A1 F2015 Review Copy.Key

Total Page:16

File Type:pdf, Size:1020Kb

A1 F2015 Review Copy.Key Review Astronomy 1 — Elementary Astronomy LA Mission College Spring F2015 Quotes & Cartoon of the Day “One may wonder, What came before? If space-time did not exist then, how could everything appear from nothing? . Explaining this initial singularity—where and when it all began—still remains the most intractable problem of modern cosmology. — Andrei Linde “But who shall dwell in these worlds if they be inhabited? ... Are we or they Lords of the World? ... And how are all things made for man?” — Johannes Kepler “Our sun is one of 100 billion stars in our galaxy. Our galaxy is one of billions of galaxies populating the universe. It would be the height of presumption to think that we are the only living things in that enormous immensity.” — Wernher von Braun Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Announcements • Observing Project & Extra Credit Due • Midterm graded & gradebook updated to drop lowest • remainder of grading (hopefully) updated this weekend • Final 12/15 at 10-12 AM! Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Last Class • Debrief Midterm • Debrief LT • Cosmology & Fate of the Universe • Exoplanets (time permitting) Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 This Class • Review/Debrief Midterm • Exoplanets (time permitting) Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 About the Final Astronomy 1 — Elementary Astronomy LA Mission College Spring F2015 About the Final • Similar format to Midterms • Similar length • a little longer, some choice of questions • Little new material, mostly cumulative • Study the stuff on the midterms! • But don’t memorize the questions themselves, you probably won’t see many that are identical • You may bring a full sheet of notes • both sides • handwritten Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 About the Final • Don’t leave stuff blank! • Can you remember ANYTHING about the topic? • Apply logic! • Comprehension before Computation -- Big Picture before Details • State units with numbers (except magnitude) Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Topics Astronomy 1 — Elementary Astronomy LA Mission College Spring F2015 TOUR OF UNIVERSE Our “Cosmic Address” • LAMC • Sylmar • Los Angeles County • CA • US • Earth • Solar System • Milky Way Galaxy • Local Group • Virgo Supercluster • The Universe Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 SCIENCE Science • Definition • Method • KEY: Hypothesis, Test, Revision • Nomenclature -- Hypothesis, Theory • Characteristics of Science & Belief System • Be able to recognize science and not-science • Be able to recognize a scientific hypothesis • Be able to describe the scientific method Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 THE NIGHT SKY Diurnal Motion • Daily • Everything Rises in East, sets in West • Moves in circles around the NCP (and SCP) • Earth is rotating • Be able to answer questions using diagrams from the Position LT Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Lunar Phases • Cause of phases • ID of phases • Timing of rise/set/transit Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Eclipses • Solar and Lunar • Cause • Geometry • Timing • Why not every full/new moon Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Zodiac & Apparent Solar Motion Name:____________________!! Date:__________ ICE 2! ASTRO 110/120! Levine Spring 2013 • Ecliptic • Zodiac • Meaning of “The Sun is in Taurus etc.” • Takes a year to cycle through Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Seasons • It’s the axial tilt • It’s about energy transfer • Be able to discuss observable consequences • when is the Sun high in the sky, day length etc. Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 OLD DEAD GUYS Greeks to Kepler • Greek ideas • Copernican Revolution • Tycho Brahe • Kepler the dude Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Kepler’s 3 laws of Planetary Motion 1. The orbits of the planets are ellipses, with the Sun at one focus. 2. A line from a planet to the Sun sweeps out equal areas in equal periods of time • Planets move fastest when physically closest to the Sun, and slowest when farthest. 3. A planet’s orbital period squared, is proportional to it’s farthest distance from the Sun cubed: • P2 = a3 • Be able to recognize these • Work with ellipses and eccentricity • Recognize examples of 2nd and 3rd law (faster/slower longer period/ shorter period) • Possible calculation with 3rd law Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Kepler to Sir Issac • Galileo • Sir Issac • Contributions and fields of study • Law of Universal Gravity Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Law of Universal Gravity • Be able to explain how the force varies (larger or smaller) with mass of either object, both objects and distance • Be able to work the inverse square relationship -- how does force change if distance doubles.... Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 LIGHT, OPTICS, TELESCOPES Nature of Light • Why this is important for Astronomy • electromagnetic radiation • waves, particles, duality • all light, from radio to gamma ray is same thing • all light travels at the same speed in vacuum • c=3x108 m/s Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Properties of Light • Waves • Relationship of wavelength and frequency • λ = c/f • Interference • Particles • Photoelectric effect • E = h f = hc/λ • h = 6.6 x 10-34 Js = 6.6 x 10-34 J/Hz • Know what these relationships mean • Know how the ranking task worked • Possibility of seeing a a simple calculation Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Electromagnetic Spectrum • difference between red and blue light • Basic bands of EMR (e.g. radio, visible, IR etc.) • Relationship between band, wavelength & Energy Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Telescopes and Observatories • Refractors and Reflectors • Size (of primary) matters • Atmospheric Transmission & Seeing • Multiwavelength Astronomy • What are IR and Radio good for? • Cameras & Spectroscopes Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 SOLAR SYSTEM Solar System Properties • Overall “bulk” properties • Disk shape • two types of planets • Space “debris” • common age Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Solar System Properties • “Anatomy” What and Where • Sun • Inner SS & terrestrial planets • Asteroid Belt • Outer SS & Jovian planets • Kuiper Belt • Heliopause • Oort cloud • Size/Distance Scales Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Solar System Formation • Raw materials -- big bang, role of supernovae • Theories of Formation • Solar Nebula Theory • Differentiation • Frost line • Planet formation -- both types • Disk clearing • Cratering & Craters Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Solar System Bodies • Terrestrial Planets • common properties • dynamo effect • What went wrong for Venus and Mars • Greenhouse effect • Jovian Planets • common properties • Why are Titan and Enceladus interesting • Why isn’t Pluto a “planet” and what it is Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 STARS & GALAXIES Stellar Properties • Luminosity • Magnitude system • Apparent vs. Absolute magnitude • review the ranking tasks • Distance ladder & difficulty of distances • Stellar parallax • know how angle & distance relate • Standard Candle • how does a standard candle work Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Color and Temperature & Size • stars are (mostly) like blackbodies • temperature and peak wavelength • temperature and size & luminosity Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Spectral Type • Color ~ temperature ~ spectral class • be able to answer questions based on the blackbody LT • Harvard computers & Harvard classification scheme • OBAFGKM • Brightness and temperature and size (Giants) Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 HR Diagram • What is it? • What can be plotted on it? • Main sequence • Red giants • Supergiants • White Dwarfs • Evolution Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Stellar Lifecycles © NASA • Star formation • Main Sequence lifetime • End states and what determines them • Mass is everything!!!!! • More mass means shorter life Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Main Sequence & Red Giant phase • Main Sequence • Hydrostatic Equilibrium • H to He nuclear fusion • Most of a star’s life • Sun is on MS • Red Giant • New hydrostatic equilibrium • H to He fusion in shell • He fusion in core • 1/10th the duration of MS lifetime Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Endgame Scenarios • Giant stars • Planetary nebulae • White dwarfs • Type II supernovae • neutron stars & pulsars • black holes • type Ia supernovae Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 The Milky Way • Barred Spiral • General structure • disk, bulge, halo • General Content • Where are we? Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Galaxy Classification NASA/ESA Astronomy 1 - Elementary Astronomy LA Mission College Levine F2015 Characteristics of types • Describe spirals, barred spirals,
Recommended publications
  • RADIAL VELOCITIES in the ZODIACAL DUST CLOUD
    A SURVEY OF RADIAL VELOCITIES in the ZODIACAL DUST CLOUD Brian Harold May Astrophysics Group Department of Physics Imperial College London Thesis submitted for the Degree of Doctor of Philosophy to Imperial College of Science, Technology and Medicine London · 2007 · 2 Abstract This thesis documents the building of a pressure-scanned Fabry-Perot Spectrometer, equipped with a photomultiplier and pulse-counting electronics, and its deployment at the Observatorio del Teide at Izaña in Tenerife, at an altitude of 7,700 feet (2567 m), for the purpose of recording high-resolution spectra of the Zodiacal Light. The aim was to achieve the first systematic mapping of the MgI absorption line in the Night Sky, as a function of position in heliocentric coordinates, covering especially the plane of the ecliptic, for a wide variety of elongations from the Sun. More than 250 scans of both morning and evening Zodiacal Light were obtained, in two observing periods – September-October 1971, and April 1972. The scans, as expected, showed profiles modified by components variously Doppler-shifted with respect to the unshifted shape seen in daylight. Unexpectedly, MgI emission was also discovered. These observations covered for the first time a span of elongations from 25º East, through 180º (the Gegenschein), to 27º West, and recorded average shifts of up to six tenths of an angstrom, corresponding to a maximum radial velocity relative to the Earth of about 40 km/s. The set of spectra obtained is in this thesis compared with predictions made from a number of different models of a dust cloud, assuming various distributions of dust density as a function of position and particle size, and differing assumptions about their speed and direction.
    [Show full text]
  • Exep Science Plan Appendix (SPA) (This Document)
    ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 1 of 61 Created By: David A. Breda Date Program TDEM System Engineer Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Nick Siegler Date Program Chief Technologist Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Concurred By: Dr. Gary Blackwood Date Program Manager Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology EXOPDr.LANET Douglas Hudgins E XPLORATION PROGRAMDate Program Scientist Exoplanet Exploration Program ScienceScience Plan Mission DirectorateAppendix NASA Headquarters Karl Stapelfeldt, Program Chief Scientist Eric Mamajek, Deputy Program Chief Scientist Exoplanet Exploration Program JPL CL#19-0790 JPL Document No: 1735632 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 2 of 61 Approved by: Dr. Gary Blackwood Date Program Manager, Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory Dr. Douglas Hudgins Date Program Scientist Exoplanet Exploration Program Science Mission Directorate NASA Headquarters Created by: Dr. Karl Stapelfeldt Chief Program Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Eric Mamajek Deputy Program Chief Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. © 2018 California Institute of Technology. Government sponsorship acknowledged. Exoplanet Exploration Program JPL CL#19-0790 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 3 of 61 Table of Contents 1.
    [Show full text]
  • Astronomy 2015 Sample Test.Pdf
    Science Olympiad Astronomy C Division Event Sample Exam Stellar Evolution: Star and Planet Formation 2014-2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2) Do not forget to put your team name and team number at the top of all answer pages. 3) Write all answers on the answer pages. Any marks elsewhere will not be scored. 4) All quantitative answers are expected to have a precision of 3 or more significant figures. 5) Please do not access the internet during the event. If you do so, your team will be disqualified. 6) This test was downloaded from: www.aavso.org/science-olympiad-2015. 7) Good luck! And may the stars be with you! 1 Section A: Use Image/Illustration Set A to answer Questions 1-19. This section focuses on qualitative understanding of stellar evolution, specifically relating to star formation and planets. 1. A schematic of a T-Tauri star is shown in Image A1. (a) Which point (A-F) marks the location of the disk surrounding the protostar? (b) Which point (A-F) displays the bipolar outflow that may form Herbig-Haro objects? (c) Which point (A-F) shows the strongly variable hot spots on the protostar? 2. A color-magnitude diagram for a sample of brown dwarfs is shown in Image A2. The x-axis shows the J-K color index, while the y-axis displays J-band magnitude. The different colors represent different brown dwarf spectral types. (a) Which lettered region (A-D) corresponds approximately to a spectral type L2 brown dwarf? (b) Which lettered region (A-D) corresponds approximately to a spectral type T6 brown dwarf? (c) Which lettered region (A-D) corresponds approximately to the brown dwarf L-T type transition? 3.
    [Show full text]
  • 1 Director's Message
    1 Director’s Message Markus Kissler-Patig 3 Weighing the Black Hole in M101 ULX-1 Stephen Justham and Jifeng Liu 8 World’s Most Powerful Planet Finder Turns its Eye to the Sky: First Light with the Gemini Planet Imager Bruce Macintosh and Peter Michaud 12 Science Highlights Nancy A. Levenson 15 Operations Corner: Update and 2013 Review Andy Adamson 20 Instrumentation Development: Update and 2013 Review Scot Kleinman ON THE COVER: GeminiFocus January 2014 The cover of this issue GeminiFocus is a quarterly publication of Gemini Observatory features first light images from the Gemini 670 N. A‘ohoku Place, Hilo, Hawai‘i 96720 USA Planet Imager that Phone: (808) 974-2500 Fax: (808) 974-2589 were released at the Online viewing address: January 2014 meeting www.gemini.edu/geminifocus of the American Managing Editor: Peter Michaud Astronomical Society Science Editor: Nancy A. Levenson held in Washington, D.C. Associate Editor: Stephen James O’Meara See the press release Designer: Eve Furchgott / Blue Heron Multimedia that accompanied the images starting on Any opinions, findings, and conclusions or recommendations page 8 of this issue. expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Markus Kissler-Patig Director’s Message 2013: A Successful Year for Gemini! As 2013 comes to an end, we can look back at 12 very successful months for Gemini despite strong budget constraints. Indeed, 2013 was the first stage of our three-year transition to a reduced opera- tions budget, and it was marked by a roughly 20 percent cut in contributions from Gemini’s partner countries.
    [Show full text]
  • LIST of PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute
    LIST OF PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute of Department of Science and Technology, Govt. of India) Manora Peak, Naini Tal - 263 129, India (1955−2020) ABBREVIATIONS AA: Astronomy and Astrophysics AASS: Astronomy and Astrophysics Supplement Series ACTA: Acta Astronomica AJ: Astronomical Journal ANG: Annals de Geophysique Ap. J.: Astrophysical Journal ASP: Astronomical Society of Pacific ASR: Advances in Space Research ASS: Astrophysics and Space Science AE: Atmospheric Environment ASL: Atmospheric Science Letters BA: Baltic Astronomy BAC: Bulletin Astronomical Institute of Czechoslovakia BASI: Bulletin of the Astronomical Society of India BIVS: Bulletin of the Indian Vacuum Society BNIS: Bulletin of National Institute of Sciences CJAA: Chinese Journal of Astronomy and Astrophysics CS: Current Science EPS: Earth Planets Space GRL : Geophysical Research Letters IAU: International Astronomical Union IBVS: Information Bulletin on Variable Stars IJHS: Indian Journal of History of Science IJPAP: Indian Journal of Pure and Applied Physics IJRSP: Indian Journal of Radio and Space Physics INSA: Indian National Science Academy JAA: Journal of Astrophysics and Astronomy JAMC: Journal of Applied Meterology and Climatology JATP: Journal of Atmospheric and Terrestrial Physics JBAA: Journal of British Astronomical Association JCAP: Journal of Cosmology and Astroparticle Physics JESS : Jr. of Earth System Science JGR : Journal of Geophysical Research JIGR: Journal of Indian
    [Show full text]
  • The Electrical Experimenter 529
    Ksectio:),_ Lqui7en AN ELECTRO - GYRO - CRUISER. SEE PAGE 54 2 www.americanradiohistory.com ADE (ISOLATORS 1,00010 I;000,0110 VOLTS Employed -by U. S. NAVY r MARK. and all the Commercial Wireless RED. U.S. PAT. OFF. & FOREIGN COUNTRIES. Telegraph Companies ' INSULATION LOUIS STEINBERGER'S PATENTS rtai© ©401116t "' 4500 -1.509 450S 4517 u.%aóiá/iij 6350 <4ij%'.7/j 6977 A ss 68 :13 7370 6..52 SOLE MANUFACTURERS 66-76 Front St. BROOKLYN, N. Y. 60 -72 Washington St. AMERICA NEW PRICES Effective January 15, 1916. All previous prices void. _01111111111111111111111111111 1111 II111111111111111111111111111111_` 13' s' Cut shows Ih, The Brandes Switch Contact nts "Superior " Type Trans - Atlantic Brandes Head Type Receivers We are in a position to furnish Set. Price, com- (price $9) are prompt shipment of the follow- plete with ger- Used in the = ing sizes of switch points: luan silver head- Eiffel Tower to take 6 -32 screw. band, $5. Station, Paris. Tapped No. Diam. Height Doz. 50 100 626..34 inch 0 inch $ 30 $1.00 $1.75 "Astonished at its Value for the Money" 628..% inch g inch .30 .90 1.50 With 34 inch shank threaded 6 -32 627..34 inch / inch $.36 $1.25 $2.00 THAT'S what hundreds of purchasers of our "Supe- Nickel points 50 per cent. advance. rior" Receivers have said. Postage extra. "The best receiver sold at $5 to -day" is what dealers tell us. The value comes in the perfectly matched tone; in the The "Albany "Combination Detector strong, rigid -yet light- construction; in the unusually handsome finish.
    [Show full text]
  • Disks in Nearby Planetary Systems with JWST and ALMA
    Disks in Nearby Planetary Systems with JWST and ALMA Meredith A. MacGregor NSF Postdoctoral Fellow Carnegie Department of Terrestrial Magnetism 233rd AAS Meeting ExoPAG 19 January 6, 2019 MacGregor Circumstellar Disk Evolution molecular cloud 0 Myr main sequence star + planets (?) + debris disk (?) Star Formation > 10 Myr pre-main sequence star + protoplanetary disk Planet Formation 1-10 Myr MacGregor Debris Disks: Observables First extrasolar debris disk detected as “excess” infrared emission by IRAS (Aumann et al. 1984) SPHERE/VLT Herschel ALMA VLA Boccaletti et al (2015), Matthews et al. (2015), MacGregor et al. (2013), MacGregor et al. (2016a) Now, resolved at wavelengthsfrom from Herschel optical DUNES (scattered light) to millimeter and radio (thermal emission) MacGregor Planet-Disk Interactions Planets orbiting a star can gravitationally perturb an outer debris disk Expect to see a variety of structures: warps, clumps, eccentricities, central offsets, sharp edges, etc. Goal: Probe for wide separation planets using debris disk structure HD 15115 β Pictoris Kuiper Belt Asymmetry Warp Resonance Kalas et al. (2007) Lagrange et al. (2010) Jewitt et al. (2009) MacGregor Debris Disks Before ALMA Epsilon Eridani HD 95086 Tau Ceti Beta PictorisHR 4796A HD 107146 AU Mic Greaves+ (2014) Su+ (2015) Lawler+ (2014) Vandenbussche+ (2010) Koerner+ (1998) Hughes+ (2011) Matthews+ (2015) 49 Ceti HD 181327 HD 21997 Fomalhaut HD 10647 (q1 Eri) Eta Corvi HR 8799 Roberge+ (2013) Lebreton+ (2012) Moor+ (2015) Acke+ (2012) Liseau+ (2010) Lebreton+ (2016)
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • First Light with the Gemini Planet Imager
    Bruce Macintosh and Peter Michaud Figure 1. Gemini Planet Imager’s first light image of Beta Pictoris b, a planet orbiting the star Beta Pictoris. The star, Beta World’s Most Powerful Planet Pictoris, is blocked in this image by a mask so its light doesn’t interfere with the light of the Finder Turns its Eye to the Sky: planet. In addition to the image, GPI obtains a spectrum from every pixel element in the field-of- First Light with the view to allow scientists to study the planet in great detail. Beta Pictoris b is a giant Gemini Planet Imager planet — several times larger than Jupiter — The following article is an adaptation of the news featured in a press conference and is approximately 10 million years old. These at the January 2014 meeting of the American Astronomical Society. near-infrared images (1.5-1.8 microns) show the planet glowing After nearly a decade of development, construction, and testing, the world’s most advanced in infrared light from instrument for directly imaging and analyzing planets around other stars is pointing skyward the heat released in its and collecting light from distant worlds. formation. Processing by Christian The instrument, called the Gemini Planet Imager (GPI), was designed, built, and optimized Marois, NRC Canada. for imaging faint planets next to bright stars and probing their atmo- spheres. It will also be a powerful tool for studying dusty, planet-form- ing disks around young stars. It is the most advanced such instrument to be deployed on one of the world’s biggest telescopes — the 8-meter Gemini South telescope in Chile.
    [Show full text]
  • Cycle 14 Approved Programs
    Cycle 14 Approved Programs as of 04/05/05 Science First Name Last Name Type Phase II ID Institution Country Title Category Physical Processes in Orion's Veil: A High Resolution Nicholas Abel AR 10636 University of Kentucky USA Star Formation UV Absorption Study of the Line of Sight Towards the Trapezium University of Eric Agol GO 10486 USA Cosmology A Cosmic String Lens Candidate Washington University of Eric Agol AR 10637 USA Cool Stars Finding Terrestrial Planets with HST Washington Space Telescope NGC 4449: a Testbed for Starbursts in the Low- and Alessandra Aloisi GO 10585 Science Institute - USA Galaxies High-Redshift Universe ESA Space Telescope The Rosetta Stone without a Distance: Hunting for Alessandra Aloisi GO 10586 Science Institute - USA Galaxies Cepheids in the "Primordial" Galaxy I Zw 18 ESA University of Timing Studies of the X-ray Binary Populations in Scott Anderson GO 10615 USA Hot Stars Washington Globular Clusters The Johns Hopkins A Search for Debris Disks in the Coeval Beta Pictoris David Ardila GO 10487 USA Star Formation University Moving Group University of Colorado Thomas Ayres AR 10638 USA Cool Stars StarCAT at Boulder Studies of Europa's Plasma Interactions and Gilda Ballester AR 10639 University of Arizona USA Solar System Atmosphere with HST/STIS FUV Images Edward Baltz GO 10543 Stanford University USA Galaxies Microlensing in M87 and the Virgo Cluster University of HST Observations of MilliJansky Radio Sources from the Robert Becker AR 10640 USA Galaxies California - Davis VLA FIRST Survey European Southern
    [Show full text]
  • Signatures of Giant Planets on the Solar System Kuiper Belt Dust Disk and Implications for Extrasolar Planet in Epsilon Eridani
    Lunar and Planetary Science XXX 1698.pdf SIGNATURES OF GIANT PLANETS ON THE SOLAR SYSTEM KUIPER BELT DUST DISK AND IMPLICATIONS FOR EXTRASOLAR PLANET IN EPSILON ERIDANI. J.-C. Liou1 and H. A. Zook2, 1GB Tech/Lockheed Martin, C104 Lockheed Martin, 2400 NASA Rd. One, Houston, TX 77058, 2SN2, NASA Johnson Space Center, Houston, TX 77052. Summary: One method to detect extrasolar Dust disks in Beta Pictoris, Epsilon Eridani, planetary systems is to deduce the perturbations of and other systems are analogues to our Solar Sys- planets on the observed circumstellar dust disks. tem’s Kuiper Belt dust disk. Therefore, it is of Our Solar System, with its known configuration of great interest to understanding how the Kuiper planets, provide an excellent example to study how Belt IDP distribution is affected by the giant plan- the distribution of dust particles is affected by the ets in our Solar System. We have numerically existence of different planets. Numerical simula- simulated the orbital evolution of Kuiper Belt tions of the orbital evolution of dust particles from IDPs, including gravitational perturbations from 7 Kuiper Belt objects show that the four giant plan- planets (Mercury and Pluto are not included due to ets, especially Neptune and Jupiter, impose distinct their small masses), solar radiation pressure, and and dramatic signatures on the overall distribution PR and solar wind drag. Dust particles range from of Kuiper belt dust particles. The signatures are 3 to 23 micrometers in diameter. For a given size, very similar to those observed in Epsilon Eridani. 100 IDPs are included in the simulations.
    [Show full text]
  • Extrasolar Systems Shed Light on Our
    NEWS FEATURE NEWS FEATURE Extrasolar systems shed light on our own Amazing as the discoveries of planets, comets, and asteroid belts around other stars are, it’s their potential to shed light on our Solar System’s origins that is exciting astronomers. Nadia Drake broader sense, we’re trying to understand Science Writer if our own world—and our own Solar Sys- tem—is ‘normal,’” says David Grinspoon, Chair of Astrobiology at the US Library of A planet smaller than Mercury circles a star astronomers can use the Solar System’s ar- Congress in Washington, DC, “or, in some 210 light-years away. Around another star, chitecture to predict the presence of un- extraordinary way, abnormal.” two planets live so close together that each seen objects in these systems, and use the periodically rises in the other’s sky. Other systems to learn more about the celestial Chasing Comets alien skies are home to two suns that rise events that gave birth to and shaped our One stellar system with a recently identified and set, casting double shadows over their Solar System. kinship to ours is that of Vega. This famil- double-sunned worlds. Planets so dense “We definitely learn more about the Solar iar star burns brightly in the northern sky, they might have diamond rinds, worlds System’s past and future by observing other where it forms a summertime triangle with whose year is shorter than an Earthday, oth- stellar systems,” says astronomer Kate Su stars Deneb and Altair. Just 25 light-years ers that orbit their star backward—the cos- of the University of Arizona, Tucson, AZ.
    [Show full text]