these Answer Answer – 4.Karnataka Techofworld.In Techofworld.In Tehri Dam of Uttarakhand is built on which river? 1.Bhagirathi river 2.Tapi
    [Show full text]
  • Are You Suprised ?
    Chapter 2 Physical features 2.1 Geographical Disposition The Pennar (Somasila) – Palar - Cauvery (Grand Anicut) link canal off takes from the existing Somasila reservoir located across the Pennar River near Somasila village in Nellore district of Andhra Pradesh state. The link canal is proposed to pass through the Kaluvaya, Rapur, Dakkili, Venkatagiri mandals of Nellore district; Srikalahasti, Thottambedu, Pitchattur and Nagari mandals of Chittoor district of Andhra Pradesh state, Tiruttani taluk of Tiruvallur district; Arakonam taluk of Vellore district; Cheyyar and Vandavasi taluks of Tiruvannamalai district; Kancheepuram, Uthiramerur taluks of Kancheepuram district; Tindivanam, Gingee, Villupuram, Tirukoilur taluks of Villupuram district; Ulundurpettai, Vridhachalam, Tittagudi taluks of Cuddalore district; Udaiyarpalayam, Ariyalur taluk of Perambalur district; and Lalgudi taluk of Tiruchchirappalli district of Tamil Nadu state.The link canal alignment passes through Pennar basin, Streams between Pennar and Palar basins, Palar basin and streams between Palar and Cauvery basins. The link canal takes off from the right flank of Somasila dam with a full supply level of 95.420 m. and runs parallel on right side of the Kandaleru flood flow canal, upto RD 10 km. The canal generally runs in south direction till it out-falls into Grand Anicut across Cauvery River at RD 529.190 km. The major rivers that would be crossed by the canal are Swarnamukhi, Arani Ar, Nagari, Palar, Cheyyar, Ponnaiyar, and Vellar. The districts that would be benefited by the link canal through enroute irrigation are Nellore, Chittoor of Andhra Pradesh state and Tiruvallur, Kancheepuram, Vellore, Tiruvannamalai, Villupuram, Cuddalore districts of Tamil Nadu state and Pondicherry (U.T).
    [Show full text]
  • Assessment of Fluoride Concentration in Palar River in Kanchipuram District, Tamil Nadu, India R
    Research Article Assessment of fluoride concentration in Palar River in Kanchipuram district, Tamil Nadu, India R. Pradeep Kumar1*, R. Priya1, Lakshmi Thangavelu2 ABSTRACT Back ground: River Palar is one of the most contaminated rivers of India due to various industries. Aim:To study the fluoride concentration in the Pallar river. Four river water samples were collected during the pre-monsoon season spanning over June 2015. Methodology: Fluoride levels were analyzed by standardized analytical method by the Chief Water Analyst, State Level Water Testing Laboratory, Tamil Nadu Water Supply and Drainage Board, Government of Tamil Nadu, Chennai (ISO 9001–2000 - Certified). Result: In the present study, fluoride contents in all samples ranged between 0.18 and 0.22 mg/l, which are less than the optimum range of 1.5 mg/l, as recommended by the WHO. KEY WORDS: Fluoride, Palar River, Water quality INTRODUCTION of the global tanning factories are located in this state. Out of this, 449 units are located in the Vellore River water resources are highly essential for various district, particularly in the Palar basin (Upper Palar). domestic, agricultural, and industrial purposes. Hence, The impact of tannery wastewater disposal leads to the consumption rate is increasing day by day in the environmental as well as social disharmony of the areas where surface water sources are not enough to society and also acts as a major industrial pollution meet the demands. In recent decades, water pollution source that the country faces today. Even though has been considered as an important agenda for this problem persists for a long time, it has attracted various research activities due to its significant role in serious attention only in recent time.
    [Show full text]
  • Upper Ponnaiyar River Basin, Tamil Nadu
    कᴂ द्रीय भूमम जल बो셍 ड जऱ संसाधन, नदी विकास और गंगा संरक्षण मंत्राऱय भारत सरकार Central Ground Water Board Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India Report on AQUIFER MAPPING AND GROUND WATER MANAGEMENT Upper Ponnaiyar River Basin, Tamil Nadu दक्षक्षण ऩूिी तटीय क्षेत्र, चेꅍनई South Eastern Coastal Region, Chennai REPORT ON AQUIFER MAPPING FOR SUSTAINABLE MANAGEMENT OF GROUNDWATER RESOURCES IN UPPER PONNAIYAR RIVER BASIN AQUIFER SYSTEM, TAMIL NADU CONTRIBUTORS‟ PAGE Principal Author M. Panneer : Assistant Hydrogeologist Hydrogeology & Groundwater exploration M. Panener : Assistant Hydrogeologist Dr Anandakumar Ars : Scientist D (Assistant Dr K Rajarajan : Hydrogeologist)Assistant Hydrogeologist A. Sreenivas : Scientist D (Junior Hydrogeologist) Aquifer Disposition N Ramesh Kumar : Assistant Hydrogeologist Groundwater Modeling Dr. M. Senthilkumar : Scientist C (Sr. Hydrogeologist) Dr. D. Gnanasundar : Scientist D (Sr. Hydrogeologist) Groundwater management plan R Arumugam : Scientist D (Junior Hydrogeologist) Dr M Senthil Kumar : Scientist C (Senior Hydrogeologist) Geophysics K T Suresha : Scientist D (Senior Geophysicist) VST Gopinath : Scientist B (Junior Geophysicist) T S N Murthy : Assistant Geophysicist) Hydrometeorology M. Sivakumar : Scientist D (Sr. Hydrologist) Chemical Analysis Dr. K. Ravichandran : Scientist D (Sr. Chemist) K. Padmavathi : Scientist B (Jr. Chemist) Maps preparation Mrs. M. Navaneetham : Draughtsman Overall Supervision and Guidance A. Subburaj : Head of Office CONTENTS
    [Show full text]
  • The Chennai Water Crisis: Insufficient Rainwater Or Suboptimal Harnessing of Runoff?
    GENERAL ARTICLES The Chennai Water Crisis: Insufficient rainwater or suboptimal harnessing of runoff? Sumant Nigam*, Alfredo Ruiz-Barradas and Agniv Sengupta Chennai experienced acute water shortage during 2019 summer, and four years prior, an early- winter deluge. Analysis of 116 years (1901–2016) of rainfall in Chennai Sub-basin shows a weak climate change signal: Winter monsoon rainfall, has slightly increased, especially in December. The much larger Cauvery basin to the south also exhibits a nondescript climate change signal in winter rainfall. Late summer (September) rainfall in the Cauvery Basin has, however, precipitously declined in recent years (1987–2016). We show that this decline, as well as the mid-20th century increase, are attributable to natural multidecadal climate variability (Atlantic Multidecadal Oscil- lation) – cautioning against cavalier attributions of recent-period trends and the Chennai Water Crisis to climate change. Analysis of runoff – the rainwater leftover after its hydrologic and atmos- pheric processing – shows that harnessing even half of the winter monsoon runoff in the Chennai Sub-basin can satiate the city’s water demand for about seven months; and without needing new reservoir facilities. The present analysis suggests that Chennai’s water woes arise not from insufficient rainwater, but from the suboptimal harnessing of related runoff. Keywords: Climate change, monsoon rainfall, multidecadal variability, river basin, runoff. THE Coromandel Coast – long defined, geographically, as variations are similarly phased – the case, perhaps, in the coastal plains of southeastern Peninsular India backed 2019. by the Eastern Ghats to the west and the Bay of Bengal to Lately, Chennai has witnessed both floods and severe the east, and bounded by the Krishna and Cauvery river water scarcity.
    [Show full text]