Electric Propulsion 4

Total Page:16

File Type:pdf, Size:1020Kb

Electric Propulsion 4 Technology Forum on Small Body Scientific Exploration – 4th Meeting of the NASA Small Bodies Assessment Group Michael Patterson NASA Glenn Research Center John Brophy Jet Propulsion Laboratory California Institute of Technology January 24, 2011 National Aeronautics and Space Administration www.nasa.gov 1. In-Space Propulsion Overview 2. Current In-Space Investments for Robotic Missions 3. Description of Electric Propulsion 4. Current Technology Investments and Development Status 2 3 Flight System Development Future Applications Non-toxic propellant-based propulsion systems (LOX, LH2, LCH4, Ethanol) Main Propulsion Systems (MPS) Propulsion systems for orbit transfer, orbit injection, spacecraft maneuvering, landing, and ascent Development of component technologies (igniters, exciters, injectors , combustion chambers, nozzles) for non-toxic propellants Current Focus Areas • LOX/LCH4 propulsion technologies for main propulsion systems (MPS), reaction control systems (RCS), and propellant storage and distribution • Development of Orion Service Module propulsion system Reaction Control Systems (RCS) • Preliminary trade studies, requirements development, and planning for Altair ascent propulsion subsystem Research and Technology Development Materials Evaluation Combustion Diagnostics Ignition Performance Propellant Properties 4 Future Applications • Next generation ion propulsion system for deep-space science missions (NEXT) • Propulsion systems for Earth orbital applications including satellite servicing, repositioning, re-boost, orbital debris removal, and de-orbit • High power propulsion systems for cargo transportation in support of future human crewed missions beyond LEO Technology and Flight System Development of Ion and Hall Thrusters Current Focus Areas • Ion and Hall thruster design, fabrication, evaluation 200 kWe Class SEP Stage • VASIMR or other high power EP • Innovative concept development and evaluation technology • Reusable orbit transfer • Power electronics design, bread-boarding, evaluation • Robotic interplanetary cargo transfer • System integration, system qualification and acceptance testing • Thermal, stress, vibration analysis and test • Capability to fabricate laboratory and flight hardware SEP Stage Upgrade • 90 kWe class system Solar Electric Propulsion (SEP) Stage • Orbital servicing and debris removal • 30 kWe class system with advanced PV and AR&D technologies • ISS reboost • NASA science missions • Science missions, e.g., Mars Sample/Return • Small commercial servicing applications in Earth orbit • Use of NEXT ion or Hall thruster technology 5 Future Applications • High-thrust/high-Isp injection stage to Mars and other destinations within inner solar system • Cargo and crewed transportation for human missions to the Moon, NEOs and Mars • Strong synergy with existing chemical rocket and stage hardware • Evolvability to propulsion and power (“Bimodal operation”), variable thrust and Isp (“LOX-afterburner” nozzle), ISRU and hybrid operation (BNTR with EP) Integrated NTP Crewed Vehicle Design for Mars DRA 5.0 Current Focus Areas • Vehicle / engine concept design and analysis, and requirements definition for Human Mars missions (DRA 5.0) • Engine conceptual design, analysis and modeling includes neutronics, thermal, fluid, stress and mass estimation • Fuels assessment and development planning with DOE • Innovative NTP engine design concept development • Infrastructure and test facility needs assessment LOX Augmented Nuclear Rocket (LANTR) Engine Demonstration Advanced Technology: Bimodal Propulsion and Power 6 In-Space Propulsion Investments for Robotic Missions Objective: “Develop in-space propulsion technologies that enable or benefit near to mid-term NASA science missions by significantly reducing travel times required for transit to distant bodies, increasing scientific payload capability or reducing mission costs.” ISP will enable access to more challenging and interesting science destinations, including enabling sample return missions. Planetary Earth Entry Vehicles Systems & Sample Return Propulsion Ascent Vehicles /Aerocapture Mission Studies Propulsion Tech High-Temp Engine TPS & Structures (AMBR) Mars Ascent Vehicle Tools Ultra Lt Wt Tank NEXT GN&C Mission Studies System Studies Hall Thruster Multi-Mission Earth Entry Vehicle Component Tech • The ISPT project addresses the primary propulsion technology needs for the agency’s future robotic science missions • The current ISPT focus is on TRL 3-6+ product development 7 8 Chemical propulsion converts the energy stored in the molecular bonds of a propellant into kinetic energy • Typically high thrust to weight (required for launch) • Exhaust velocity is limited by the chemical energy available • Higher exhaust velocities can reduce required propellant mass: M f exp-ΔV v M0 e • For a given change in velocity (ΔV), the delivered mass (Mf) depends on the propellant exhaust velocity (ve) • Once in space, engines that provide a higher exhaust velocity can significantly reduce propellant mass requirements 9 Electric propulsion (EP) uses electrical power to provide kinetic energy to a propellant • Decouples kinetic energy from limitations of chemical energy • Provides higher exhaust velocities than chemical engines - Reduces propellant mass needed for a given impulse - Allows reduction in launch mass a/o increase in payload; can provide substantial benefits in mission cost • Increases launch window as compared to all-chemical systems in certain mission scenarios • Electric propulsion primarily benefits large total impulse missions - Orbit raising, repositioning, long-term station keeping - Cis-lunar, planetary and deep space missions - Precise impulse bits for formation flying 10 Additional considerations… • Significantly lower thrust to weight than chemical engines - Small but steady acceleration vs. short-burn chemical engines - EP engines must be designed for long life (thousands of hours) • Increased dry mass due to: - Solar arrays - Power processing units - and Other EP-specific hardware • Spacecraft integration considerations: - Electric power requirements - Plasma plume and EMI • Propulsion system trades performed to evaluate whether a given mission will benefit from the use of electric propulsion 11 Electric thrusters are categorized by their primary acceleration mechanism: • Electrothermal – Resistojets & Arcjets (commercial flight units available) heat gas and expand gas thru a nozzle – Auxiliary Propulsion; typically ≤ 1 kWe Resistojet thrusters use resistive heating elements to increase the thermal energy of a gas propellant Arcjet thrusters use an electric arc to increase the thermal energy of a gas propellant • Electrostatic – Hall effect and Gridded Ion thrusters (commercial flight units + development) generate high voltages for ion (plasma) acceleration – Auxiliary and Primary Propulsion; typically 1 to 10’s of kWe Ion thrusters use closely spaced high voltage grids to create an electrostatic field Hall thrusters use magnetically trapped electrons to create an electrostatic field 12 Electric thrusters are categorized by their primary acceleration mechanism: • Electromagnetic – Pulsed plasma (commercial flight units available), Magnetoplasmadynamic and Pulsed Inductive thrusters (laboratory model) apply a Lorentz (JxB) force for plasma acceleration – Auxiliary and Primary Propulsion Pulsed Plasma thrusters use a pulsed, repetitive current to ablate solid propellant, induce magnetic field (JxB) Magnetoplasmadynamic thrusters use a high power, steady- state current to ionize gas propellant, induce magnetic field (JxB) 13 14 Objective: Develop advanced ion propulsion system Thruster Attribute with improved performance and life characteristics Thruster power range, kW 0.5 - 6.9 to reduce user costs and enhance/enable a broad Max. Specific Impulse, s 4,190 range of NASA SMD missions Thrust range, mN 26 - 236 Propellant Throughput, kg 450* Mass (with harness), kg 13.5 Envelope dimensions, cm 43.5 x 58.0 Power Processing Unit Attribute Power Processing Unit mass, kg 33.9 Envelope dimensions, cm 42 x 53 x 14 Input voltage range, V 80 - 160 Feed System Attribute High Pressure Assembly mass, kg 1.9 NEXT gridded ion NEXT PM ion thruster operation thruster Low Pressure Assembly mass, kg 3.1 NEXT Thruster NEXT addresses the entire ion propulsion String system PPU Thruster - Gridded ion thruster DCIU - Power processing unit (PPU) - Propellant management system (PMS) HPA - System integration (including gimbal and LPA control functions) Gimbal Primary Partners * Rated Capability Goal 300Kg Design/Qualification Goal (1.5x Rated) 450Kg - NASA Glenn Research Center: Lead Projected 1st Failure >750Kg Potential Rated Capability 500Kg - JPL, Aerojet Corp., L3 Comm. 15 Critical tests have been PM1 PM1R PPU Feed Gimbal System completed, or are imminent, on high fidelity hardware Functional & Complete Complete Complete Complete Complete Performance Testing Qual-Level Vibration Test Complete Complete FY11 Complete Complete Qual-Level Thermal/ Not Complete Complete FY11 Complete Vacuum Test planned FY11 Key activities : • PPU re-verification test, and environmental test • Single-String System Integration Test: Complete • Long-Duration Test (LDT) • Multi-String System Integration Test: Complete • Phase II Review • Thruster Life Test: Completed goal of 450Kg throughput •Technology Maturation Review • >34,000 hours and >570 kg of xenon processed to date FY11-13 Key activities: • Life Test will continue through 750Kg or first failure • PPU design iteration
Recommended publications
  • The Development of a Pulsed Plasma Thruster As a Solid Fuel Plasma Source for a High Power Helicon
    The Development of a Pulsed Plasma Thruster as a Solid Fuel Plasma Source for a High Power Helicon Ian Kronheim Johnson A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science The University of Washington 2011 Program authorized to offer degree: Aeronautics and Astronautics University of Washington Graduate School This is to certify that I have examined this copy of a master’s thesis by Ian Kronheim Johnson and have found that is it complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Committee Members: Professor Robert Winglee, Department of Earth and Space Sciences, Chair Professor Tom Jarboe, Department of Aeronautics and Astronautics Date: The University of Washington ii In presenting this thesis in partial fulfillment of the requirements for a master’s degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Any other reproduction for any purposes or by any means shall not be allowed without my written permission. Signature: Date: The University of Washington iii University of Washington Abstract The Development of a Pulsed Plasma Thruster as a Solid Fuel Plasma Source for a High Power Helicon Ian Kronheim Johnson Chair of the Supervisory Committee: Professor Robert Winglee Earth and Space Sciences As space exploration shifts to lower mass and lower cost missions, the need for improved on-board propulsion systems is growing.
    [Show full text]
  • 1 Iac-06-C4.4.7 the Innovative Dual-Stage 4-Grid Ion
    IAC-06-C4.4.7 THE INNOVATIVE DUAL-STAGE 4-GRID ION THRUSTER CONCEPT – THEORY AND EXPERIMENTAL RESULTS Cristina Bramanti, Roger Walker, ESA-ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands [email protected], Roger. Walker @esa.int Orson Sutherland, Rod Boswell, Christine Charles Plasma Research Laboratory, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia [email protected], [email protected], [email protected]. David Fearn EP Solutions, 23 Bowenhurst Road, Church Crookham, Fleet, Hants, GU52 6HS, United Kingdom [email protected] Jose Gonzalez Del Amo, Marika Orlandi ESA-ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands [email protected], [email protected] ABSTRACT A new concept for an advanced “Dual-Stage 4-Grid” (DS4G) ion thruster has been proposed which draws inspiration from Controlled Thermonuclear Reactor (CTR) experiments. The DS4G concept is able to operate at very high specific impulse, power and thrust density values well in excess of conventional 3-grid ion thrusters at the expense of a higher power-to-thrust ratio. A small low-power experimental laboratory model was designed and built under a preliminary research, development and test programme, and its performance was measured during an extensive test campaign, which proved the practical feasibility of the overall concept and demonstrated the performance predicted by analytical and simulation models. In the present paper, the basic concept of the DS4G ion thruster is presented, along with the design, operating parameters and measured performance obtained from the first and second phases of the experimental campaign.
    [Show full text]
  • Electrostatic Ion Thrusters for Space Debris Removal
    Theoretical Physics Electrostatic ion thrusters for space debris removal Oscar Larsson, [email protected] Gustav Hedengren, [email protected] SA114X Degree Project in Engineering Physics, First Level Department of Theoretical Physics Royal Institute of Technology (KTH) Supervisor: Christer Fuglesang October 28, 2018 Abstract The current levels of space debris are critical and actions are needed to prevent collisions. In this paper it is examined whether an electrostatic ion thruster can be powerful enough to slow down the debris in a sufficient manner. Furthermore, it is looked into whether the process can be repeated for a significant number of pieces by maneuvering between them. We conclude that the removal process seems possible although some improvements are needed. Maneuvering is costly but despite conservative assumptions, we estimate that about 800 pieces can be removed in one journey made by a satellite weighing ten tonnes of which nine are xenon. Abstract Den nuvarande nivån av rymdskrot är kritisk och åtgärder krävs för att förhindra kollisioner. I denna artikel undersöks det huruvida en elektrostatisk jonkanon är kraftfull nog för att bromsa skrot tillräckligt. Fortsättningsvis undersöks det om denna process är effectiv nog för att återupprepas för ett betydande antal bitar, inklusive manövrering bitarna emellan. Vi drar slutsatsen att processen verkar möjlig att genomföra även om vissa förbättringar behövs. Manövreringen är kostsam men trots konservativa antaganden uppskattar vi att ungefär 800 bitar kan tas ned under en resa av en satellit med vikt 10 ton varav nio ton är xenon. Contents 1 Introduction 2 2 Background 2 2.1 The space debris problem . .2 2.2 The Dual-stage 4 grid ion thruster (DS4G) .
    [Show full text]
  • Evolution of the AIRBUS DS Gmbh Radio Frequency Ion Thruster Family
    Evolution of the AIRBUS DS GmbH Radio Frequency Ion Thruster Family IEPC-2015- 90830 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan July 4 – 10, 2015 H. J. Leiter1, Ch.Altmann2, R.Kukies3, J.Kuhmann4, J.-P. Porst5 Airbus DS GmbH, Lampoldshausen, Germany Marcel Berger6 and Michael Rath7 Airbus DS GmbH, Bremen, Germany Abstract: The Airbus DS Radio Frequency Ion Thruster "RIT" family and its evolution is presented. The first member of the family was RIT-10. Over the years the engine was carefully evolved. The recent RIT-10 EVO represents the state-of-the art in the 500W class. Taking benefit of the excellent scalability of the RIT technology the family grew in both directions and a thrust range from view micro Newtons to more than 200mN is covered. RIT-μX is the smallest engine for the low Milli- and Micro-Newton regime. In the 5kW class the RIT 2X series replaces RIT-22. The basics of the radio-frequency ion thruster technology are provided. It is a flight proven technology: RIT-10 marked two milestones in the history of electric propulsion. Following a brief historical recall of the RIT-family the three thrusters RIT-μX, RIT-10 EVO and the RIT 2X series are presented together with their embedding systems. I. Introduction lectric propulsion (EP) has become state of the art for commercial geostationary satellites. More and more Eoperators realize the advantages of EP for North South Station keeping and thanks to sufficient electric power on telecom platforms also electric orbit transfer will soon become standard.
    [Show full text]
  • Future Directions for Electric Propulsion Research
    aerospace Article Future Directions for Electric Propulsion Research Ethan Dale * , Benjamin Jorns and Alec Gallimore Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48105, USA; [email protected] (B.J.); [email protected] (A.G.) * Correspondence: [email protected] Received: 7 July 2020; Accepted: 17 August 2020; Published: 20 August 2020 Abstract: The research challenges for electric propulsion technologies are examined in the context of s-curve development cycles. It is shown that the need for research is driven both by the application as well as relative maturity of the technology. For flight qualified systems such as moderately-powered Hall thrusters and gridded ion thrusters, there are open questions related to testing fidelity and predictive modeling. For less developed technologies like large-scale electrospray arrays and pulsed inductive thrusters, the challenges include scalability and realizing theoretical performance. Strategies are discussed to address the challenges of both mature and developed technologies. With the aid of targeted numerical and experimental facility effects studies, the application of data-driven analyses, and the development of advanced power systems, many of these hurdles can be overcome in the near future. Keywords: electric propulsion; Hall effect thruster; gridded ion thruster; electrospray; magnetic nozzle; pulsed inductive thruster 1. Introduction The use of electric propulsion (EP) for space applications is currently undergoing a rapid expansion. There are hundreds of operational spacecraft employing EP technologies with industry projections showing that nearly half of all commercial launches in the next decade will have a form of electric propulsion. In light of their widespread use, the thruster types that have fueled this expansion—moderately-powered (1–20 kW) Hall effect, electrothermal, and ion thrusters—arguably have now achieved “mature” operational status.
    [Show full text]
  • Parametric Studies of the Hall Thruster at Soreq
    IAEC - Parametric Studies of the Hall Thntster at Soreq An elec IL9906633 initiated at Soreq Parametric a few years ago, aiming at the research and development of Studies of advanced Hall thrusters for various space applications. The Hall thruster accelerates a plasma jet by an axial electric the Hall field and an applied radial magnetic field in an annular Thruster at ceramic channel. A relatively large current density (> 0.1 A/cm") can be obtained, since the acceleration mechanism Soreq is not limited by space charge effects. Such a device can be used as a small rocket engine onboard spacecraft with the J. Ashkenazy, advantage of a large jet velocity compared with Y. Raitses and conventional rocket engines (10,000-30,000 m/s v.s G. Appelbaum 2,000-4,800 m/s). An experimental Hall thruster was constructed at Soreq and operated under a broad range of operating conditions and under various configurational /. Summary variations. Electrical, magnetic and plasma diagnostics, as well as accurate thrust and gas flow rate measurements, have been used to investigate the dependence of thruster behavior on the applied voltage, gas flow rate, magnetic field, channel geometry and wall material. Representative results highlighting the major findings of the studies conducted so far are presented. 2. Introduction The Hall current plasma thruster is a crossed field discharge device in which quasi-neutral plasma is accelerated by axial electric and radial magnetic fields in an annular channel. Thrust is generated as a reaction to the momentum carried by the plasma jet emerging from the channel's open end.
    [Show full text]
  • Development of a Miniature Gridded Ion Thruster
    Development of a miniature Gridded ion thruster Peter Kindberg Space Engineering, master's level (120 credits) 2017 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering DEVELOPMENT OF A MINIATURE GRIDDED ION THRUSTER Master Thesis for Erasmus Mundus master program SpaceMaster Peter Kindberg Thesis supervisor: Prof. Jaan Praks, Aalto University Thesis supervisor: Prof. Peter von Ballmoos, Université Toulouse III – Paul Sabatier Thesis supervisor: Dr. Soheil Sadeghi, Luleå University of Technology Thesis advisor: D.Sc. (Tech) Antti Kestilä Abstract Electric propulsion has matured to the point where it starts credibly to challenge chemical propulsion systems. The high efficiency and larger specific impulse have allowed to lower the weight of the satellites and therefore costs. Even though the thrust of an electric propulsion systems is still just a fraction of that chemical rockets, the possibility of keeping it on for months eventually gives the same amount of momentum. While CubeSat projects are getting more popular by universities only a few have developed their own miniature ion thruster. These mini thrusters have a thrust force of sub mN to few mN, but they still enable up to 100 kg almost any kind of altering to satellites orbital position and attitude. Another, issue on electric propulsion is the propellant. Xenon is most used propellant fuel in ion thrusters, but because of its high costs, it is out of the reach for many universities. This study tried tackling into those two topics and create a design of a miniature ring cusp gridded ion thruster. The study wanted to research possibilities of using 3D printing technology and this way simplify the fabrication process.
    [Show full text]
  • Evaluation of the T5 (UK-10) Ion Thruster: Summary of Principal Results
    I -595 - IEPC-95-91 Evaluation of the T5 (UK-10) Ion Thruster: Summary of Principal Results Mark W Crofton Technology Operations,Mechanics & Materials Technology Center The Aerospace Corporation,P.O. Box 92957, Los Angeles, CA 90009 Abstract program, early in its mission. Present and projected future requirements of the USAF regarding propulsion A test and evaluation study examining the have been considered in the analysis of UK-10 United Kingdom's 10 centimeter diameter xenon ion suitability for USAF spacecraft. Other attractive thruster system, known as the UK-10, has been electric propulsion options are available as well. performed at The Aerospace Corporation. The UK-10 Ion Propulsion System is designed for satellite L Introduction stationkeeping and on-orbit repositioning missions * where substantial cumulative velocity change is The principal objective of the Foreign required to control satellite position over the mission Comparative Test (FCT) Program of the Department of lifetime. The purpose of the study, sponsored by the Defense is the identification, test and evaluation of non Department of Defense and managed by the Air Force, US-produced products which are potentially cost- was to determine if the UK-10 is a suitable effective and timely alternatives to satisfy DoD replacement on USAF satellites for presently employed requirements. The product for evaluation in this propulsion devices. The study therefore evaluated all program was the United Kingdom 10 .centimeter essential aspects of the UK-10 pertaining to its diameter xenon ion thruster system known as the UK- potential use, however, a conventional lifetest was 10. This propulsion system is designed for satellite beyond the scope.
    [Show full text]
  • Hall-Effect Thruster (Het)
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072 HALL-EFFECT THRUSTER (HET) Deepak Pal1, Advait Inamdar 2, Narayan Thakur3, Akshat Mohite4 1Deepak Pal, Mechanical Engineer. Rajendra Mane College of Engineering and Technology, Ratnagiri, Maharashtra, India 2Advait Inamdar, Mechanical Engineer, A. P. Shah Institute of Technology, Thane, Maharashtra, India 3Narayan Thakur, Mechanical Engineer, A. P. Shah Institute of Technology, Thane, Maharashtra, India 4Akshat Mohite, Mechanical Engineer, A. P. Shah Institute of Technology, Thane, Maharashtra, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - HET is a type of electric propulsion system (EPS) produce force in the opposite direction. Most of the electric that is an effective and powerful alternative to the traditional thrusters work by expelling propellant mass (reaction mass) (chemical) propulsion system for space missions. The thrust electrically to gain velocity at high speed. Significantly, produced by Hall thruster is lower, albeit the specific impulse thruster requires that mass be lost from a rocket to exhaust. produced by Hall thruster is far higher than traditional As a name suggest, Hall Effect thruster works on Hall Effect. thrusters. Hall Thruster with low fuel requirement result in less propellant mass storage compared to chemical thrusters. 2. PRINCIPAL As a result, the concomitant decrease in propellant mass results in improved payload mass power. Hall Thruster is further known as electrostatic Hall Thruster and electromagnetic Hall Thruster. Hall Effect thruster is a type of electrostatic thruster that uses Coulomb force which accelerates ions in the direction of an electrical field. Applications require the regulation of the inclination and the location of satellites in orbit.
    [Show full text]
  • Appendix I. NASA's Evolutionary Xenon Thruster (NEXT)
    Appendix I. NASA’s Evolutionary Xenon Thruster (NEXT) I.1 Starshade Propulsion A key functional element of the starshade spacecraft is to move, within the Lagrange space, from observation state vector to observation state vector. On the order of 70-80% of the starshade spacecraft life cycle is spent in these translation maneuvers. This mission characteristically has a very large mission delta-V. With the current baseline New Worlds Observer concept, the translation maneuver delta-V for the primary mission is on the order of 7-8 km/s. Electric propulsion systems can execute this delta-V with significantly less propellant than a chemical propulsion system. The baseline concept requires approximately 900 kg of xenon propellant. Use of a bi-propellant chemical propulsion system, while reducing the mission delta-V, drives the propellant mass well above 10,000 kg. Such an approach is mass-prohibitive. Thus, considering findings from earlier studies and updates to analyses, the decision was made to baseline electric propulsion at the beginning of this study. I.2 Requirements Flow-Down The effectiveness of the Starshade Spacecraft propulsion system directly translates to science return. Key mission-level requirements that drive the Starshade Spacecraft propulsion system concept include: 1. The system shall be capable of detecting an Earth twin at Quadrature in a Solar System twin that is up to 10 (TBR) parsecs away. 2. The system shall be capable of finding at least 30 Earth twins if all target stars have such a planet. These requirements drive the key elements of the telescope/starshade architecture, including distance between spacecraft, relative angles between spacecraft with respect to heliocentric space, starshade size and thus mass, and the number of observations that are required in the baseline mission.
    [Show full text]
  • Development of a 50000-S, Lithium-Fueled, Gridded Ion Thruster
    Development of a 50,000-s, Lithium-fueled, Gridded Ion Thruster IEPC-2017-042 Presented at the 35th International Electric Propulsion Conference Georgia Institute of Technology • Atlanta, Georgia • USA October 8 – 12, 2017 John R. Brophy1, James E. Polk2, and Dan M. Goebel3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 The ion propulsion system on NASA’s Dawn mission provided over 11 km/s delta-V to the spacecraft. There is potential interest in missions that have delta-V’s an order of magnitude greater than this, i.e., 100 km/s to 200 km/s. To perform such missions would require a thruster that can produce a specific impulse roughly an order of magnitude greater than the 3100 s of the Dawn ion propulsion system. A 50-kW gridded ion thruster is being developed for operation with lithium propellant to produce a specific impulse of 50,000 s. The resulting thruster design requires a net accelerating voltage of 9 kV and a beam current of 5.5 A. Discharge chamber modeling is used to design a 35-cm diameter ring-cusp discharge chamber with six magnet rings. The discharge chamber is masked down to produce an active grid area that is ~25 cm diameter. Modeling suggests that the unique ionization characteristics of lithium may enable discharge chamber operation at a propellant efficiency of 99%. Operation at such a high propellant efficiency could significantly reduce the production of charge- exchange ions and thereby significantly reduce erosion of the accelerator grid. I.Introduction The highly successful Dawn mission to the giant asteroid (4) Vesta and the dwarf planet (1) Ceres was enabled by its ion propulsion system that provided more than 11 km/s delta-V to the spacecraft [1].
    [Show full text]
  • Preparation of Papers for AIAA Journals
    AIAA Propulsion and Energy Forum 10.2514/6.2019-4169 19-22 August 2019, Indianapolis, IN AIAA Propulsion and Energy 2019 Forum Review of Chemical-Electric Multimode Space Propulsion Joshua L. Rovey, * Christopher T. Lyne, † Alex J. Mundahl,‡ and Nicolas Rasmont‡ University of Illinois at Urbana-Champaign, Urbana IL, 61801, USA Matthew S. Glascock§ and Mitchell J. Wainwright ** Missouri University of Science and Technology, Rolla, Missouri, 65409, USA and Steven P. Berg†† Froberg Aerospace, LLC, Champaign, Illinois, 61820, USA Multimode propulsion is the integration of two or more propulsive modes into a single spacecraft propulsion system. In a multimode propulsion system, the key attribute is shared propellant between the different propulsive modes. Multimode propulsion is emerging as an enabling technology that promises enhanced capabilities for spacecraft and space missions, and can therefore play an important role in the future of in-space propulsion. Specifically, multimode propulsion has potential to provide unprecedented flexibility and adaptability to spacecraft, as well as provide mass savings for certain missions. These benefits extend to both medium and large spacecraft, as well as small satellites. Numerous multimode concepts have been explored and documented in the literature. Concepts combining cold gas, monopropellant, bipropellant, and solid chemical propulsion with electrothermal, electrostatic, and electromagnetic electric propulsion have all been investigated. Electrospray electric propulsion paired with monopropellant
    [Show full text]