Seasonal Changes in the Composition of the Diets of Peary Caribou and Muskoxen on Banks Island

Total Page:16

File Type:pdf, Size:1020Kb

Seasonal Changes in the Composition of the Diets of Peary Caribou and Muskoxen on Banks Island Seasonal changes in the composition of the diets of Peary caribou and muskoxen on Banks Island Nicholas C. Larter & John A. Nagy Caribou and muskoxen are the only ungulate species occupying Arctic tundra environments. We analysed plant fragments found in fresh (< 4 hr old) samples of faecal material to determine the diets of Peary caribou (Rangifer tarandus pearyi) and muskoxen (Ovibos moschatus) on Banks Island, Canada. Willow was a major component of the diets of both ani- mals, dominating the caribou diet during summer and representing sub- stantial proportions of the muskoxen diet during at least seven months of the year. The diet of caribou was more diverse than that of muskoxen and was dominated by sedge, willow (Salix arctica), legume (Astragalus spp., Oxytropis spp.) and Dryas integrifolia. The diet of muskoxen was domi- nated by sedge and willow. There was substantial overlap (up to 70 %) in the diets of these herbivores with the similarity more pronounced in areas of high muskox density (ca. 1.65 animals/km2). We discuss herbivore diets in relation to foraging behaviour and forage availability. N. C. Larter, Government of the Northwest Territories, Department of Resources, Wildlife & Economic Development, Box 240, Ft. Simpson, NT, Canada X0E 0N0, [email protected]; J. A. Nagy, Government of the Northwest Territories, Department of Resources, Wildlife & Economic Development, Bag Service #1, Inuvik, NT, Canada X0E 0T0. Caribou (Rangifer tarandus) and muskoxen 1978; Thomas & Edmonds 1983; Oakes et al. (Ovibos moschatus) are the only ungulate spe- 1992; Larter & Nagy 1997), Alaska (e.g. Svend- cies successfully occupying Arctic tundra envi- sen 1992; Ihl 1999; Ihl & Klein 2001), and Green- ronments. Caribou and muskoxen have differ- land (Thing 1984; Thing et al. 1987; Klein & Bay ent morphological adaptations which presumably 1990). Many diet st udies have show n willow (Salix enabled them to utilize forage resources with little spp.) to be a noticeable component of the muskox- overlap (Klein 1992). Caribou, with their small en diet regardless of season (e.g. Wilkinson et body size, narrow muzzle, small gut capacity, al. 1976; Thing 1984; Svendsen 1992; Larter & and rapid passage rate (Tyler & Blix 1990; Klein Nagy 1997; Thomas et al. 1999). In early summer, 1992), are representative of a mixed feeder type, willow use was prominent among muskoxen on intermediate between roughage feeders and con- Banks Island (Larter & Nagy 1997). Willow is centrate selectors according to Hofmann’s (1989, also a prominent component of their late winter 2000) classifi cation. Muskoxen, with their large diet especially in years of deeper and harder snow body size, broad muzzle, and large gut capac- (Larter & Nagy 1997; Thomas et al. 1999). ity capable of processing large amounts of low Lichen is an important winter food for barren- quality forage (Klein 1992) are representative ground caribou on the mainland, but in the High of roughage feeders (grazers) according to Hof- Arctic islands, which support low lichen biomass, mann’s (1989, 2000) classifi cation. caribou must use other forages, usually willow A number of studies have reported the diets and graminoids (Reimers et al. 1980; Klein 1992). of muskoxen and caribou in Arctic Canada (e.g. Where food choices are limited or muskox densi- Wilkinson et al. 1976; Parker 1978; Shank et al. ty is high, the two species may compete for food Larter & Nagy 2004: Polar Research 23(2), 131–140 131 (McKendrick 1981). On Banks Island in the Cana- 90 mm (Zoltai et al. 1980). Sachs Harbour (pop- dian High Arctic, lichen biomass is low and the ulation 125) is the only permanent settlement on muskox population represents a substantial pro- the Island. portion of worldwide muskoxen numbers, with Habitat descriptions were adapted from Kevan some of the highest reported densities of muskox, (1974), Wilkinson et al. (1976), and Ferguson 1.5 - 2.0 animals/km2 (Nagy et al. 1996; Larter (1991). There are four major terrestrial habitats: & Nagy 2001a). During the 1990s Peary caribou 1) wet sedge meadow, 2) upland barren, 3) hum- numbers on Banks Island were at historic lows, mock tundra, and 4) stony barren. Muskoxen and 500 - 1000 animals, excluding calves (Nagy et al. caribou forage in all habitats. Wet sedge mead- 1996). Peary caribou rely on willow during the ows (WSM) are generally level hydric and hygric short Arctic summers in order to regain fat prior lowlands characterized by Carex aquatilis, Eri- to winter and there was concern that the availabil- ophorum scheuchzeri, and Dupontia fi sheri. ity of willow during summer may be impacted by Upland barrens (UB) are well drained sites found the increased annual use of willows by herbivores on the upper and middle parts of slopes. Vegeta- (Larter & Nagy 1997; Larter 1999). tion is dominated by Dryas integrifolia and Salix In order to describe, in detail, the seasonal diet arctica. Hummock tundra (HT) is found on mod- composition of Peary caribou and muskoxen on erately steep slopes and is characterized by indi- Banks Island we embarked on a program to col- vidual hummocks which are vegetated primarily lect fresh faecal samples deposited on known by dwarf shrubs (D. integrifolia, S. arctica, with dates during every month of the year. We hypoth- some Cassiope tetragona). Stony barrens (SB) esized that muskoxen would feed on willow to a have a coarse gravelly substrate and are found greater extent during the growing season when in windblown areas, on ridges and on gravel and willow was of higher nutritive quality (Larter sand bars; vegetation is sparse. & Nagy 2001b) and/or during late-winter when The areas of high and low muskox density the availability of sedge (Carex spp., Eriopho- where samples were collected for this study cover rum spp.) would be lowest, due to the combina- 2700 and 18 400 km2, respectively, and have had tion of grazing and snow conditions (Larter & distinctly different densities of muskox since 1985 Nagy 2000, 2001c). We also hypothesized that (Nagy et al. 1996). Similar vegetation types and the diet composition of muskox would be dif- vegetation of similar quality are found through- ferent in areas of different muskox density. This out both areas (Larter & Nagy 2001b). Howev- paper documents the monthly diets Peary cari- er, in the low density area, vegetated habitats are bou, the monthly diets of muskoxen residing in more patchily distributed with SB being more areas of both high and low muskox density, the prominent (Larter & Nagy unpubl. data) and late- percent similarity in diet between the two ani- winter snow conditions tend to be harsher (Larter mals, and relates the monthly changes in diet to & Nagy 2001c). foraging behaviour. A more detailed description of the fl ora of Banks Island can be found in Wilkinson et al. (1976), Porsild & Cody (1980), and Zoltai et al. Study area (1980). Plant taxonomy follows Kartesz (1999). Banks Island is the westernmost island in the Canadian Arctic archipelago and covers approxi- Methods mately 70 000 km2 (Fig. 1). The climate is Arctic maritime along coastal areas where weather sta- Two fi eld camps were established in June 1993 tions are located, tending toward Arctic desert on south central Banks Island (Fig. 1): one camp inland (Zoltai et al. 1980). Winters are long and (Coyote) is located in an area of high muskox cold; mean monthly temperatures are below 0 °C density (1.6 - 1.9 muskox/km2) about 90 km ESE from September through May; mean minimum of Sachs Harbour, and the other (Bernard) in an daily temperatures range from –30 °C to –40 °C area of low muskox density (0.3 - 0.4 muskox/ from December to March. Summers are short and km2) about 130 km ENE of Sachs Harbour (Fig. cool; mean maximum daily temperatures range 1). From June 1993 to May 1998 we made six trips from 5 °C to 10 °C from June through August. to these camps annually in June, July, August, There is little precipitation; the annual mean is November - December, February, and April - May. 132 Seasonal changes in composition of diets of Peary caribou and muskoxen Fig. 1. The study area, Banks Island, Northwest Territories, Canada. The hatched areas indicate where samples were collected from the high muskox density (western) and low muskox density (eastern) areas. The location of the Coyote and Bernard camps is indicated. Larter & Nagy 2004: Polar Research 23(2), 131–140 133 We collected fresh (< 4 hr old) Peary caribou position Analysis Laboratory, Ft. Collins, Colora- faecal samples opportunistically during all these do, for analysis. Diet composition was determined fi eld trips. Additional faecal samples were col- by analysing plant fragments (Sparkes & Malech- lected during fi eld trips in March and May 1993 ek 1968) according to Hansen et al. (1976). The and January 2001, from animals killed by hunt- microhistological technique has inherent limits, ers (since 1990), and from animals taken during a such as an inability to separate some species, and collection in winter 1993–94. In total 298 samples a limited percent of identifi able fragments in the were analysed from all months, range of 10 to 49 slides (Johnson et al. 1983; Barker 1986). How- samples/month. We present monthly diet compo- ever, we deemed this method suitable for this sition pooled across sex and age classes and years study, since we were interested in the proportion- with the individual caribou as the sample unit. al dietary contribution of different forage classes, We assume inter-annual variation was minimal. not of individual species. Moreover, this method Previous analyses (Larter & Nagy 1997) indi- had been used in previous work on Banks Island cated that between-group variation was greater (Oakes et al. 1992; Larter & Nagy 1997). The diet than within-group variation in the diet of muskox.
Recommended publications
  • Willows of Interior Alaska
    1 Willows of Interior Alaska Dominique M. Collet US Fish and Wildlife Service 2004 2 Willows of Interior Alaska Acknowledgements The development of this willow guide has been made possible thanks to funding from the U.S. Fish and Wildlife Service- Yukon Flats National Wildlife Refuge - order 70181-12-M692. Funding for printing was made available through a collaborative partnership of Natural Resources, U.S. Army Alaska, Department of Defense; Pacific North- west Research Station, U.S. Forest Service, Department of Agriculture; National Park Service, and Fairbanks Fish and Wildlife Field Office, U.S. Fish and Wildlife Service, Department of the Interior; and Bonanza Creek Long Term Ecological Research Program, University of Alaska Fairbanks. The data for the distribution maps were provided by George Argus, Al Batten, Garry Davies, Rob deVelice, and Carolyn Parker. Carol Griswold, George Argus, Les Viereck and Delia Person provided much improvement to the manuscript by their careful editing and suggestions. I want to thank Delia Person, of the Yukon Flats National Wildlife Refuge, for initiating and following through with the development and printing of this guide. Most of all, I am especially grateful to Pamela Houston whose support made the writing of this guide possible. Any errors or omissions are solely the responsibility of the author. Disclaimer This publication is designed to provide accurate information on willows from interior Alaska. If expert knowledge is required, services of an experienced botanist should be sought. Contents
    [Show full text]
  • Abstracts Annual Scientific Meeting ᐊᕐᕌᒍᑕᒫᕐᓯᐅᑎᒥᒃ ᑲᑎᒪᓂᕐᒃ
    Abstracts Annual Scientific Meeting ᐊᕐᕌᒍᑕᒫᕐᓯᐅᑎᒥᒃ ᑲᑎᒪᓂᕐᒃ 2016 Réunion scientifique annuelle 5-9/12/2016, Winnipeg, MB ASM2016 Conference Program Oral Presentation and Poster Abstracts ABSTRACTS FROBISHER BAY: A NATURAL LABORATORY complete habitat characterization. This recent sampling FOR THE STUDY OF ENVIRONMENTAL effort recorded heterogeneous substrates composed of CHANGE IN CANADIAN ARCTIC MARINE various proportions of boulder, cobbles, gravel, sand HABITATS. and mud forming a thin veneer over bedrock at water depths less than 200 metres. Grab samples confirm Aitken, Alec (1), B. Misiuk (2), E. Herder (2), E. the relative abundance of mollusks, ophiuroids and Edinger (2), R. Deering (2), T. Bell (2), D. Mate(3), C. tubiculous polychaetes as constituents of the infauna Campbell (4), L. Ham (5) and V.. Barrie (6) in the inner bay. Drop video images captured a diverse (1) University of Saskatchewan (Saskatoon, Canada); epifauna not previously described from the FRBC (2) Department of Geography, Memorial University of research. A variety of bryozoans, crinoid echinoderms, Newfoundland (St. John’s, NL, Canada); sponges and tunicates recorded in the images remain (3) Polar Knowledge Canada (Ottawa, Ontario, to be identified. Habitat characterization will allow us Canada); to quantify ecological change in benthic invertebrate (4) Marine Resources Geoscience, Geological Survey of species composition within the habitat types represented Canada (Dartmouth, NS, Canada); at selected sampling stations through time. Such long- (5) Canada-Nunavut Geoscience Office, Natural term studies are crucial for distinguishing directional Resources Canada (Iqaluit, NU, Canada); change in ecosystems. Marine Geological Hazards (6) Marine Geoscience, Geological Survey of Canada and Seabed Disturbance: Extensive multibeam (Sidney, BC, Canada) echosounding surveys have recorded more than 250 submarine slope failures in inner Frobisher Bay.
    [Show full text]
  • Recovery Strategy for the Woodland Caribou (Rangifer Tarandus Caribou), Boreal Population, in Canada
    PROPOSED Species at Risk Act Recovery Strategy Series Recovery Strategy for the Woodland Caribou (Rangifer tarandus caribou), Boreal Population, in Canada Woodland Caribou, Boreal Population 2011 Recommended citation: Environment Canada. 2011. Recovery Strategy for the Woodland Caribou, Boreal population (Rangifer tarandus caribou) in Canada [Proposed]. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa. vi + 55 pp. For copies of the recovery strategy, or for additional information on species at risk, including COSEWIC Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk Public Registry (www.sararegistry.gc.ca). Cover illustration : Courtesy Dr. Crichton Également disponible en français sous le titre « Programme de rétablissement du Caribou des bois (Rangifer tarandus caribou), Population boréale, au Canada » © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2011. All rights reserved. ISBN Catalogue no. Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. Recovery Strategy for the Woodland Caribou, Boreal Population 2011 PREFACE The federal, provincial, and territorial government signatories under the Accord for the Protection of Species at Risk (1996) agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. Under the Species at Risk Act (S.C. 2002, c.29) (SARA), the federal competent ministers are responsible for the preparation of recovery strategies for listed Extirpated, Endangered, and Threatened species and are required to report on progress within five years. The Minister of the Environment is the competent Minister for this recovery strategy.
    [Show full text]
  • Spatial Variation in Arctic Hare (Lepus Arcticus) Populations Around the Hall Basin
    Spatial variation in Arctic hare (Lepus arcticus) populations around the Hall Basin Fredrik Dalerum1,2,3, Love Dalén2,4, Christina Fröjd5, Nicolas Lecomte6, Åsa Lindgren5, Tomas Meijer2,7, Patricia Pecnerova2,4, Anders Angerbjörn2 1 Research Unit of Biodiversity, Department of Biology of Organisms and Systems, University of Oviedo, Spain 2 Department of Zoology, Stockholm University, Sweden 3 Mammal Research Institute, Department of Zoology, University of Pretoria, South Africa 4 Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Sweden 5 Swedish Polar Research Secretariat, Sweden 6 Canada Research Chair in Polar and Boreal Ecology and Centre d’Études Nordiques, Department of Biology, University of Moncton, Canada 7 Section for Wildlife Diseases, Swedish National Veterinary Institute, Travvägen 12A, 756 51 Uppsala, Sweden Published in Polar Biology, October 2017, Volume 40, Issue 10, pp 2113–2118 1 Abstract Arctic environments have relatively simple ecosystems. Yet, we still lack knowledge of the spatio- temporal dynamics of many Arctic organisms and how they are affected by local and regional processes. The Arctic hare (Lepus arcticus) is a large lagomorph endemic to high Arctic environments in Canada and Greenland. Current knowledge about this herbivore is scarce and the temporal and spatial dynamics of their populations are poorly understood. Here we present observations on Arctic hares in two sites on north Greenland (Hall and Washington lands) and one adjacent site on Ellesmere Island (Judge Daly Promontory). We recorded a large range of group sizes from 1 to 135 individuals, as well as a substantial variation in hare densities among the three sites (Hall land: 0 animals / 100 km2, Washington land 14.5-186.7 animals / 100 km2, Judge Daly Promontory 0.18-2.95 animals / 100 km2).
    [Show full text]
  • TB1066 Current Stateof Knowledge and Research on Woodland
    June 2020 A Review of the Relationship Between Flow,Current Habitat, State and of Biota Knowledge in LOTIC and SystemsResearch and on Methods Woodland for Determining Caribou Instreamin Canada Low Requirements 9491066 Current State of Knowledge and Research on Woodland Caribou in Canada No 1066 June 2020 Prepared by Kevin A. Solarik, PhD NCASI Montreal, Quebec National Council for Air and Stream Improvement, Inc. Acknowledgments A great deal of thanks is owed to Dr. John Cook of NCASI for his considerable insight and the revisions he provided in improving earlier drafts of this report. Helpful comments on earlier drafts were also provided by Kirsten Vice, NCASI. For more information about this research, contact: Kevin A. Solarik, PhD Kirsten Vice NCASI NCASI Director of Forestry Research, Canada and Vice President, Sustainable Manufacturing and Northeastern/Northcentral US Canadian Operations 2000 McGill College Avenue, 6th Floor 2000 McGill College Avenue, 6th Floor Montreal, Quebec, H3A 3H3 Canada Montreal, Quebec, H3A 3H3 Canada (514) 907-3153 (514) 907-3145 [email protected] [email protected] To request printed copies of this report, contact NCASI at [email protected] or (352) 244-0900. Cite this report as: NCASI. 2020. Current state of knowledge and research on woodland caribou in Canada. Technical Bulletin No. 1066. Cary, NC: National Council for Air and Stream Improvement, Inc. Errata: September 2020 - Table 3.1 (page 34) and Table 5.2 (pages 55-57) were edited to correct omissions and typos in the data. © 2020 by the National Council for Air and Stream Improvement, Inc. EXECUTIVE SUMMARY • Caribou (Rangifer tarandus) is a species of deer that lives in the tundra, taiga, and forest habitats at high latitudes in the northern hemisphere, including areas of Russia and Scandinavia, the United States, and Canada.
    [Show full text]
  • Supplement of Biogeosciences, 18, 2465–2485, 2021 © Author(S) 2021
    Supplement of Biogeosciences, 18, 2465–2485, 2021 https://doi.org/10.5194/bg-18-2465-2021-supplement © Author(s) 2021. CC BY 4.0 License. Supplement of Anthropocene climate warming enhances autochthonous carbon cycling in an upland Arctic lake, Disko Island, West Greenland Mark A. Stevenson et al. Correspondence to: Mark A. Stevenson ([email protected]) The copyright of individual parts of the supplement might differ from the article licence. Table S1 Detailed vegetation composition surveys of the three study lakes local catchments, which form vegetation survey derived estimations of ground cover in Table 1. Disko 2 (%) Disko 1 (%) Disko 4 (%) Total moss/lichen 27.3 37.5 37.0 White moss 15.3 Grey moss 3.7 Green moss 1.3 12.2 7.9 Dead/decaying moss 1.2 3.6 Long green moss 2.1 Yellow moss 13.7 0.6 2.3 Cetraria nivalis lichen 6.8 3.2 Cladonia arbuscular lichen 5.2 Umbilicaria-type lichen 3.5 2.0 White lichen 0.7 16.4 Total plants 19.2 32.7 44.4 Salix arctica 5.3 5.2 8.9 Salix arctica seedling 6.0 11.0 14.0 Poaceae 1.6 5.1 2.1 Dead leaves/branches 0.7 2.4 2.2 Carex 5.8 4.7 Eriophorum spp. 0.4 Saxifraga 4.8 2.8 10.1 Plant roots 0.6 Chamerion latifolium 2.4 Total bare ground 53.5 29.8 18.6 Guano 3.0 0.1 Bare organic soil 10.8 13.2 Bare rock/gravel 53.5 16.1 5.2 No.
    [Show full text]
  • Guide to the Willows of Shoshone National Forest
    United States Department of Agriculture Guide to the Willows Forest Service Rocky Mountain Research Station of Shoshone National General Technical Report RMRS-GTR-83 Forest October 2001 Walter Fertig Stuart Markow Natural Resources Conservation Service Cody Conservation District Abstract Fertig, Walter; Markow, Stuart. 2001. Guide to the willows of Shoshone National Forest. Gen. Tech. Rep. RMRS-GTR-83. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 79 p. Correct identification of willow species is an important part of land management. This guide describes the 29 willows that are known to occur on the Shoshone National Forest, Wyoming. Keys to pistillate catkins and leaf morphology are included with illustrations and plant descriptions. Key words: Salix, willows, Shoshone National Forest, identification The Authors Walter Fertig has been Heritage Botanist with the University of Wyoming’s Natural Diversity Database (WYNDD) since 1992. He has conducted rare plant surveys and natural areas inventories throughout Wyoming, with an emphasis on the desert basins of southwest Wyoming and the montane and alpine regions of the Wind River and Absaroka ranges. Fertig is the author of the Wyoming Rare Plant Field Guide, and has written over 100 technical reports on rare plants of the State. Stuart Markow received his Masters Degree in botany from the University of Wyoming in 1993 for his floristic survey of the Targhee National Forest in Idaho and Wyoming. He is currently a Botanical Consultant with a research emphasis on the montane flora of the Greater Yellowstone area and the taxonomy of grasses. Acknowledgments Sincere thanks are extended to Kent Houston and Dave Henry of the Shoshone National Forest for providing Forest Service funding for this project.
    [Show full text]
  • Barren-Ground Caribou, Dolphin and Union Population
    PROPOSED FINAL Species at Risk Act Management Plan Series Adopted under Section 69 of SARA Management Plan for the Barren-ground Caribou (Rangifer tarandus groenlandicus), Dolphin and Union population, in Canada: Adoption of the Management Plan for the Dolphin and Union Caribou (Rangifer tarandus groenlandicus x pearyi) in the Northwest Territories and Nunavut Barren-ground Caribou, Dolphin and Union population 2017 Recommended citation: Environment and Climate Change Canada. 2017. Management Plan for the Barren-ground Caribou (Rangifer tarandus groenlandicus), Dolphin and Union population, in Canada: Adoption of the Management Plan for the Dolphin and Union Caribou (Rangifer tarandus groenlandicus x pearyi) in the Northwest Territories and Nunavut [Proposed Final]. Species at Risk Act Management Plan Series. Environment and Climate Change Canada, Ottawa. 2 parts, 3 pp. + 102 pp. For copies of the management plan or for additional information on species at risk, including the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk (SAR) Public Registry1. Cover photo: © Kim Poole Également disponible en français sous le titre «Plan de gestion du caribou de la toundra (Rangifer tarandus groenlandicus) population Dolphin-et-Union au Canada : adoption du plan de gestion du caribou de Dolphin-et- Union (Rangifer tarandus groenlandicus x pearyi) dans les Territoires du Nord-Ouest et au Nunavut [Version finale
    [Show full text]
  • Caribou 1 Caribou
    Caribou 1 Caribou This article is about the North American animal. For the Eurasian animal, see Reindeer. For other uses, see Caribou (disambiguation). Caribou (North America) Male Porcupine caribou R. t. granti in Alaska Conservation status Least Concern (IUCN 3.1) Scientific classification Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Artiodactyla Family: Cervidae Subfamily: Capreolinae Genus: Rangifer C.H. Smith, 1827 Species: R. tarandus Binomial name Rangifer tarandus (Linnaeus, 1758) Subspecies in North America • R. t. caribou – Canada and U.S • R. t. granti – Alaska, Yukon • R. t. groenlandicus – Nunavut, NWT, western Greenland • R. t. pearyi – Baffin Island, Nunavut, NWT Also see text Caribou 2 Approximate range of caribou subspecies in North America. Overlap is possible for contiguous range. 1.Rangifer tarandus caribousubdivided into ecotypes: woodland (boreal), woodland (migratory), woodland (montane), 2.R t Dawsoni extinct 1907, 3. R t granti, 4.R t groenlandicus, 5.Groenlandicus/Pearyi 6. R t pearyi Synonyms reindeer in Europe and Eurasia The caribou,[1] also known as reindeer and wild reindeer in Europe and Eurasia,[1] of the same species—Rangifer tarandus— is a medium size ungulate of the Cervidae family which also includes wapiti, moose and deer. The North American range of this Holarctic animal extends from Alaska, through the Yukon, the Northwest Territories, Nunavut, into the boreal forest and south through the Canadian Rockies and the Columbia and Selkirk Mountains.[2] The caribou is a specialist that is well adapted to cooler climates with hollow-hair fur that covers almost all of its body including its nose, and provides insulation in winter and flotation for swimming.[2] Two major subspecies in North America, the R.
    [Show full text]
  • Blueberry Willow): a Technical Conservation Assessment
    Salix myrtillifolia Anderss. (blueberry willow): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project June 29, 2006 Stephanie L. Neid, Ph.D., Karin Decker, and David G. Anderson Colorado Natural Heritage Program Colorado State University Fort Collins, CO Peer Review Administered by Society for Conservation Biology Neid, S.L., K. Decker, and D.G. Anderson. (2006, June 29). Salix myrtillifolia Anderss. (blueberry willow): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/projects/scp/assessments/salixmyrtillifolia.pdf [date of access]. ACKNOWLEDGMENTS This research was greatly facilitated by the helpfulness and generosity of many experts, particularly George Argus, Robert Dorn, Bud Kovalchik, Steve Brunsfield, John Sanderson, and Barry Johnston. Their interest in the project, valuable insight, depth of experience, and time spent answering questions were extremely valuable and crucial to the project. Herbarium specimen label data were provided by Tim Hogan (COLO), Ron Hartman and Ernie Nelson (RM), and Janet Wingate (KDH). Thanks also to Cathy Cripps, Bonnie Heidel, George Jones, Chris Chappel, Rex Crawford, Florence Caplow, Scott Mincemoyer, Andy Kratz, Kathy Carsey, and Beth Burkhart for assisting with questions and project management. Jane Nusbaum, Dawn Taylor, and Barbara Brayfield provided crucial financial oversight. AUTHORS’ BIOGRAPHIES Stephanie L. Neid is an ecologist with the Colorado Natural Heritage Program (CNHP). Her work at CNHP includes ecological inventory and assessment throughout Colorado, beginning in 2004. Prior to this, she was an ecologist with the New Hampshire Natural Heritage Bureau and the Massachusetts Natural Heritage and Endangered Species Program and was a Regional Vegetation Ecologist for NatureServe.
    [Show full text]
  • Shrub Tundras Finland Sweden O 0 Iceland B1
    Circumpolar Arctic Vegetation Barrens Prostrate-shrub tundras Finland Sweden o 0 Iceland B1. Cryptogam, P1. Prostrate dwarf- herb barren shrub, herb tundra Dry to wet barren Dry tundra with patchy landscapes with very B1 vegetation. Prostrate P1 sparse, very low-growing North Atlantic Ocean shrubs < 5 cm tall (such as plant cover. Scattered Dryas and Salix arctica) herbs, lichens, mosses, and are dominant, with liverworts. Subzone A and B, Norway graminoids and forbs. some C at higher elevations. Lichens are also common. Eskimonaesset, North Greenland, C. Bay Bunde Fjord, Axel Heiberg Island, Canada. D.A. Walker Bunde Fjord, 45 o Subzones B and C. o W Russia E 45 B2. Cryptogam barren P2. Prostrate/ complex (bedrock) Hemiprostrate Areas of exposed rock and dwarf-shrub tundra lichens interspersed with B2 Moist to dry tundra lakes and more vegetated P2 dominated by prostrate areas, as found on the and hemiprostrate shrubs Canadian Shield. Subzones Barents Pechora R. Greenland < 15 cm tall, particularly C and D. Sea Canada Cassiope. Subzone C. Daring Lake vicinity, Canada. D.A. Walker Daring Lake vicinity, Svalbard Zackenberg, East Greenland, H.H. Christiansen Baffi n B3. Noncarbonate Island B3a mountain complex B3b Mountain vegetation on Erect-shrub tundras Ob R. noncarbonate bedrock. The S1. Erect dwarf- B3c variety and size of plants decrease with elevation and shrub tundra B3d latitude. Hatching color and Tundra dominated by erect code indicate the bioclimate dwarf-shrubs, mostly < 40 Novaya S1 B3e subzone at the mountain cm tall. Subzone D. base. B3a through B3e Daniëls Qingertivaq Fjord, SE Greenland. F.J.A.
    [Show full text]
  • A New Species of Melampsora Rust on Salix Elbursensis from Iran
    For. Path. doi: 10.1111/j.1439-0329.2010.00699.x Ó 2010 Blackwell Verlag GmbH A new species of Melampsora rust on Salix elbursensis from Iran By S. M. Damadi1,5, M. H. Pei2, J. A. Smith3 and M. Abbasi4 1Department of Plant Protection, Faculty of Agriculture, University of Maragheh, Maragheh, Iran; 2Rothamsted Research, Harpenden, Hertfordshire, UK; 3School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, USA; 4Plant Pests & Diseases Research Institute, Tehran, Iran; 5E-mail: [email protected] (for correspondence) Summary A rust fungus was found causing stem cankers on 1- to 5-year-old stems of Salix elbursensis in the north west of Iran. The rust also forms uredinia on leaves and flowers of the host willow. Light and scanning electron microscopy revealed that the new rust is morphologically distinct from several Melampsora species occurring on the willows taxonomically close to S. elbursensis, but indistinguish- able from Melampsora larici-epitea. Examination of the internal transcribed spacer (ITS) region of the ribosomal DNA suggested that the rust fungus is phylogenetically close to Melampsora allii-populina and Melampsora pruinosae on Populus spp. Based on both the morphological characteristics and the ITS sequence data, the rust is described as a new species – Melampsora iranica sp. nov. 1 Introduction The genus Melampsora was established by Castagne in 1843 based on the rust on Euphorbia, Melampsora euphorbiae (Schub.) Cast. (Castagne 1843). The main character- istic of the genus Melampsora is the formation of ÔnakedÕ uredinia and crust-like telia that comprise sessile, laterally adherent single-celled teliospores. Of some 80 Melampsora spp.
    [Show full text]