The Making of John Tyndall's Darwinian Revolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Completed Thesis
THE UNIVERSITY OF WINCHESTER Faculty of Humanities and Social Sciences Human Uniqueness: Twenty-First Century Perspectives from Theology, Science and Archaeology Josephine Kiddle Bsc (Biology) MA (Religion) Thesis for the degree of Doctor of Philosophy February 2013 This Thesis has been completed as a requirement for a postgraduate research degree of the University of Winchester. The word count is: 89350 THE UNIVERSITY OF WINCHESTER ABSTRACT FOR THESIS Human Uniqueness: Twenty-First Century Perspectives from Theology, Science and Archaeology A project aiming to establish, through the three disciplines, the value of human uniqueness as an integrating factor for science with theology Josephine Kiddle Bsc (Biology) MA (Religion) Faculty of Humanities and Social Sciences Doctor of Philosophy February 2013 The theme that underlies the thesis is the challenge presented by science, as it developed from the time of the Enlightenment through the centuries until the present day, to Christian theology. The consequent conflict of ideas is traced in respect of biological science and the traditions of Protestant Christian doctrine, together with the advances of the developing discipline of prehistoric archaeology since the early nineteenth century. The common ground from which disagreement stemmed was the existence of human beings and the uniqueness of the human species as a group amongst all other creatures. With the conflict arising from this challenge, centring on the origin and history of human uniqueness, a rift became established between the disciplines which widened as they progressed through to the twentieth century. It is this separation that the thesis takes up and endeavours to analyse in the light of the influence of advancing science on the blending of philosophical scientific ideas with the elements of Christian faith of former centuries. -
ED390648.Pdf
DOCUMENT RESUME ED 390 648 SE 056 959 AUTHOR Poole, Michael TITLE Beliefs and Values in Science Education. Developing Science and Technology Education. REPORT NO ISBN-0-335-15645-2 PUB DATE 95 NOTE 146p. AVAILABLE FROM Open University Press, Suite 101, 1900 Frost Road, Bristol, PA 19007 (hardcover: ISBN-0-335-15646-0; paperback: ISBN-0-335-15645-2). PUB TYPE Reports Evaluative/Feasibility (142) Books (010) EDRS PRICE MF01/PC06 Plus Postage. DESCRIPTORS *Beliefs; *Cultural Influences; Elementary Secondary Education; Foreign Countries; Moral Values; Science Curriculum; Science Instruction; Social Values; Student Attitudes; Technology; *Values ABSTRACT This book asserts that beliefs and values are integral to the scientific enterprise and the theory and practice of education and hence science education, and that it is desirable to explore such matters in the classroom. It aims at helping science teachers demonstrate how spiritual, moral, social, and cultural factors affect science. Chapter 1, "Everybody Needs Standards," begins by looking at ways in which beliefs and values are located within science and within education and moves on to fundamental matters about the bases of belief systems. Chapter 2, "What Science Cannot Discover, Mankind Cannot Know?" considers how beliefs about the nature of the scientific enterprise have affected popular views about the status of science, and the particular educational task this presents. The ways in which beliefs and values affect the language of science, its models, and metaphors, is the theme of chapter 3, "Every Comparison Has a Limp." Chapter 4, "Wanted! Alive or Dead," addresses issues of environmental beliefs and models. Chapcer 5, "In the Beginning," deals with teaching about the Earth in space and traces out current interest in metaphysical as well as physical questions about origin. -
The Stuff of Youth and Supply Free Ca2+ at the Inner Membrane Surface
NEWS & VIEWS throughout the hydrophobic interior of the bilayer. Release of Ca2+ inside the vesicle occurs when the MATERIAL WITNESS shuttle complex meets the carotinoid radical cation, which oxidizes the complex to form the stable quinone The stuff of youth and supply free Ca2+ at the inner membrane surface. The Ca2+ pumping circuit is completed by recycling of here’s scarcely any scientist, the quinone to the semiquinone form at the outer with the possible exception of membrane surface.This reduction reaction is driven by geneticists and cosmologists, the naphthoquinone radical anion,formed in the who feels that his or her initial electron transfer process. T discipline gets its fair share of There remain several limitations to this approach. the limelight. But materials scientists have The observed photochemical efficiency of Ca2+ the added disadvantage that their science pumping,estimated to be ~0.01,is low. The low value runs perilously close to engineering—and may be a consequence of relying on quinone shuttle when was the last time you saw a popular diffusion within the bilayer to move ions and cycle TV programme on engineering? redox species; if diffusion of these species is slow relative So it is good news that this year’s Christmas Lectures for to competing,non-productive secondary reactions,the children at the UK’s Royal Institution in London, entitled Smart efficiency of the system will suffer. Long-term stability Stuff, will have a heavy focus on materials. Not only that, but of the Ca2+-binding shuttle quinones may also be an they will show something of the grand sweep and diversity of issue under conditions in which many catalytic cycles today’s materials science, ranging from photonics to are required.In addition,Ca2+ transport kinetics in the biomedical materials to food science. -
Joule's Thermoscope and the Second Law of Thermodynamics
JOULE’S THERMOSCOPE AND THE SECOND LAW OF THERMODYNAMICS Summary This paper describes an instrument devised by Joule in 1863 to detect the energy of moonlight. It is extraordinarily sensitive to heat and must convert heat into mechanical energy with high efficiency. But since the temperature rise caused by moonlight is only 10-4F, the Carnot theorem would give a maximum efficiency of 10-6. JOULE’S THERMOSCOPE SHOWS THAT THE CARNOT EFFICIENCY LIMIT, THE MOST COMMON EXPRESSION OF THE SECOND LAW OF THERMODYNAMICS, IS WRONG The thermoscope uses convection currents and involves an energy cycle at constant volume. These features form the basis of proposals I have made for the efficient conversion of solar energy into electricity that were placed on my website in March 2002, September 2002 and March 2003. Indeed Joule‟s thermoscope is identical to Figure 3 in the latter Simple Solar Engine. It is my view that heat from fossil fuels or from solar energy can be converted into mechanical energy or electricity with an efficiency of up to 100% using energy cycles at constant volume. I would be very grateful for any comments. [E-mail address: williams.a(AT)globalwarmingsolutions.co.uk] Joule’s Thermoscope and the Second Law of Thermodynamics In 1863 James Joule devised an instrument to detect the energy of moonlight1, 2. It was to settle an argument with an adversary John Tyndall over whether the moon was hot or cold. He described the thermoscope as “a sort of wind thermometer”3. I am grateful to the Museum of Science and Industry in Manchester for their efforts to track down the instrument but it does not survive nor is there any detailed drawing. -
Century Measurements of the Mechanical Equivalent of Heat
Digital Kenyon: Research, Scholarship, and Creative Exchange Faculty Publications Physics 2002 Nineteenth‐Century Measurements of the Mechanical Equivalent of Heat Tom Greenslade Kenyon College, [email protected] Follow this and additional works at: https://digital.kenyon.edu/physics_publications Part of the Physics Commons Recommended Citation ”Nineteenth-Century Measurements of the Mechanical Equivalent of Heat”, The Physics Teacher, 40, 243-248 (2002) This Article is brought to you for free and open access by the Physics at Digital Kenyon: Research, Scholarship, and Creative Exchange. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Digital Kenyon: Research, Scholarship, and Creative Exchange. For more information, please contact [email protected]. Nineteenth‐Century Measurements of the Mechanical Equivalent of Heat Thomas B. Greenslade Jr. Citation: The Physics Teacher 40, 243 (2002); doi: 10.1119/1.1474151 View online: http://dx.doi.org/10.1119/1.1474151 View Table of Contents: http://scitation.aip.org/content/aapt/journal/tpt/40/4?ver=pdfcov Published by the American Association of Physics Teachers Articles you may be interested in Nanoscale specific heat capacity measurements using optoelectronic bilayer microcantilevers Appl. Phys. Lett. 101, 243112 (2012); 10.1063/1.4772477 Nineteenth-Century Textbook Illustrations: A Frontispiece Puzzle Phys. Teach. 47, 226 (2009); 10.1119/1.3098208 Construction of an innovative heating apparatus for ultrahigh vacuum platens used in high pressure reaction cells Rev. Sci. Instrum. 75, 983 (2004); 10.1063/1.1666993 Equilibrium structural model of liquid water: Evidence from heat capacity, spectra, density, and other properties J. Chem. Phys. 109, 7379 (1998); 10.1063/1.477344 The Gibbs–Thomson effect and intergranular melting in ice emulsions: Interpreting the anomalous heat capacity and volume of supercooled water J. -
Chapter 2 DARWIN and the AFTERMATH Science and Faith In
Notes on Science & Christian Belief – Chapter 2 2009 Chapter 2 DARWIN AND THE AFTERMATH Science and Faith in the 19th and the 20th Centuries Allan J Day Author: Allan J Day 2-1 Notes on Science & Christian Belief – Chapter 2 2009 CONTENTS – CHAPTER 2 Chapter 2 DARWIN AND THE AFTERMATH .............................. 2-1 2.1 INTRODUCTION.............................................................. 2-3 2.1.1 Darwin and The Origin Of Species.................................................. 2-3 2.1.2 Darwin and the aftermath ................................................................. 2-3 2.2 BACKGROUND TO DARWIN ............................................. 2-3 2.2.1 18th Century Geology and the Age of the Earth........................ 2-3 2.2.2 Early 19th Century Background....................................................... 2-4 2.3 EARLY DARWIN AND THE ORIGIN OF SPECIES............... 2-5 2.3.1 Background and training.................................................................... 2-5 2.3.2 The Beagle Journey 1831-1836....................................................... 2-5 2.3.3 Malthus and Population Control....................................................... 2-5 2.3.4 Alfred Wallace........................................................................................ 2-5 2.3.5 The Origin of Species - 1859............................................................ 2-5 2.4 RESPONSES TO DARWIN ................................................ 2-6 2.4.1 The British Association Debate 1860 ............................................ -
Spontaneous Generation & Origin of Life Concepts from Antiquity to The
SIMB News News magazine of the Society for Industrial Microbiology and Biotechnology April/May/June 2019 V.69 N.2 • www.simbhq.org Spontaneous Generation & Origin of Life Concepts from Antiquity to the Present :ŽƵƌŶĂůŽĨ/ŶĚƵƐƚƌŝĂůDŝĐƌŽďŝŽůŽŐLJΘŝŽƚĞĐŚŶŽůŽŐLJ Impact Factor 3.103 The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers in metabolic engineering & synthetic biology; biocatalysis; fermentation & cell culture; natural products discovery & biosynthesis; bioenergy/biofuels/biochemicals; environmental microbiology; biotechnology methods; applied genomics & systems biotechnology; and food biotechnology & probiotics Editor-in-Chief Ramon Gonzalez, University of South Florida, Tampa FL, USA Editors Special Issue ^LJŶƚŚĞƚŝĐŝŽůŽŐLJ; July 2018 S. Bagley, Michigan Tech, Houghton, MI, USA R. H. Baltz, CognoGen Biotech. Consult., Sarasota, FL, USA Impact Factor 3.500 T. W. Jeffries, University of Wisconsin, Madison, WI, USA 3.000 T. D. Leathers, USDA ARS, Peoria, IL, USA 2.500 M. J. López López, University of Almeria, Almeria, Spain C. D. Maranas, Pennsylvania State Univ., Univ. Park, PA, USA 2.000 2.505 2.439 2.745 2.810 3.103 S. Park, UNIST, Ulsan, Korea 1.500 J. L. Revuelta, University of Salamanca, Salamanca, Spain 1.000 B. Shen, Scripps Research Institute, Jupiter, FL, USA 500 D. K. Solaiman, USDA ARS, Wyndmoor, PA, USA Y. Tang, University of California, Los Angeles, CA, USA E. J. Vandamme, Ghent University, Ghent, Belgium H. Zhao, University of Illinois, Urbana, IL, USA 10 Most Cited Articles Published in 2016 (Data from Web of Science: October 15, 2018) Senior Author(s) Title Citations L. Katz, R. Baltz Natural product discovery: past, present, and future 103 Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and R. -
Front-Matter.Pdf
TRANSACTIONS OF THE GEOLOGICAL SOCIETY OF LONDON. SECOND SERIES. VOLUME V.- PART THE SECOND. Quod si cui mortalium cordi et curse sit, non tantum inventis hserere, atque iis uti, sed ad ulteriora penetrare; atque non disputando adversarium, sed opere naturam vincere; denique non belle et probabiliter opinari, sed certo et ostensive scire; tales, tanquam veri scientiarura filii, nobis (si videbitur) se adjungant. Novum Organum, Preefatio. LONDON: PRINTED BY R. AND J. E. TAYLOR, RED LION COURT, FLEET STREET. SOLD AT THE APARTMENTS OF THE GEOLOGICAL SOCIETY, SOMERSET HOUSE. 1840. OFFICERS AND COUNCIL OF THE GEOLOGICAL SOCIETY OF LONDON. 1839- PRESIDENT. Rev. WILILAM BUCKLAND, D.D., Professor of Geology and Mineralogy in the University of Oxford. VICE-PRESIDENTS. GEORGE BELLAS GREENOUGH, Esq. F.R.S. Rev. ADAM SEDGWICK, M.A., F.R.S. F.L.S., F.L.S. Woodwardian Professor in the University of LEONARD HORNER, Esq. F.R.S. L. & E. Cambridge. CHARLES LYELL, Jun., Esq. M.A. F.R.S. & F.L.S. SECRETARIES. CHARLES DARWIN, Esq. B.A. F.R.S. | WILLIAM JOHN HAMILTON, Esq. FOREIGN SECRETARY. HENRY THOMAS DE LA BECHE, Esq. F.R.S. F.L.S. TREASURER. JOHN TAYLOR, Esq. F.R.S. COUNCIL. CHARLES GILES BRIDLE DAUBENY,M.D. WILLIAM HALLOWS MILLER, Esq. M.A. F. R. S. & F.L. S., Regius Professor of Botany, and F.R.S., Professor of Chemistry in the University Aldrich's Professor of Chemistry in the University of Cambridge. of Oxford. RODERICK IMPEY MURCHISON, Esq. Sir PHILIP DE MALPAS GREY EGERTON, F.R.S. & F.L.S. -
Science and Society Scientific Societies in Victorian England1
Review of Sociology 24(4): 85–111. Science and Society Scientific Societies in Victorian England1 Eszter Pál [email protected] ABSTRACT: The article analyzes the development of scientific thinking and production in England from the early to the late Victorian period. 19th century England saw a thorough change in every sphere of society including that of science. This was a time when the very idea of science – as understood in the 20th century – started to emerge. The article compares the modus operandi of three scientific bodies of utmost importance: the Royal Society, the British Association for the Advancement of Science, and the so-called X-Club. The first one represented an old-fashioned scientific body with a narrow, aristocratic social basis, whereas the BAAS, a reformist, much newer society was founded with the manifest idea of science as a universal, all-encompassing and neutral field, free of political and religious influences. The article shows that despite this official standing, the BAAS still represented a narrow range of scientific, political, cultural and social interests. In contrast to both of these bodies, the X-Club, an informal but highly influential set of nine scientists, introduced the idea of a modernized science. Largely due to their influence and shrewd strategic action, by the end of the century the scientific sphere had become far more independent of extra-scientific influences than ever before. The article concludes, however, that this independence meant a greater need to disguise the social and cultural embeddedness of science with a new set of criteria for scientific legitimacy, rather than actual, full autonomy. -
Two Letters from John Herschel to Charles Lyell, 1836-1837 Author(S): Walter F
The Impact of Uniformitarianism: Two Letters from John Herschel to Charles Lyell, 1836-1837 Author(s): Walter F. Cannon Source: Proceedings of the American Philosophical Society, Vol. 105, No. 3 (Jun. 27, 1961), pp. 301-314 Published by: American Philosophical Society Stable URL: http://www.jstor.org/stable/985457 Accessed: 28-06-2018 03:03 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/985457?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms American Philosophical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Philosophical Society This content downloaded from 150.135.165.81 on Thu, 28 Jun 2018 03:03:33 UTC All use subject to http://about.jstor.org/terms THE IMPACT OF UNIFORMITARIANISM Two Letters from John Herschel to Charles Lyell, 1836-1837 WALTER F. CANNON Assistant Professor of History, University of California, Berkeley I. INTRODUCTION how new species are generated. Lyell himself CHARLES DARWIN began the Introduction to was too fearful of orthodox Christian opinion to On the Origin of Species by saying that his ob- assert a naturalistic origin of species in the Prin- servations in South America "seemed to throw ciples, especially as he could specify no mechanism whereby such generation could take place. -
Phases of Physics in J.D. Forbes' Dissertation Sixth for The
Falconer: “Phases of Physics in J.D. Forbes…,” in History of Science p1 Preprint: to appear in History of Science, special issue on “Phases of Physics.” Phases of physics in J.D. Forbes’ Dissertation Sixth for the Encyclopaedia Britannica (1856) Isobel Falconer School of Mathematics and Statistics, University of St Andrews North Haugh, St Andrews, KY16 9SS UK Email: [email protected] Abstract This paper takes James David Forbes’ Encyclopaedia Britannica entry, Dissertation Sixth, as a lens to examine physics as a cognitive, practical, and social, enterprise. Forbes wrote this survey of eighteenth- and nineteenth- century mathematical and physical sciences, in 1852-6, when British “physics” was at a pivotal point in its history, situated between a discipline identified by its mathematical methods – originating in France - and one identified by its university laboratory institutions. Contemporary encyclopaedias provided a nexus for publishers, the book trade, readers, and men of science, in the formation of physics as a field. Forbes was both a witness, whose account of the progress of physics or natural philosophy can be explored at face value, and an agent, who exploited the opportunity offered by the Encyclopaedia Britannica in the mid nineteenth century to enrol the broadly educated public, and scientific collective, illuminating the connection between the definition of physics and its forms of social practice. Forbes used the terms “physics” and “natural philosophy” interchangeably. He portrayed the field as progressed by the natural genius of great men, who curated the discipline within an associational culture that engendered true intellectual spirit. Although this societal mechanism was becoming ineffective, Forbes did not see university institutions as the way forward. -
Reinterpreting and Augmenting John Tyndall's 1859 Greenhouse Gas
Reinterpreting and Augmenting John Tyndall’s 1859 Greenhouse Gas Experiment with Thermoelectric Theory and Raman Spectroscopy Blair D. Macdonald First Published: Abstract Climate science's fundamental premise – assumed by all parties in the great climate debate – says the greenhouse gases – constituting less than 2% of Earth’s atmosphere; first derived by John Tyndall‘s in his 1859 thermopile experiment, and demonstrated graphically today by infrared IR spectroscopy – are special because of their IR (heat) absorbing property. From this, it is – paradoxically – assumed the (remaining 98%) non-greenhouse gases N2 nitrogen and O2 oxygen are non-heat absorbent. This paper reveals, by elementary physics, the (deceptive) role thermopiles play in this paradox. It was found: for a special group substances – all sharing (at least one) electric dipole moment – i.e. CO2, and the other greenhouse gases – thermopiles – via the thermoelectric (Seebeck) effect – generate electricity from the radiated IR. Devices using the thermopile as a detector (e.g. IR spectrographs) discriminate, and have misinterpreted IR absorption for anomalies of electricity production – between the sample gases and a control heat source. N2 and O2 were found to have (as all substances) predicted vibrational modes (derived by the Schrodinger quantum equation) at 1556cm-1 and 2330cm-1 respectively – well within the IR range of the EM spectrum and are clearly observed – as expected – with Raman Spectroscopy – IR spectroscopy’s complement instrument. The non-greenhouse gases N2 and O2 are relegated to greenhouse gases, and Earth’s atmospheric thermoelectric spectrum was produced (formally IR spectrum), and was augmented with the Raman observations. It was concluded the said greenhouses gases are not special, but typical; and all substances have thermal absorption properties, as measured by their respective heat capacities.