RAMANUJAN GRAPHS and SHIMURA CURVES What Follows
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Adjacency and Incidence Matrices
Adjacency and Incidence Matrices 1 / 10 The Incidence Matrix of a Graph Definition Let G = (V ; E) be a graph where V = f1; 2;:::; ng and E = fe1; e2;:::; emg. The incidence matrix of G is an n × m matrix B = (bik ), where each row corresponds to a vertex and each column corresponds to an edge such that if ek is an edge between i and j, then all elements of column k are 0 except bik = bjk = 1. 1 2 e 21 1 13 f 61 0 07 3 B = 6 7 g 40 1 05 4 0 0 1 2 / 10 The First Theorem of Graph Theory Theorem If G is a multigraph with no loops and m edges, the sum of the degrees of all the vertices of G is 2m. Corollary The number of odd vertices in a loopless multigraph is even. 3 / 10 Linear Algebra and Incidence Matrices of Graphs Recall that the rank of a matrix is the dimension of its row space. Proposition Let G be a connected graph with n vertices and let B be the incidence matrix of G. Then the rank of B is n − 1 if G is bipartite and n otherwise. Example 1 2 e 21 1 13 f 61 0 07 3 B = 6 7 g 40 1 05 4 0 0 1 4 / 10 Linear Algebra and Incidence Matrices of Graphs Recall that the rank of a matrix is the dimension of its row space. Proposition Let G be a connected graph with n vertices and let B be the incidence matrix of G. -
Graph Equivalence Classes for Spectral Projector-Based Graph Fourier Transforms Joya A
1 Graph Equivalence Classes for Spectral Projector-Based Graph Fourier Transforms Joya A. Deri, Member, IEEE, and José M. F. Moura, Fellow, IEEE Abstract—We define and discuss the utility of two equiv- Consider a graph G = G(A) with adjacency matrix alence graph classes over which a spectral projector-based A 2 CN×N with k ≤ N distinct eigenvalues and Jordan graph Fourier transform is equivalent: isomorphic equiv- decomposition A = VJV −1. The associated Jordan alence classes and Jordan equivalence classes. Isomorphic equivalence classes show that the transform is equivalent subspaces of A are Jij, i = 1; : : : k, j = 1; : : : ; gi, up to a permutation on the node labels. Jordan equivalence where gi is the geometric multiplicity of eigenvalue 휆i, classes permit identical transforms over graphs of noniden- or the dimension of the kernel of A − 휆iI. The signal tical topologies and allow a basis-invariant characterization space S can be uniquely decomposed by the Jordan of total variation orderings of the spectral components. subspaces (see [13], [14] and Section II). For a graph Methods to exploit these classes to reduce computation time of the transform as well as limitations are discussed. signal s 2 S, the graph Fourier transform (GFT) of [12] is defined as Index Terms—Jordan decomposition, generalized k gi eigenspaces, directed graphs, graph equivalence classes, M M graph isomorphism, signal processing on graphs, networks F : S! Jij i=1 j=1 s ! (s ;:::; s ;:::; s ;:::; s ) ; (1) b11 b1g1 bk1 bkgk I. INTRODUCTION where sij is the (oblique) projection of s onto the Jordan subspace Jij parallel to SnJij. -
Network Properties Revealed Through Matrix Functions 697
SIAM REVIEW c 2010 Society for Industrial and Applied Mathematics Vol. 52, No. 4, pp. 696–714 Network Properties Revealed ∗ through Matrix Functions † Ernesto Estrada Desmond J. Higham‡ Abstract. The emerging field of network science deals with the tasks of modeling, comparing, and summarizing large data sets that describe complex interactions. Because pairwise affinity data can be stored in a two-dimensional array, graph theory and applied linear algebra provide extremely useful tools. Here, we focus on the general concepts of centrality, com- municability,andbetweenness, each of which quantifies important features in a network. Some recent work in the mathematical physics literature has shown that the exponential of a network’s adjacency matrix can be used as the basis for defining and computing specific versions of these measures. We introduce here a general class of measures based on matrix functions, and show that a particular case involving a matrix resolvent arises naturally from graph-theoretic arguments. We also point out connections between these measures and the quantities typically computed when spectral methods are used for data mining tasks such as clustering and ordering. We finish with computational examples showing the new matrix resolvent version applied to real networks. Key words. centrality measures, clustering methods, communicability, Estrada index, Fiedler vector, graph Laplacian, graph spectrum, power series, resolvent AMS subject classifications. 05C50, 05C82, 91D30 DOI. 10.1137/090761070 1. Motivation. 1.1. Introduction. Connections are important. Across the natural, technologi- cal, and social sciences it often makes sense to focus on the pattern of interactions be- tween individual components in a system [1, 8, 61]. -
Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees
Annals of Mathematics 182 (2015), 307{325 Interlacing families I: Bipartite Ramanujan graphs of all degrees By Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava Abstract We prove that there exist infinite families of regular bipartite Ramanujan graphs of every degree bigger than 2. We do this by proving a variant of a conjecture of Bilu and Linial about the existence of good 2-lifts of every graph. We also establish the existence of infinite families of \irregular Ramanujan" graphs, whose eigenvalues are bounded by the spectral radius of their universal cover. Such families were conjectured to exist by Linial and others. In particular, we prove the existence of infinite families of (c; d)-biregular bipartite graphs with all nontrivial eigenvalues bounded by p p c − 1 + d − 1 for all c; d ≥ 3. Our proof exploits a new technique for controlling the eigenvalues of certain random matrices, which we call the \method of interlacing polynomials." 1. Introduction Ramanujan graphs have been the focus of substantial study in Theoret- ical Computer Science and Mathematics. They are graphs whose nontrivial adjacency matrix eigenvalues are as small as possible. Previous constructions of Ramanujan graphs have been sporadic, only producing infinite families of Ramanujan graphs of certain special degrees. In this paper, we prove a variant of a conjecture of Bilu and Linial [4] and use it to realize an approach they suggested for constructing bipartite Ramanujan graphs of every degree. Our main technical contribution is a novel existence argument. The con- jecture of Bilu and Linial requires us to prove that every graph has a signed adjacency matrix with all of its eigenvalues in a small range. -
Diagonal Sums of Doubly Stochastic Matrices Arxiv:2101.04143V1 [Math
Diagonal Sums of Doubly Stochastic Matrices Richard A. Brualdi∗ Geir Dahl† 7 December 2020 Abstract Let Ωn denote the class of n × n doubly stochastic matrices (each such matrix is entrywise nonnegative and every row and column sum is 1). We study the diagonals of matrices in Ωn. The main question is: which A 2 Ωn are such that the diagonals in A that avoid the zeros of A all have the same sum of their entries. We give a characterization of such matrices, and establish several classes of patterns of such matrices. Key words. Doubly stochastic matrix, diagonal sum, patterns. AMS subject classifications. 05C50, 15A15. 1 Introduction Let Mn denote the (vector) space of real n×n matrices and on this space we consider arXiv:2101.04143v1 [math.CO] 11 Jan 2021 P the usual scalar product A · B = i;j aijbij for A; B 2 Mn, A = [aij], B = [bij]. A permutation σ = (k1; k2; : : : ; kn) of f1; 2; : : : ; ng can be identified with an n × n permutation matrix P = Pσ = [pij] by defining pij = 1, if j = ki, and pij = 0, otherwise. If X = [xij] is an n × n matrix, the entries of X in the positions of X in ∗Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA. [email protected] †Department of Mathematics, University of Oslo, Norway. [email protected]. Correspond- ing author. 1 which P has a 1 is the diagonal Dσ of X corresponding to σ and P , and their sum n X dP (X) = xi;ki i=1 is a diagonal sum of X. -
The Generalized Dedekind Determinant
Contemporary Mathematics Volume 655, 2015 http://dx.doi.org/10.1090/conm/655/13232 The Generalized Dedekind Determinant M. Ram Murty and Kaneenika Sinha Abstract. The aim of this note is to calculate the determinants of certain matrices which arise in three different settings, namely from characters on finite abelian groups, zeta functions on lattices and Fourier coefficients of normalized Hecke eigenforms. Seemingly disparate, these results arise from a common framework suggested by elementary linear algebra. 1. Introduction The purpose of this note is three-fold. We prove three seemingly disparate results about matrices which arise in three different settings, namely from charac- ters on finite abelian groups, zeta functions on lattices and Fourier coefficients of normalized Hecke eigenforms. In this section, we state these theorems. In Section 2, we state a lemma from elementary linear algebra, which lies at the heart of our three theorems. A detailed discussion and proofs of the theorems appear in Sections 3, 4 and 5. In what follows below, for any n × n matrix A and for 1 ≤ i, j ≤ n, Ai,j or (A)i,j will denote the (i, j)-th entry of A. A diagonal matrix with diagonal entries y1,y2, ...yn will be denoted as diag (y1,y2, ...yn). Theorem 1.1. Let G = {x1,x2,...xn} be a finite abelian group and let f : G → C be a complex-valued function on G. Let F be an n × n matrix defined by F −1 i,j = f(xi xj). For a character χ on G, (that is, a homomorphism of G into the multiplicative group of the field C of complex numbers), we define Sχ := f(s)χ(s). -
Ramanujan Graphs of Every Degree
Ramanujan Graphs of Every Degree Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected graphs with many properties of random graphs. Random walks mix quickly. Every set of vertices has many neighbors. Pseudo-random generators. Error-correcting codes. Sparse approximations of complete graphs. Spectral Expanders Let G be a graph and A be its adjacency matrix a 0 1 0 0 1 b 1 0 1 0 1 e 0 1 0 1 0 c 0 0 1 0 1 1 1 0 1 0 d Eigenvalues λ1 λ2 λn “trivial” ≥ ≥ ···≥ If d-regular (every vertex has d edges), λ1 = d Spectral Expanders If bipartite (all edges between two parts/colors) eigenvalues are symmetric about 0 If d-regular and bipartite, λ = d n − “trivial” a b 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 c d 1 1 0 0 0 0 0 1 1 0 0 0 e f 1 0 1 0 0 0 Spectral Expanders G is a good spectral expander if all non-trivial eigenvalues are small [ ] -d 0 d Bipartite Complete Graph Adjacency matrix has rank 2, so all non-trivial eigenvalues are 0 a b 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 c d 1 1 1 0 0 0 1 1 1 0 0 0 e f 1 1 1 0 0 0 Spectral Expanders G is a good spectral expander if all non-trivial eigenvalues are small [ ] -d 0 d Challenge: construct infinite families of fixed degree Spectral Expanders G is a good spectral expander if all non-trivial eigenvalues are small [ ] ( 0 ) -d 2pd 1 2pd 1 d − − − Challenge: construct infinite families of fixed degree Alon-Boppana ‘86: Cannot beat 2pd 1 − Ramanujan Graphs: 2pd 1 − G is a Ramanujan Graph if absolute value of non-trivial eigs 2pd 1 − [ -
Dynamical Systems Associated with Adjacency Matrices
DISCRETE AND CONTINUOUS doi:10.3934/dcdsb.2018190 DYNAMICAL SYSTEMS SERIES B Volume 23, Number 5, July 2018 pp. 1945{1973 DYNAMICAL SYSTEMS ASSOCIATED WITH ADJACENCY MATRICES Delio Mugnolo Delio Mugnolo, Lehrgebiet Analysis, Fakult¨atMathematik und Informatik FernUniversit¨atin Hagen, D-58084 Hagen, Germany Abstract. We develop the theory of linear evolution equations associated with the adjacency matrix of a graph, focusing in particular on infinite graphs of two kinds: uniformly locally finite graphs as well as locally finite line graphs. We discuss in detail qualitative properties of solutions to these problems by quadratic form methods. We distinguish between backward and forward evo- lution equations: the latter have typical features of diffusive processes, but cannot be well-posed on graphs with unbounded degree. On the contrary, well-posedness of backward equations is a typical feature of line graphs. We suggest how to detect even cycles and/or couples of odd cycles on graphs by studying backward equations for the adjacency matrix on their line graph. 1. Introduction. The aim of this paper is to discuss the properties of the linear dynamical system du (t) = Au(t) (1.1) dt where A is the adjacency matrix of a graph G with vertex set V and edge set E. Of course, in the case of finite graphs A is a bounded linear operator on the finite di- mensional Hilbert space CjVj. Hence the solution is given by the exponential matrix etA, but computing it is in general a hard task, since A carries little structure and can be a sparse or dense matrix, depending on the underlying graph. -
X-Ramanujan-Graphs.Pdf
X-Ramanujan graphs Sidhanth Mohanty* Ryan O’Donnell† April 4, 2019 Abstract Let X be an infinite graph of bounded degree; e.g., the Cayley graph of a free product of finite groups. If G is a finite graph covered by X, it is said to be X-Ramanujan if its second- largest eigenvalue l2(G) is at most the spectral radius r(X) of X, and more generally k-quasi- X-Ramanujan if lk(G) is at most r(X). In case X is the infinite D-regular tree, this reduces to the well known notion of a finite D-regular graph being Ramanujan. Inspired by the Interlacing Polynomials method of Marcus, Spielman, and Srivastava, we show the existence of infinitely many k-quasi-X-Ramanujan graphs for a variety of infinite X. In particular, X need not be a tree; our analysis is applicable whenever X is what we call an additive product graph. This additive product is a new construction of an infinite graph A1 + ··· + Ac from finite “atom” graphs A1,..., Ac over a common vertex set. It generalizes the notion of the free product graph A1 ∗ · · · ∗ Ac when the atoms Aj are vertex-transitive, and it generalizes the notion of the uni- versal covering tree when the atoms Aj are single-edge graphs. Key to our analysis is a new graph polynomial a(A1,..., Ac; x) that we call the additive characteristic polynomial. It general- izes the well known matching polynomial m(G; x) in case the atoms Aj are the single edges of G, and it generalizes the r-characteristic polynomial introduced in [Rav16, LR18]. -
Adjacency Matrices Text Reference: Section 2.1, P
Adjacency Matrices Text Reference: Section 2.1, p. 114 The purpose of this set of exercises is to show how powers of a matrix may be used to investigate graphs. Special attention is paid to airline route maps as examples of graphs. In order to study graphs, the notion of graph must first be defined. A graph is a set of points (called vertices,ornodes) and a set of lines called edges connecting some pairs of vertices. Two vertices connected by an edge are said to be adjacent. Consider the graph in Figure 1. Notice that two vertices may be connected by more than one edge (A and B are connected by 2 distinct edges), that a vertex need not be connected to any other vertex (D), and that a vertex may be connected to itself (F). Another example of a graph is the route map that most airlines (or railways) produce. A copy of the northern route map for Cape Air from May 2001 is Figure 2. This map is available at the web page: www.flycapeair.com. Here the vertices are the cities to which Cape Air flies, and two vertices are connected if a direct flight flies between them. Figure 2: Northern Route Map for Cape Air -- May 2001 Application Project: Adjacency Matrices Page 2 of 5 Some natural questions arise about graphs. It might be important to know if two vertices are connected by a sequence of two edges, even if they are not connected by a single edge. In Figure 1, A and C are connected by a two-edge sequence (actually, there are four distinct ways to go from A to C in two steps). -
On Structured Realizability and Stabilizability of Linear Systems
On Structured Realizability and Stabilizability of Linear Systems Laurent Lessard Maxim Kristalny Anders Rantzer Abstract We study the notion of structured realizability for linear systems defined over graphs. A stabilizable and detectable realization is structured if the state-space matrices inherit the sparsity pattern of the adjacency matrix of the associated graph. In this paper, we demonstrate that not every structured transfer matrix has a structured realization and we reveal the practical meaning of this fact. We also uncover a close connection between the structured realizability of a plant and whether the plant can be stabilized by a structured controller. In particular, we show that a structured stabilizing controller can only exist when the plant admits a structured realization. Finally, we give a parameterization of all structured stabilizing controllers and show that they always have structured realizations. 1 Introduction Linear time-invariant systems are typically represented using transfer functions or state- space realizations. The relationship between these representations is well understood; every transfer function has a minimal state-space realization and one can easily move between representations depending on the need. In this paper, we address the question of whether this relationship between representa- tions still holds for systems defined over directed graphs. Consider the simple two-node graph of Figure 1. For i = 1, 2, the node i represents a subsystem with inputs ui and outputs yi, and the edge means that subsystem 1 can influence subsystem 2 but not vice versa. The transfer matrix for any such a system has the sparsity pattern S1. For a state-space realization to make sense in this context, every state should be as- sociated with a subsystem, which means that the state should be computable using the information available to that subsystem. -
A Note on the Spectra and Eigenspaces of the Universal Adjacency Matrices of Arbitrary Lifts of Graphs
A note on the spectra and eigenspaces of the universal adjacency matrices of arbitrary lifts of graphs C. Dalf´o,∗ M. A. Fiol,y S. Pavl´ıkov´a,z and J. Sir´aˇnˇ x Abstract The universal adjacency matrix U of a graph Γ, with adjacency matrix A, is a linear combination of A, the diagonal matrix D of vertex degrees, the identity matrix I, and the all-1 matrix J with real coefficients, that is, U = c1A + c2D + c3I + c4J, with ci 2 R and c1 6= 0. Thus, as particular cases, U may be the adjacency matrix, the Laplacian, the signless Laplacian, and the Seidel matrix. In this note, we show that basically the same method introduced before by the authors can be applied for determining the spectra and bases of all the corresponding eigenspaces of arbitrary lifts of graphs (regular or not). Keywords: Graph; covering; lift; universal adjacency matrix; spectrum; eigenspace. 2010 Mathematics Subject Classification: 05C20, 05C50, 15A18. 1 Introduction For a graph Γ on n vertices, with adjacency matrix A and degree sequence d1; : : : ; dn, the universal adjacency matrix is defined as U = c1A+c2D +c3I +c4J, with ci 2 R and c1 6= 0, where D = diag(d1; : : : ; dn), I is the identity matrix, and J is the all-1 matrix. See, for arXiv:1912.04740v1 [math.CO] 8 Dec 2019 instance, Haemers and Omidi [10] or Farrugia and Sciriha [5]. Thus, for given values of the ∗Departament de Matem`atica, Universitat de Lleida, Igualada (Barcelona), Catalonia, [email protected] yDepartament de Matem`atiques,Universitat Polit`ecnicade Catalunya; and Barcelona Graduate