Olympic Peninsula Chapter Washington Native Plant Society June-September 2020 Summer Newsletter

Total Page:16

File Type:pdf, Size:1020Kb

Olympic Peninsula Chapter Washington Native Plant Society June-September 2020 Summer Newsletter Olympic Peninsula Chapter Washington Native Plant Society June-September 2020 Summer Newsletter To promote the appreciation and conservation of Washington’s native plants and their habitats through study, education and advocacy Staying home, staying healthy. Who would have thought, in January, that we would have such a directive, to slow down, stay put? Yet here we are, approaching June, unsure how our summer and year will play out. So this chapter’s “summer newsletter” is incomplete. We have yet to know when group events will be offered and what form they may take. But look what’s here, when we look around! For those of us attuned to our rich native flora, it gives us an opportunity to look more closely to what’s growing in our backyards, as John found; “ It's been a really good year for Kopsiopsis/Boschniakia hookeri it seems, or maybe I'm paying more atten- tion. This is the first one I've seen in full and riotous bloom at our place. That's a giant vetch tendril lurking next to it..” Ground cone Kopsiopsis hookeri (John Haskins) WNPS Shelters in Place On March 23, due to the rapidly spreading Covid-19 coronavirus, Governor Inslee directed Washington residents to “shelter in place,” asked “non-essential” businesses and state parks to close and prohibited gatherings of more than 5 peo- ple. WNPS was just gearing up for a month of taking people outdoors to see the array of native wildflowers in April, Native Plant Appreciation Month (NPAM). We had to make some quick decisions about how to acknowledge and celebrate NPAM without going on group hikes or gathering. Thanks to quick thinking and action on the part of our state office staff (Denise Mahnke and Elizabeth Gage), and the state NPAM coordinator Gail Sklar, we utilized Zoom and en- joyed a month of fascinating webinars that attracted audiences of dozens to hundreds of people each. With help from Kathy Darrow and several photographers who are members of our chapter, I was able to put together one webinar, Native Plants and Habitats of the Olympic Peninsula. I presented it on Zoom on April 14 to an audience of 165. This webinar and several others are now available to stream from the NPAM box on the home page of our website, www.wnps.org. In addition there were webinars about flora of eastern Washington and the Columbia River Gorge, about using the new Flora of the Pacific Northwest, and about gardening with native plants. What fabulous resources, all assembled and presented with very little lead time. On a local level, the flowers at Kah Tai Prairie in Port Townsend (and many other places around the Peninsula) have been blooming despite the governor’s orders. Kathy Darrow has written a couple of articles for the local papers to showcase these locations. Although we had to cancel our scheduled Native Plant Identification class and workshop, as well as sever- al spring hikes, we look forward to offering them again in the spring of 2021. At this writ- ing, all WNPS activities are cancelled through May 31, 2020. Sometime after that (probably not until July) we hope to be able to start hiking in small groups. We are not sure if we will be able to offer the grass workshop in July or if it will need to be postponed. We will keep in contact via email notices and posting on the state website, www.wnps.org. Prairie plants broomrape and Fayla Schwartz, Olympic Peninsula chapter chair lomatium in their May splendor (Eve Dixon) Fourteen webinars on various aspects of native plants were offered during April, attracting a cumulative audience of over 2800 attendees. Thank you to all those who participated. Missed one or want to watch again? Most webinars were recorded; now available for viewing at https://www.wnps.org/ wnps-annualevents/virtual-events 1 Self-guided Wildflower Hikes for June & July 2020 We aren’t offering guided wildflower field trips until it becomes more logistically comfortable to carpool and gather in our traditional groups of a dozen or more people. Instead, we asked chapter board members to recommend some of their favorite wildflower walks on the east side of the Olympic Peninsula. You can find plant lists for each of these areas on the plant lists for Jefferson County at www.wnps.org/plant-lists Check out the local trail info before you head out. Kathy Darrow, OP chapter vice chair Here are the top five: Indian Island County Park Kathy’s Pick: At low tide, this is an easy walk along the shore and through the for- est on the east side of Oak Bay. You can see 200 year old Garry oaks (Quercus garryana) in the forest as well as newly sprouted acorns. It’s fun to explore the estuaries and dunes along the shore where you’ll find lots of seaside succulents like pickleweed (Salicornia depressa) and sea purslane (Honckenya peploides). https://www.wta.org/go-hiking/hikes/south-indian-island Garry oaks (Quercus garryana) at Isthmus Beach (Kathy Darrow) Mt. Townsend, Olympic National Forest Sharon’s Pick: For alpine and subalpine flora, Mt. Townsend is a classic hike with sweeping views of Puget Sound. Several Olympic Mountain endemics can be found in this area, in- cluding alpine kittentails (Synthyris lanuginosa) and Piper’s Harebell (Campanula piperi) and Flett’s violet (Viola flettii). https://www.wta.org/go-hiking/hikes/mount-townsend Oplopanax horridus (Kathy Darrow) Synthyris lanuginosa in May Mount Townsend (Willi Smothers) Tunnel Creek Trail, Olympic National Forest Dixie’s Pick: This challenging trail offers one of the best examples of old growth rainshad- ow forest on the east side of the Olympic Range. Douglas fir, western red cedar, western hemlock and silver fir are the dominant trees, surrounded by thick carpets of moss. Tower- ing thickets of Devil’s club (Oplopanax horridus) and delicate flowers of Hooker fairybell (Prosartes hookeri) can also be found. https://www.wta.org/go-hiking/hikes/tunnel-creek-1 Gibb’s Lake County Park Eve’s Pick: The wooded trails that circumnavigate Gibbs Lake are carpeted with wildflow- ers. In June and July. If you take a kayak or canoe, you can paddle around the edge of the lake and find waterlilies (Nuphar polysepalum), bladderwort (Utricularia vulgaris), Labra- dor tea (Rhododendron groenlandicum) and cattails (Typha latifolia). https://www.wta.org/go-hiking/hikes/gibbs-lake Fort Townsend State Park Fayla’s Pick: This park has miles of peaceful, wooded trails with majestic old trees, plus a unique variety of parasitic and mycoheterotrophic plants from the orchid, broomrape and Rhododendron groenlandicum rhododendron families. https://www.wta.org/go-hiking/hikes/fort-townsend-historical-sp. ( Fred Weinmann) Take Fred’s self guided tour, next page! 2 Fort Townsend State Park: A Self-guided Walk through the Wilderness Within Fred Weinmann Take a quiet stroll among big trees and unusual plants which have adopted a parasitic life style. If you know where to look it is possible to see up to 9 of these curious plants in a 1- 3 mile walk. Pick up a trails map at the park entrance kiosk. The best trails to explore are Huckleberry Hill, Rhododendron Loop, Pumphouse and the short section of Big Tree between Fort Townsend Lane and Pumphouse. While 9 species are possible five or six can be easily seen along the trail margins. Species to look for include: In the orchid family, spotted coralroot Corallorhiza maculata and C. mertensiana; in the broomrape family, groundcone Kopsiopsis hookeri; in the heath family, candystick Allotropa virgata, Monotropa uniflora, M. hypopitys, Hemitomes congesta, Pterospora andromedea, and Pyrola asarifolia* (this last species can function either as a parasite or as an autotroph). In a typical year the best Candystick Allotropa virgata time for this hike is mid-June. For more (Fred Wienmann) information on these species see the bro- chures, The Plants of Fort Townsend State Park : A Unique Ecosystem or the brochure, Forest Wildflowers of the Quimper Peninsula. For fur- ther information contact Ann Weinmann at [email protected] Pinesap Monotropa hypopitys (Fred Weinmann) Sharing plant discoveries.. I was pleased to be asked to share what others have been working on through this quiet time. Eli Glosser chose Weed Warriors for his school project. He created this brochure about "The Sneaky Seven" and we invite you to print it out.: https://montessoricountryschool.org/sneaky_seven_printable_brochure/ This description from Eli: "I'm a sixth grader at Montessori country school and I spent this year focusing on the removal of noxious weeds around the island. I chose this project because I'm interested in keeping the forest healthy and free of invasive species. I hope my brochure helps educate people about the species they should pull to keep our forests healthy." For more information on it, contact Bainbridge Island weed warrior Jeannette Franks [email protected] Adding to Burke herbarium photo collection. (through Master Gardeners) Master Gardener Christine Heycke is heading up an effort to provide images needed by the University of Washington's Burke Museum Herbarium. The Herbarium has a long list of plants for which they do not yet have images: https:// biology.burke.washington.edu/herbarium/imagecollection/unphotographed.php?Classification=Vascular%20Plants. Master Gardeners would be able to photograph some of these plants on nature hikes or even in their own gardens; in oth- er cases we would be looking for images available online. After verifying the plant IDs, we would submit the images to the Burke Herbarium for their final review and posting in the gallery. The Burke Collections Manager and Research Bot- anist will provide an online training session for volunteers.
Recommended publications
  • Monotropa Hypopitys L. Yellow Bird's-Nest
    Monotropa hypopitys L. Yellow Bird's-nest Starting references Family Monotropaceae IUCN category (2001) Endangered. Habit Saprophytic ± chlorophyll-less perennial herb. Habitat Leaf litter in shaded woodlands, most frequent under Fagus and Corylus on calcareous substrates, and under Pinus on more acidic soils. Also in damp dune-slacks, where it is usually associated with Salix repens. From 0-395 m. Reasons for decline Distribution in wild Country Locality & Vice County Sites Population (10km2 occurences) (plants) Scotland East Perth 1 Fife & Kinross 1 England North-east Yorkshire 1 West Lancashire 1 S. Northumberland 1 Leicestershire 1 Nottinghamshire 2 Derbyshire 2 S. Lancashire 5 Westmorland 2 South Devon 1 N. Somerset 3 S. Wiltshire 2 Dorset 1 Isle of Wight 2 Hampshire 10 Sussex 3 Kent 3 Surrey 6 Berkshire 5 Oxfordshire 5 Buckinghamshire 4 Suffolk 2 Norfolk 5 Bedfordshire 1 Northamptonshire 1 Gloucestershire 7 Monmouthshire 3 Herefordshire 1 Worcestershire 1 Warwickshire 1 Staffordshire 2 Shropshire 1 Wales Glamorgan 1 Carmarthenshire 4 Merioneth 2 Denbighshire 2 Anglesey 4 Ex situ Collections Gardens close to the region of distribution of the species 1 University of Dundee Botanic Garden 2 Branklyn Garden (NTS) 3 St Andrews Botanic Garden 4 Moor Bank Garden 5 University of Durham Botanic Garden 6 Yorkshire Museum & Gardens 7 Sheffield Botanical Gardens 8 Firs Botanical Grounds 9 University of Manchester Botanical & Exp. Grounds 10 City of Liverpool Botanic Gardens 11 Ness Botanic Gardens 12 Chester Zoological Gardens 13 Treborth Botanic
    [Show full text]
  • Pityopus Californicus (Eastw.) H.F
    Pityopus californicus (Eastw.) H.F. Copel. synonym: Monotropa californica Eastw., Pityopus californica (Eastw.) H.F. Copel., Pityopus oregonus Small pine-foot Monotropaceae - indian pipe family status: State Threatened, BLM strategic, USFS strategic rank: G4G5 / S1 General Description: Perennial, saprophytic fleshy herb with brittle roots and unbranched stems; pinkish, cream-colored or yellowish, drying to black; 1-10 cm. Leaves scalelike, nongreen, and sessile. Floral Characteristics: Inflorescence a terminal raceme or solitary flowers, emerging from the soil erect, not persistent after seed dispersal. Flowers axillary, bracted. Sepals 4-5, free, the lateral 2 often folded, clasping the corolla, the others lying flat against the corolla. Petals 4-5, free, cylindric, cream-colored to yellowish; the outside of the corolla is more or less hairless, the inside is densely hairy. Stamens generally 8, with erect, horseshoe-shaped anthers, unawned, dehiscent by 1 unified slit. Styles less than 5 mm long, stigma less than 5 mm wide, funnel-shaped, yellowish, subtended by a ring of hairs. O vary chamber 1, but may appear greater than 1 due to intrusion of parietal placentation. Fruits: Berries less than 1 cm. Identifiable June to July. Identif ication Tips: There is only one species of Pityopus in the Pacific Northwest. Pleuricos pora fimbriolata is related, but its flowers are hairless inside and out; its anthers are elongate (3-4 mm) and not horseshoe-shaped; and its stigma is less than 2.5 mm wide, crownlike, and not subtended by hairs. In contrast, the flowers of Pityopus californicus are densely hairy inside; its anthers are horseshoe-shaped and not elongate; and its stigma is less than 5 mm wide, more or less funnel-shaped, and subtended by a ring of hairs.
    [Show full text]
  • RNA-Seq Highlights Parallel and Contrasting Patterns in the Evolution of the Nuclear Genome of Fully Mycoheterotrophic Plants Mikhail I
    Schelkunov et al. BMC Genomics (2018) 19:602 https://doi.org/10.1186/s12864-018-4968-3 RESEARCH ARTICLE Open Access RNA-seq highlights parallel and contrasting patterns in the evolution of the nuclear genome of fully mycoheterotrophic plants Mikhail I. Schelkunov1* , Aleksey A. Penin1,2,3 and Maria D. Logacheva1,4,5* Abstract Background: While photosynthesis is the most notable trait of plants, several lineages of plants (so-called full heterotrophs) have adapted to obtain organic compounds from other sources. The switch to heterotrophy leads to profound changes at the morphological, physiological and genomic levels. Results: Here, we characterize the transcriptomes of three species representing two lineages of mycoheterotrophic plants: orchids (Epipogium aphyllum and Epipogium roseum) and Ericaceae (Hypopitys monotropa). Comparative analysis is used to highlight the parallelism between distantly related fully heterotrophic plants. In both lineages, we observed genome-wide elimination of nuclear genes that encode proteins related to photosynthesis, while systems associated with protein import to plastids as well as plastid transcription and translation remain active. Genes encoding components of plastid ribosomes that have been lost from the plastid genomes have not been transferred to the nuclear genomes; instead, some of the encoded proteins have been substituted by homologs. The nuclear genes of both Epipogium species accumulated nucleotide substitutions twice as rapidly as their photosynthetic relatives; in contrast, no increase in the substitution rate was observed in H. monotropa. Conclusions: Full heterotrophy leads to profound changes in nuclear gene content. The observed increase in the rate of nucleotide substitutions is lineage specific, rather than a universal phenomenon among non-photosynthetic plants.
    [Show full text]
  • Additions to the New Flora of Vermont
    Gilman, A.V. Additions to the New Flora of Vermont. Phytoneuron 2016-19: 1–16. Published 3 March 2016. ISSN 2153 733X ADDITIONS TO THE NEW FLORA OF VERMONT ARTHUR V. GILMAN Gilman & Briggs Environmental 1 Conti Circle, Suite 5, Barre, Vermont 05641 [email protected] ABSTRACT Twenty-two species of vascular plants are reported for the state of Vermont, additional to those reported in the recently published New Flora of Vermont. These are Agrimonia parviflora, Althaea officinalis , Aralia elata , Beckmannia syzigachne , Bidens polylepis , Botrychium spathulatum, Carex panicea , Carex rostrata, Eutrochium fistulosum , Ficaria verna, Hypopitys lanuginosa, Juncus conglomeratus, Juncus diffusissimus, Linum striatum, Lipandra polysperma , Matricaria chamomilla, Nabalus racemosus, Pachysandra terminalis, Parthenocissus tricuspidata , Ranunculus auricomus , Rosa arkansana , and Rudbeckia sullivantii. Also new are three varieties: Crataegus irrasa var. irrasa , Crataegus pruinosa var. parvula , and Viola sagittata var. sagittata . Three species that have been reported elsewhere in 2013–2015, Isoetes viridimontana, Naias canadensis , and Solidago brendiae , are also recapitulated. This report and the recently published New Flora of Vermont (Gilman 2015) together summarize knowledge of the vascular flora of Vermont as of this date. The New Flora of Vermont was recently published by The New York Botanical Garden Press (Gilman 2015). It is the first complete accounting of the vascular flora of Vermont since 1969 (Seymour 1969) and adds more than 200 taxa to the then-known flora of the state. However, the manuscript for the New Flora was finalized in spring 2013 and additional species are now known: those that have been observed more recently, that have been recently encountered (or re-discovered) in herbaria, or that were not included because they were under study at the time of finalization.
    [Show full text]
  • Yellow Bird's-Nest, Monotropa Hypopitys
    Northern Ireland Species Champions Yellow Bird’s-nest, Monotropa Hypopitys Description Distribution The yellow bird’s-nest is a saprophytic species of The easiest places to find this plant are Straidkilly woodland found mainly in County Fermanagh, with National Nature Reserve near Glenarm, County isolated sites in Counties Londonderry and Antrim. Antrim and several sites in western County Fermanagh such as Correl Glen National Nature A herbaceous plant consisting of a globose, perennial Reserve near Derrygonnelly, Carrickreagh, Ely Lodge underground stock which bears numerous fibrous Forest and Castle Caldwell Forest Park around Lower roots and seasonal above-ground flowering shoots of Lough Erne. waxy appearance. The flowering shoots are a uniform yellow colour; grows to about 25cm in height. The Action tubular flowers droop downwards, but become erect Many habitats of this species are designated as ASSIs. in fruit. Flowering shoots may not appear every season. Some sites for this species are designated as National Nature Reserves. Some sites lie within forests or forest parks managed by Forest Service. Sites are monitored on an ad hoc basis by various field botanists. Further Information http://www.habitas.org.uk/priority/species.asp?item= 3921 MLA Species Champion The plant may persist for an unknown number of years entirely in the form of an underground stock that produces numerous roots which are infected by a fungus. The flowers are pollinated by insects and are succeeded by a round fruit capsule containing the seeds the mycorrhizal fungus as an intermediary. Germination of the seed may take place in the absence of the mycorrhizal fungus, but infection of the seedling by the fungus is required for development to maturity.
    [Show full text]
  • Intoroduction to the World of Fungi
    Introduction to the world of Fungi Let us learn about fungi correctly What do you think of when you hear the word “fungi”? Many people have misconceptions. So, let us start by understanding correctly what kind of organisms fungi are. What do you think of when you hear the word “fungi”? Escherichia coli Organisms other than fungi are also included in the Lactobacillus figure to your left. Which are fungi? Paramecium Myxomycetes (E) and Dictyostelium discoideum (G) are Koji mold considered to be fungi in a broad sense. Although Escherichia coli (Daicho-kin) and Lactobacillus (Nyusankin) Dictyostelium discoideum have “-kin” in their name, they actually are not fungi Chlamydomonas (kin-rui). First, let’s understand how to define the characteristics of fungi. Myxomycetes Fungi are neither animals nor plants; they are also not bacteria. Kingdom Plantae Kingdom Fungi Kingdom Animalia When all the organisms were classified as either animals Tracheophyte or plants, fungi were categorized as plants. However, they were later recognized to belong to an entirely different Mollusca Arthropoda Vertebrate kingdom: Plants produce nutrients through photo- Basidiomycetes synthesis and animals derive nutrients through eating Bryophyte Annelida Echinoderm Charophyte Ascomycota these plants and other animals. On the other hand, fungi Tentaculata Zygomycota derive nutrients in other ways, such as through Chaetognatha Phaeophyta Aschelminthes degradation of both animal and plant remains (sapro- Chlorophyte Platyhelminthes Mesozoan Coelenterata phytes). Hence, they contribute to the maintenance of Rhodophyta Labyrinthula Oomycetes ecosystem balance and nutrient and carbon cycling and Myxomycetes Chytridiomycetes Porifera Chrysophyta are now recognized to form a kingdom distinct from both Pyrrophyta Euglenophyta Sporozoea Plasmodiophoromycetes Sakagetsu mold CnidosporidiaFlagellata animals and plants.
    [Show full text]
  • Food, Poison, and Espionage: Mycorrhizal Networks in Action
    Food, Poison, and Espionage: Mycorrhizal Networks in Action David Yih an trees nurse their young? Do plants these. Their intriguing findings also have send out signals underground to warn game-changing implications for ecology and Ceach other of the arrival of ravenous conservation, forestry and agriculture—even insects? Can they go on the attack them- evolutionary theory. selves and cripple competing plants with nox- Some 90% of terrestrial plant species around ious chemicals they deliver through fungal the world engage in symbioses called mycor- connections? Lately, researchers investigat- rhizae—from Greek mykos (fungus) and rhiza ing subterranean fungal networks have come (root). Mycorrhizal plants come from all corners up with surprising answers to questions like of the plant kingdom and include trees, forbs, grasses, ferns, clubmosses, and liverworts. Their symbiotic partners (symbionts) are fungi whose threadlike hyphae radiate out into the soil, bringing water and nutrients—including phosphorus, nitrogen, zinc, and copper—back to the plant’s roots in exchange for a share of the carbohydrates plants produce through pho- tosynthesis. Though mycorrhizal symbioses range along a continuum from parasitic (on the part of the plant) to mutualistic types, most are mutually beneficial. By themselves, plants can only access nutrients in the immediate vicin- ROB ROUTLEDGE, SAULT COLLEGE, BUGWOOD.ORG ROB ROUTLEDGE, SAULT ity of their feeder roots, and soon exhaust the supply. By associating with fungi, they conserve resources that would have been spent on grow- ing ever larger root systems. In fact, as Smith and Read state categorically in their compen- dium of all things mycorrhizal, “Mycorrhi- zas, not roots, are the chief organs of nutrient uptake by land plants” (Smith and Read 2008).
    [Show full text]
  • Monotropoid Mycorrhizal Characteristics of Monotropa Uniflora (Ericaceae) Collected from a Forest in Korea
    한국균학회지 The Korean Journal of Mycology Research Note Monotropoid Mycorrhizal Characteristics of Monotropa uniflora (Ericaceae) Collected from a Forest in Korea Eun-Hwa Lee and Ahn-Heum Eom* Department of Biology Education, Korea National University of Education, Cheongju 363-791, Korea ABSTRACT : The roots of Monotropa uniflora were collected from a forest in Korea. Morphological characteristics of monotropid mycorrhizas of the plants were determined. Thick mantles covered the roots and fungal pegs inside the epidermal cells of the roots were observed. Fungal symbionts were identified by sequence analysis of internal transcribed spacer region. Phylogenetic analysis based on the sequences demonstrated that the fungus was the most closely related to Russula heterophylla. The result support the strong specificity between M. uniflora and Russula species. KEYWORDS : Monotropoid mycorrhizas, Monotropa uniflora, Russula sp. Monotropoideae is a subfamily of the Ericaceae, and The mycorrhizal structure has typical ectomycorrhizal most of the species in this subfamily are achlorophyllous, characteristics, including a hyphal mantle covering the and thus, heterotrophic plants [1]. These plants are not roots and Hartig nets between cortex cells of the roots. able to fix carbon by themselves because they have very In addition, fungal hyphae penetrate and produce fungal low amounts of chlorophyll-related pigments [2]. They pegs inside the epidermal cells of plant roots, which is obtain fixed carbon from photosynthetic plants through the characteristic structure of monotropoid mycorrhizas. mycorrhizal hyphae; plants exhibiting this relationship Fungal pegs have been known as structures that trans- are referred to as mycoheterotrophic plants [3, 4]. The locate photosynthetic carbon compounds from the fungi mycorrhizal relationship between Monotropoideae plants to photosynthetic plants.
    [Show full text]
  • On the Fringe Journal of the Native Plant Society of Northeastern Ohio
    On The Fringe Journal of the Native Plant Society of Northeastern Ohio Spring 2009 Wildflower Events Ohio Botanical Symposium – April 3, 2009, 8 am to 4 pm The annual Ohio Botanical Symposium brings together Society, Native Plant Society of Northeastern Ohio, people of various backgrounds who share an interest in Naturally Native Nursery, Ohio Prairie Nursery, Scioto Ohio‘s native plants and natural history. It is presented Gardens and The Nature Conservancy. by the ODNR Division of Natural Areas & Preserves. The Symposium is presented by the Ohio Division of Location :Villa Milano, 1630 Schrock Road, Natural Areas and Preserves, in conjunction with the Columbus, OH 43229, (614) 882-2058 Cleveland Museum of Natural History, The Nature www.villamilano.com Conservancy and The Ohio State University Herbarium. The 2009 Ohio Botanical Symposium is supported by the Arc of Appalachia Preserve System, Cincinnati To learn more, visit www.ohiodnr.com/dnap Wildflower Preservation Society, Cleveland Museum To reserve space, please contact Rick Gardner at of Natural History, Flora-Quest, Mohican Native Plant (614) 265-6419 or email: [email protected]. Arc of Appalachia Preserve System Southern Ohio Wildflower Pilgrimage, Thurs eve thru Sun, April 16-19 2009 In all the world, there is nothing that quite compares to the verdant beauty of an Appalachian Forest in the spring. Join us in celebrating the return of the wildflowers in the five-county Arc of Appalachia Preserve Region of southern Ohio. Over 36 tours led by experienced naturalists & botanists, with all-day field trips on Friday and Saturday, half- day tours on Sunday.
    [Show full text]
  • Recruitment Ecology and Fungal Interactions in Mycoheterotrophic Ericaceae
    Recruitment ecology and fungal interactions in mycoheterotrophic Ericaceae Veronika A. Johansson ©Veronika A. Johansson, Stockholm University 2014 Cover: Dust seeds of Pyrola chlorantha (Ericaceae) in relation to a Swedish krona. Photo by: Veronika Johansson ISBN 978-91-7649-061-7 Printed in Sweden by US-AB, Stockholm 2014 Distributor: Department of Ecology, Environment and Plant Sciences, Stockholm University If the wind will not serve, take to the oars. Doctoral dissertation Veronika A. Johansson Department of Ecology, Environment and Plant Sciences Stockholm University SE-106 91 Stockholm Recruitment ecology and fungal interactions in mycoheterotrophic Ericaceae Abstract There are generally two contrasting alternatives to what limits recruitment in plants, namely the availability of seeds (seed limitation) or the quality or quantity of suitable sites (microsite limitation). Dust seeds, the smallest existing seeds, lack or have minimal nutrient reserves. During germination and initial development they consequently parasitize on mycorrhizal fungi. This is called mycoheterotrophy, and can vary in degree of fungal dependency in adult plants from full, partial or initial mycoheterotrophy. The aim of this thesis was to investigate the recruitment ecology of mycoheterotrophic Ericaceae (tribe Pyroleae) species with dust seeds, and to determine what limits their recruitment. The investigated species were: Chimaphila umbellata, Moneses uniflora, Orthilia secunda, Pyrola chlorantha, P. minor and P. rotundifolia. This aim was achieved by combining field experiments (seed sowing) with isotope analysis and fungal host pyrosequencing. Results provide evidence that the species in Pyroleae are heterogeneous, not only with regard to their degree of mycoheterotrophy, but also concerning germination and early seedling development. A combination of microsite and seed limitation is thus likely to be of importance for all studied species, but the relative importance of these limitations varies among species.
    [Show full text]
  • Systematic Relationships of Pityopus Californicus Inferred from Large Ribosomal Subunit (26S) Rrna Gene Sequences
    Western North American Naturalist Volume 65 Number 4 Article 11 11-11-2005 Systematic relationships of Pityopus californicus inferred from large ribosomal subunit (26S) rRNA gene sequences Ray Neyland McNeese State University, Lake Charles, Louisiana Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Neyland, Ray (2005) "Systematic relationships of Pityopus californicus inferred from large ribosomal subunit (26S) rRNA gene sequences," Western North American Naturalist: Vol. 65 : No. 4 , Article 11. Available at: https://scholarsarchive.byu.edu/wnan/vol65/iss4/11 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 65(4), © 2005, pp. 528–535 SYSTEMATIC RELATIONSHIPS OF PITYOPUS CALIFORNICUS INFERRED FROM LARGE RIBOSOMAL SUBUNIT (26S) rRNA GENE SEQUENCES Ray Neyland1 ABSTRACT.—Pityopus californicus is a rare mycoheterotrophic herb that occurs in coniferous and mixed forests of western North America. Previous authors have speculated that Pityopus californicus is not a true species but is a recur- ring hybrid. The reputed parental candidates of P. californicus include the closely related Pleuricospora fimbriolata, Hemitomes congestum, and Monotropa hypopithys. However, a phylogenetic
    [Show full text]
  • Monotropa Uniflora-Example of a Mico-Heterotroph
    Monotropa uniflora-Example of a mico-heterotroph Unlike most plants, it is white and does not contain chlorophyll. Instead of generating energy from sunlight, it is parasitic, more specifically a myco-heterotroph. Its hosts are certain fungi that are mycorrhizal with trees, meaning it ultimately gets its energy from photosynthetic trees. Since it is not dependent on sunlight to grow, it can grow in very dark environments as in the understory of dense forest. It is often associated with beech trees.[2] The complex relationship that allows this plant to grow also makes propagation difficult. The plant is sometimes completely white but commonly has black flecks and a pale pink coloration.[3] Rare variants may have a deep red color. Common names include Indian Pipe plant, Ghost plant and Corpse plant. The stems reach heights of 10–30 cm, clothed with small scale-leaves 5–10 mm long. As its scientific name suggests, and unlike the related Monotropa hypopitys (but like the closely related Monotropastrum humile), the stems bear only a single flower, 10–15 mm long with 3-8 petals. It flowers from early summer to early autumn, often a few days after rainfall. Like most mycoheterotrophic plants, M. uniflora associates with a small range of fungal hosts, all of them members of Russulaceae.[4] https://en.wikipedia.org/wiki/Monotropa_uniflora Mycorrhizal fungal filaments in the soil are truly extensions of root systems and are more effective in nutrient and water absorption than the roots themselves. http://mycorrhizae.com/ More than 90 percent of plant species in natural areas form a symbiotic relationship with the beneficial mycorrhizal fungi.
    [Show full text]