Analytical Guide for Routine Beverage Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Analytical Guide for Routine Beverage Analysis Table of Contents Introduction Process Critical Parameters in Alcoholic Beverages Organic Acids Important Cations Sugars Metals Titration Parameters Reagent Ordering Table Analytical guide for routine beverage analysis Table of Contents Table of Contents Introduction Process Critical Parameters in Alcoholic Beverages Organic Acids Important Cations Introduction Sugars Process Critical Parameters in Alcoholic Beverages Important Cations Metals Acetaldehyde Ammonia Titration Parameters Alpha-Amino Nitrogen (NOPA) Calcium Reagent Ordering Table Beta-Glucan (High MW) Magnesium Bitterness Potassium Ethanol Sugars Glycerol D-Fructose Total Polyphenol D-Glucose Total Protein (Biuret) D-Glucose & D-Fructose Alpha Amylase D-Glucose & D-Fructose & Sucrose Organic Acids Sucrose Tartaric Acid Metals Acetic Acid Total Iron (Fe) Citric Acid Titration Parameters D-Gluconic Acid pH (colorimetric) D-Isocitric Acid pH and Conductivity by Electro chemistry D-Lactic Acid Free and Total SO2 L-Lactic Acid Total SO2 L-Malic Acid Total Acids (TA) Oxalic Acid Reagent Ordering Table L-Ascorbic Acid Table of Contents Beverage analysis Introduction Process Critical For all beverages, the compositional quality and safety must be monitored The Thermo Scientific™ Gallery™ Discrete Analyzer provides an integrated Parameters in Alcoholic to help track contamination, adulteration and product consistency, and to platform for colorimetric, photometric and electrochemical analyses, which Beverages ensure regulatory compliance from raw ingredients (water, additives and can be run in parallel. Discrete cell technology allows for simultaneous fruits) to the final product. measurement of several different tests for the same sample, eliminating Organic Acids method changeover time. Each individual reaction cell is isolated and Analytes of interest include ions, sugars, organic acids, alcohol, color, temperature-stabilized, thus providing highly controlled reaction conditions. Important Cations metals, protein and enzymes. Analytical testing solutions involved in The Gallery discrete analyzer is able to achieve very low detection levels, beverage analysis encompass several types of chromatographic, elemental and its sophisticated dilution features help to manage a wide concentration Sugars and traditional wet chemistry analysis techniques. range without user intervention. Results are ready within minutes, translating into a remarkable reduction of hands-on time. The wavelength Automated wet chemistry analysis Metals range covers filter configurations from 340 nm up to 880 nm. An optional, Traditional wet chemistry methods include titration, colorimetry and pH integrated Electro Chemical Measurement (ECM) unit supports conductivity and ion-selective measurements, as well as, Flow Injection Analysis (FIA), Titration Parameters and pH measurements over a wide range. or Segmented Flow Analysis (SFA). However, traditional wet chemistry Reagent Ordering Table methods are labor-intensive and time-consuming. Technology comparison Traditional wet chemistry Gallery discrete analyzer platform • mL reagents •Typically single or max • 2-120 µL reagents • Parallel and batch • 50-100 mL samples per test 4 parameters per sample • Max 300 µL per test • Up to 20 parameters per sample • Liters of waste generation •High cost per analysis • Few mL of waste • Low cost per analysis • Multiple instruments • Low throughput – 20-80 •Single platform •High throughput up to 200-350 tests/hr • Labor intensive tests/hr • Easy to operate • Integrated barcode reader for • Sequential or batch • Fully automated samples and reagents Multiparameteranalysis – optimized workflow with the Gallery discrete analyzer Multiple Ready to use Multiple tests Single instrument Turnaround Walkaway sample types reagents per sample multiparameter analysis time solution Range of organic acids Anions: Fluoride, Chloride, Nitrite, Nitrate, Sulfate Ammonia, Barcodes Total Kjeldahl Nitrogen (TKN) Calcium, Magnesium, Potassium Phosphate, Total phosphate pH, Conductivity Alkalinity, Total hardness Free and total cyanide Metals: total iron, Cr(VI)... Wine specific parameters Barcodes Beer specific parameters Cider testing Water and waste water as per regulatory method Table of Contents Beverage analysis Introduction Process Critical Parameters in Alcoholic Beverages Organic Acids Important Cations Sugars Metals Sample preparation Titration Parameters Sample preparation is an important step in beverage analysis, but it’s not always necessary. Some samples (e.g., wine) often require no treatment. With other samples (e.g., juice), sometimes short Reagent Ordering Table centrifugation (e.g., 5 min., 15,000 rpm) is enough to make the sample homogeneous, or extraction, dilution or filtration is sufficient for sample preparation. Typical sample preparation methods are listed below. Sample characteristics Preparation method Liquid, clear, colorless and Use samples directly, or after dilution, into the measuring range of the assay. The Gallery discrete analyzer can perform the dilutions practically neutral automatically. Turbid Use filter or centrifuge. Contains carbon dioxide Degas samples by shaking and filtering with a folder filter paper or in an ultrasonic bath. Contains protein Deproteinize samples with Carrez reagents. Solid or semi-solid, does not Crush or homogenize the samples. Weigh sufficient quantity of the sample in a volumetric flask (take note of the measuring range); contain fat extract with water and filtrate; centrifuge or use Carrez clarification, if necessary. Weigh sufficient quantity of the sample into a volumetric flask (take note of the measuring range); extract with hot water. Solid or semi-solid, contains Cool to allow the fat to separate, make up to the mark, place the volumetric flask in an ice bath for 15-30 min. and filter. fat Discard the first few ml of filtrate, and use the clear supernatant (which may be slightly opalescent) for the assay. Alternatively, clarify with Carrez reagents. Adjust the sample solution to suitable pH by adding Hydrochloric acid (1 M) or potassium hydroxide solution (2 M) and incubate for Needs pH adjustment approx. 15-30 min. Treat sample solution with polyvinylpolypyrrolidone (PVPP) (e.g., 1 g/100 ml sample). Shake the tube vigorously for 5 min., Strongly colored then filter the sample. Download Smart Note: What is Better for Automating Wet Chemical Analysis? Integrated Discrete Analyzer or Flow Analyzers? Table of Contents Acetaldehyde Introduction Process Critical Parameters in Alcoholic Beverages Acetaldehyde is commonly found in food and beverages such as fruits, Table 1. Reagents vegetables, and dairy products. Generally, fruits have more acetaldehyde Maximum Acetaldehyde Reagent Part Number Measuring Range (mg/L) than vegetables and other foods. Eating foods with significant amounts Number of Tests Alpha-Amino Nitrogen (NOPA) of acetaldehyde may increase the risk of cancers of the digestive tract. 984347 250 2 – 500 Beta-Glucan (High MW) 984396 – Some foods are made through fermentation by microorganisms, Acetalldehyde Standard Bitterness such as yeast, fungi or bacteria. Acetaldehyde is a byproduct of fermentation, which means that fermented foods can have high y = 0.939x + 3.3829 Ethanol 2 Linearity 2 –- 500 mg/lmg/L amounts of acetaldehyde. Types of fermented foods that may be high R = 0.9996 600 Glycerol in acetaldehyde include yogurt, vinegar, kombucha, fish products, ) 500 Total Polyphenol fermented mushrooms, fermented soy products, pickled vegetables, canned vegetables and kimchi. 400 Total Protein (Biuret) ed (mg/l 300 Alpha Amylase Acetaldehyde enters the human body when breathing air that contains it, 200 like with cigarette smoke. It can also enter body when you ingest foods Measur 100 or drinks containing acetaldehyde. When drinking alcohol, for example, Organic Acids 0 the body makes acetaldehyde to process the alcohol. Acetaldehyde 0 100 200 300 400 500 600 enters the blood, damaging your membranes and possibly causing scar Important Cations TheorTheoreticaletical mg/L (mg/l) tissue. It may also cause a hangover, and can result in a faster heartbeat, Figure 1: Method performance linearity Sugars a headache or an upset stomach. Samples: Method performance was tested for beer and white wine; Method: Gas Chromatography with Headspace is also used for Metals however, the method can also be applied for other alcoholic beverages, acetaldehyde determination in several food products. Selective citrus fruit juices and vegetable juices. Additional sample preparation may enzymatic reaction followed by a photometric measurement is highly Titration Parameters be necessary to remove interference, especially with colored samples selective and can be automated. Automated photometric measurement like red wine, which needs to be decolorized. Please refer to the sample Reagent Ordering Table is rapid and can measure acetaldehyde down to 2 mg/L. preparation section of the insert for more details. It is recommended to Chemistry: The method is based on the enzyme catalyzed conversion validate the method using spiked samples with a known amount of analyte of acetaldehyde to acetic acid in the presence of NAD. Within that to see the possible matrix effect of the sample. reaction, NAD is reduced to NADH, which causes a spectral shift in the Precision: absorbance of the solution. NADH has a distinct absorbance at 340 nm Table 2. Precision while NAD absorbs at 260 nm. The amount of NADH formed in this Spiked Beer White Wine reaction is stoichiometric with the amount of acetaldehyde.
Recommended publications
  • Chemistry Grade Level 10 Units 1-15
    COPPELL ISD SUBJECT YEAR AT A GLANCE ​ ​ ​ ​​ ​ ​​ ​ ​ ​ ​ ​ ​ GRADE HEMISTRY UNITS C LEVEL 1-15 10 Program Transfer Goals ​ ​ ​ ​ ● Ask questions, recognize and define problems, and propose solutions. ​ ​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Safely and ethically collect, analyze, and evaluate appropriate data. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Utilize, create, and analyze models to understand the world. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Make valid claims and informed decisions based on scientific evidence. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Effectively communicate scientific reasoning to a target audience. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ PACING 1st 9 Weeks 2nd 9 Weeks 3rd 9 Weeks 4th 9 Weeks ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit Unit Unit Unit Unit Unit Unit Unit Unit ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 7 8 9 10 11 12 13 14 15 1.5 wks 2 wks 1.5 wks 2 wks 3 wks 5.5 wks ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1.5 2 2.5 2 wks 2 2 2 wks 1.5 1.5 ​ ​ ​ ​ wks wks wks wks wks wks wks Assurances for a Guaranteed and Viable Curriculum ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Adherence to this scope and sequence affords every member of the learning community clarity on the knowledge and skills ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ on which each learner should demonstrate proficiency. In order to deliver a guaranteed and viable curriculum, our team ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ commits to and ensures the following understandings: ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Shared Accountability: Responding
    [Show full text]
  • Chapter 9 Titrimetric Methods 413
    Chapter 9 Titrimetric Methods Chapter Overview Section 9A Overview of Titrimetry Section 9B Acid–Base Titrations Section 9C Complexation Titrations Section 9D Redox Titrations Section 9E Precipitation Titrations Section 9F Key Terms Section 9G Chapter Summary Section 9H Problems Section 9I Solutions to Practice Exercises Titrimetry, in which volume serves as the analytical signal, made its first appearance as an analytical method in the early eighteenth century. Titrimetric methods were not well received by the analytical chemists of that era because they could not duplicate the accuracy and precision of a gravimetric analysis. Not surprisingly, few standard texts from the 1700s and 1800s include titrimetric methods of analysis. Precipitation gravimetry developed as an analytical method without a general theory of precipitation. An empirical relationship between a precipitate’s mass and the mass of analyte— what analytical chemists call a gravimetric factor—was determined experimentally by taking a known mass of analyte through the procedure. Today, we recognize this as an early example of an external standardization. Gravimetric factors were not calculated using the stoichiometry of a precipitation reaction because chemical formulas and atomic weights were not yet available! Unlike gravimetry, the development and acceptance of titrimetry required a deeper understanding of stoichiometry, of thermodynamics, and of chemical equilibria. By the 1900s, the accuracy and precision of titrimetric methods were comparable to that of gravimetric methods, establishing titrimetry as an accepted analytical technique. 411 412 Analytical Chemistry 2.0 9A Overview of Titrimetry We are deliberately avoiding the term In titrimetry we add a reagent, called the titrant, to a solution contain- analyte at this point in our introduction ing another reagent, called the titrand, and allow them to react.
    [Show full text]
  • Titration Endpoint Challenge
    Analytical and Bioanalytical Chemistry (2019) 411:1–2 https://doi.org/10.1007/s00216-018-1430-y ANALYTICAL CHALLENGE Titration endpoint challenge Diego Alejandro Ahumada Forigua1 & Juris Meija2 Published online: 1 January 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 We would like to invite you to participate in the Analytical practical aspects related to the sources of uncertainty of Challenge, a series of puzzles to entertain and challenge our this technique. readers. This special feature of “Analytical and Bioanalytical Origins of titrimetry date back to 1690s, when Wilhelm Chemistry” has established itself as a truly unique quiz series, Homberg (1652–1715) published the first report related to with a new scientific puzzle published every three months. an acidity measurement [1]. Several decades later Claude Readers can access the complete collection of published prob- Geoffroy (1729–1753) used this method to determine the lems with their solutions on the ABC homepage at http://www. strength of vinegar by adding small amounts of potassium springer.com/abc. Test your knowledge and tease your wits in carbonate until the no further effervescence was observed diverse areas of analytical and bioanalytical chemistry by [2]. William Lewis (1708–1781), who is also considered one viewing this collection. of the early pioneers of titration, recognized the difficulty in In the present challenge, titration is the topic. And please determining the endpoint of the titration through the process note that there is a prize to be won (a Springer book of your of cessation of effervescence, so he suggested the use of color choice up to a value of €100).
    [Show full text]
  • Analytical Chemistry Laboratory Manual 2
    ANALYTICAL CHEMISTRY LABORATORY MANUAL 2 Ankara University Faculty of Pharmacy Department of Analytical Chemistry Analytical Chemistry Practices Contents INTRODUCTION TO QUANTITATIVE ANALYSIS ......................................................................... 2 VOLUMETRIC ANALYSIS .............................................................................................................. 2 Volumetric Analysis Calculations ................................................................................................... 3 Dilution Factor ................................................................................................................................ 4 Standard Solutions ........................................................................................................................... 5 Primary standard .............................................................................................................................. 5 Characteristics of Quantitative Reaction ......................................................................................... 5 Preparation of 1 L 0.1 M HCl Solution ........................................................................................... 6 Preparation of 1 L 0.1 M NaOH Solution ....................................................................................... 6 NEUTRALIZATION TITRATIONS ...................................................................................................... 7 STANDARDIZATION OF 0.1 N NaOH SOLUTION ......................................................................
    [Show full text]
  • Comparison of Vitamin C Content in Citrus Fruits by Titration and High Performance Liquid Chromatography (HPLC) Methods
    International Food Research Journal 24(2): 726-733 (April 2017) Journal homepage: http://www.ifrj.upm.edu.my Comparison of vitamin C content in citrus fruits by titration and high performance liquid chromatography (HPLC) methods 1Fatin Najwa, R. and 1,2*Azrina, A. 1Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, 43400 UPM Serdang, Selangor, Malaysia 2Research Centre of Excellence, Nutrition and Non-communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia Article history Abstract Received: 29 June 2015 Vitamin C is one of the essential vitamins for human and animal. Many methods were Received in revised form: developed for the determination of vitamin C such as spectrophotometry, electrophoresis, 23 March 2016 titration, and high performance liquid chromatography (HPLC). This study aims to compare Accepted: 4 April 2016 vitamin C content of citrus fruits (orange, grapefruit, lemon, lime, kaffir lime and musk lime) using indophenol titration and HPLC-PDA methods. In the titration method, orange has the highest vitamin C content (58.30 mg/100g) followed by grapefruit (49.15 mg/100g), lemon Keywords (43.96 mg/100g), kaffir lime (37.24 mg/100g), lime (27.78 mg/100g) and musk lime (18.62 Vitamin C mg/100g). While, in the HPLC method orange also leads with the highest vitamin C content Ascorbic acid (43.61 mg/100g) followed by lemon (31.33 mg/100g), grapefruit (26.40 mg/100g), lime (22.36 Citrus fruits mg/100g), kaffir lime (21.58 mg/100g) and musk lime (16.78 mg/100g).
    [Show full text]
  • Determination and Identification of Fundamental Amino Acids by Thermometric Titration and Nuclear Magnetic Resonance Spectroscopy
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1967 Determination and Identification of Fundamental Amino Acids by Thermometric Titration and Nuclear Magnetic Resonance Spectroscopy. William Yong-chien Wu Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Wu, William Yong-chien, "Determination and Identification of Fundamental Amino Acids by Thermometric Titration and Nuclear Magnetic Resonance Spectroscopy." (1967). LSU Historical Dissertations and Theses. 1274. https://digitalcommons.lsu.edu/gradschool_disstheses/1274 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 67-8805 WU, William Yong-Chien, 1939- DETERMINATION AND IDENTIFICATION OF FUNDAMENTAL AMINO ACIDS BY THERMOMETRIC TITRATION AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY. Louisiana State University and Agricultural and Mechanical College, Ph.D., 1967 Chemistry, analytical University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DETERMINATION AND IDENTIFICATION OF FUNDAMENTAL AMINO ACIDS BY THERMOMETRIC TITRATION AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by William Yong-Chien Wu B.A., Hardin Simmons University, I96I January, I967 Reproduced with permission of the copyright owner.
    [Show full text]
  • Determination of the Chemical Concentrations
    American Journal of Analytical Chemistry, 2014, 5, 205-210 Published Online February 2014 (http://www.scirp.org/journal/ajac) http://dx.doi.org/10.4236/ajac.2014.53025 Online Process Control of Alkaline Texturing Baths: Determination of the Chemical Concentrations Martin Zimmer, Katrin Krieg, Jochen Rentsch Department PV Production Technology and Quality Assurance, Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany Email: [email protected] Received December 16, 2013; revised January 20, 2014; accepted January 28, 2014 Copyright © 2014 Martin Zimmer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accor- dance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the intellectual property Martin Zimmer et al. All Copyright © 2014 are guarded by law and by SCIRP as a guardian. ABSTRACT Almost every monocrystalline silicon solar cell design includes a wet chemical process step for the alkaline tex- turing of the wafer surface in order to reduce the reflection of the front side. The alkaline texturing solution contains hydroxide, an organic additive usually 2-propanol and as a reaction product silicate. The hydroxide is consumed due to the reaction whereas 2-propanol evaporates during the process. Therefore, the correct reple- nishment for both components is required in order to achieve constant processing conditions. This may be sim- plified by using analytical methods for controlling the main components of the alkaline bath. This study gives an overview for a successful analytical method of the main components of an alkaline texturing bath by titration, HPLC, surface tension and NIR spectrometry.
    [Show full text]
  • The Birth of Titrimetry: William Lewis and the Analysis of American Potashes
    66 Bull. Hist. Chem., VOLUME 26, Number 1 (2001) THE BIRTH OF TITRIMETRY: WILLIAM LEWIS AND THE ANALYSIS OF AMERICAN POTASHES Frederick G. Page, University of Leicester. William Lewis (1708- In order to place 1781), was a physician, author, Lewis’s work in the context and an experimental chemist. of the early beginnings of Sometime after 1730 he gave the industrial revolution in public lectures in London on Britain, Sivin (4) has used a chemistry and the improve- chronological argument; he ment of pharmacy and manu- cites Ashton’s suggestion facturing arts (1). With a grow- (5) that 1782 was the begin- ing reputation as a chemical ning of the industrial revo- experimentalist he was elected lution because in that year F.R.S., on October 31,1745, most statistics indicated a and was then living in Dover sharp increase in industrial Street, London. In 1747 he production. But, as Sivin moved to Kingston-upon- argues, it seems reasonable Thames, where he set up a to assume that by the time well-equipped laboratory and such early statistics became presumably continued in medi- available, those industries cal practice. From about 1750 that had created salable until his death in 1781 Lewis products had already be- employed Alexander Chisholm come established and were as his assistant in chemical and no longer in their early literary works (2). These im- years of founding. On this proved the knowledge and basis the industrial revolu- practice of pharmacy, but as a tion must have begun ear- practical consulting chemist lier. By the middle of the Lewis has received little bio- eighteenth century the so- graphical recognition.
    [Show full text]
  • High Performance Liquid Chromatographic Assay of Chlorpropamide, Stability Study and Its Application to Pharmaceuticals and Urine Analysis
    Open Access Austin Journal of Analytical and Pharmaceutical Chemistry Research Article High Performance Liquid Chromatographic Assay of Chlorpropamide, Stability Study and its Application to Pharmaceuticals and Urine Analysis Basavaiah K1* and Rajendraprasad N2 1Department of Chemistry, University of Mysore, Mysuru, Abstract Karnataka, India Chlorproamide (CLP) is a sulphonyl-urea derivative used in the treatment 2PG Department of Chemistry, JSS College of Arts, of type 2 diabetes mellitus. A rapid, sensitive and specific HPLC method with Commerce & Science, B N Road, Mysuru, Karnataka, uv detection is described for the determination of CLP in bulk and tablet forms. India The assay was performed on an Inertsil ODS 3V (150mm × 4.6mm; 5µm *Corresponding author: Basavaiah K, Department particle size) column using a mixture of phosphate buffer (pH 4.5), methanol of Chemistry, University of Mysore, Manasagangothri, and acetonitrile (30:63:7v/v/v) as mobile phase at a flow rate of 1mLmin-1 and Mysuru, Karnataka, India with uv detection at 254nm. The column temperature was 30ᴼC and injection volume was 20µL. The retention behaviour of CLP as a function of mobile phase Received: February 27, 2017; Accepted: March 16, pH, composition and flow rate was carefully studied, and chromatographic 2017; Published: March 22, 2017 conditions, yielding a symmetric peak with highest number of theoretical plates, were optimized. The calibration curve was linear (r = 0.9999) over the concentration range 0.5 – 300 µgmL-1. The limits of detection (LOD) and quantification (LOQ) were found to be 0.1 and 0.3 µgmL-1, respectively. Both intra-day and inter-day precisions determined at three concentration levels were below 1.0% and the respective accuracies expressed as %RE were ≤1.10%.
    [Show full text]
  • Experiment 4 Analysis by Gas Chromatography
    Experiment 4 Analysis by Gas Chromatography In this experiment we will study the method of gas chromatography. Gas chromatography (GC) is one of the most important analytical tools that the chemist has. In this lab you will watch and listen to a video presentation about GC, look at a research-level GC instrument, and learn how to do a qualitative and quantitative GC analysis. A schematic outline of a typical instrument is shown below. When a sample is injected into the correct column, a carrier gas sweeps the sample through the column. If necessary, an oven heats the system to vaporize the sample and speed its passage through the column. The different components of the sample will be separated by the column because each of the components “sticks” to the liquid coating that on the column packing differently. The greater the “stickiness,” the longer it takes for a substance to pass through the column. When a substance leaves the column, it is sensed by a detector. The detector generates a voltage that is proportional to the amount of the substance. The signal from the detector is then displayed by a chart recorder and/or fed into a computer. Modern gas chromatographs are connected to a computer which displays the peaks of all the substances in the sample. This is called the chromatogram. Software can perform all the calculations you will do in this experiment. An example of an analysis for cholesterol esters is shown above. If it could be done at all, this separation would take weeks by traditional wet chemistry.
    [Show full text]
  • Isothermal Titration Calorimetry and Differential Scanning Calorimetry As Complementary Tools to Investigate the Energetics of Biomolecular Recognition
    JOURNAL OF MOLECULAR RECOGNITION J. Mol. Recognit. 1999;12:3–18 Review Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition Ilian Jelesarov* and Hans Rudolf Bosshard Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland The principles of isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) are reviewed together with the basic thermodynamic formalism on which the two techniques are based. Although ITC is particularly suitable to follow the energetics of an association reaction between biomolecules, the combination of ITC and DSC provides a more comprehensive description of the thermodynamics of an associating system. The reason is that the parameters DG, DH, DS, and DCp obtained from ITC are global properties of the system under study. They may be composed to varying degrees of contributions from the binding reaction proper, from conformational changes of the component molecules during association, and from changes in molecule/solvent interactions and in the state of protonation. Copyright # 1999 John Wiley & Sons, Ltd. Keywords: isothermal titration calorimetry; differential scanning calorimetry Received 1 June 1998; accepted 15 June 1998 Introduction ways to rationalize structure in terms of energetics, a task that still is enormously difficult inspite of some very Specific binding is fundamental to the molecular organiza- promising theoretical developments and of the steady tion of living matter. Virtually all biological phenomena accumulation of experimental results. Theoretical concepts depend in one way or another on molecular recognition, have developed in the tradition of physical-organic which either is intermolecular as in ligand binding to a chemistry.
    [Show full text]
  • CSUS Department of Chemistry Experiment 4: Practice Titration Chem
    CSUS Department of Chemistry Experiment 4: Practice Titration Chem. 1A Experiment 4: Practice Titration A "titration" is a common laboratory method of quantitative chemical analysis that is used to determine the unknown concentration of a known analyte. Titrations belong to class of analytical techniques known as "volumetric analysis". Since volumes can be precisely delivered and measured using standard laboratory equipment, titration techniques can yield both accurate and precise measurements if care is taken by the analyst. Accuracy is defined as the closeness of a result (usually the average of several measurements) to a known accepted value. Precision relates the closeness of the measurements themselves. In any analytical experiment, one strives for both accuracy and precision to validate the results. In this experiment you will be graded on both your accuracy (how close you are to the actual value) and the precision of your results. (how reproducible they are) In a titration an analyst titrates a solution of unknown concentration with a solution of known concentration (aka a standard solution). The stoichiometry of the reaction between the standard and the analyte is known. Using a calibrated "buret" to add the standard solution, it is possible to determine with accuracy the amount of analyte present in the unknown solution when the titration endpoint is reached. The endpoint of a titration is that point at which the titration is complete. The endpoint is generally signaled by an indicator (see below) that was added to the analyte solution. This is ideally the same volume or very close to as the equivalence point—the volume of added titrant at which the number of moles of titrant is equal to the number of moles of analyte, or some multiple thereof.
    [Show full text]