Computational Simulations of Biomechanical Kinematics in WSU Total Ankle Replacement Systems
Total Page:16
File Type:pdf, Size:1020Kb
Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2017 Computational Simulations of Biomechanical Kinematics in WSU Total Ankle Replacement Systems Dinesh Gundapaneni Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Engineering Commons Repository Citation Gundapaneni, Dinesh, "Computational Simulations of Biomechanical Kinematics in WSU Total Ankle Replacement Systems" (2017). Browse all Theses and Dissertations. 1885. https://corescholar.libraries.wright.edu/etd_all/1885 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. COMPUTATIONAL SIMULATIONS OF BIOMECHANICAL KINEMATICS IN WSU TOTAL ANKLE REPLACEMENT SYSTEMS A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By DINESH GUNDAPANENI B.Tech., Sathyabama University, India, 2010 M.S.E.G, Wright State University, 2012 _________________________________________________ 2017 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL DECEMBER 08, 2017 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Dinesh Gundapaneni ENTITLED Computational Simulations of Biomechanical Kinematics in WSU Total Ankle Replacement Systems BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. ___________________________________ Tarun Goswami, D.Sc. Dissertation Director ___________________________________ Frank W. Ciarallo, Ph.D. Director, Ph.D. Engineering ___________________________________ Barry Milligan, Ph.D. Interim Dean of the Graduate School Committee on Final Examination ________________________________ Tarun Goswami, D.Sc. ________________________________ Jennie J. Gallimore, Ph.D. ________________________________ Caroline GL Cao, Ph.D. ________________________________ Wiebke S. Diestelkamp, Ph.D. ________________________________ Richard T. Laughlin, M.D. ________________________________ James T. Tsatalis, M.D. ABSTRACT Gundapaneni, Dinesh Ph.D., Engineering Ph.D. program, Wright State University, 2017. Computational Simulations of Biomechanical Kinematics in WSU Total Ankle Replacement Systems. Ankle arthritis constitutes about 10% of all joint arthritis cases, however, the revision rate of ankle replacement devices is three times higher than comparable hip and knee devices. With complicated bone morphology and surrounding ligament structures, the physiological and gait characteristics of the ankle joint presents a challenge to biomechanicians. As a result, there is a lack of fundamental understanding how the ligaments and articular surfaces interact. The objective of this doctoral research is to address the pattern of contact at the joint articulation, the fundamental role of ligaments in joint mobility, and biomechanics of total ankle replacement (TAR) devices. In this study, an attempt was made to describe the ankle joint kinematics under static and unloaded conditions by means of mechanical linkage. A rigid body linkage mechanism was subscribed to the 3D model of the ankle joint based on ligament markings to predict kinematic coupling. Motion analysis was conducted to derive articular curvature of the tibia and talus at the joint by simulating flexion motion. The joint biomechanics in the presence of TAR devices was simulated by finite element analysis (FEA). Gait loads were applied in TAR devices, and annual wear rate and contact pressure predicted and compared with published data. iii TABLE OF CONTENTS Chapter 1: Introduction ....................................................................................................... 1 Problem Statement and Research Objectives .................................................................. 3 Chapter 2: Background ....................................................................................................... 7 Ankle Joint Anatomy ...................................................................................................... 7 Biomechanics of Ankle Joint ........................................................................................ 12 Structure and Mechanical Properties of Bones and Cartilage ................................... 12 Structure and Mechanical Properties of Ligaments ................................................... 18 Ankle Joint Axis and Range of Motion ..................................................................... 22 Loading and Kinematic Profiles ................................................................................ 29 Ankle Joint Disorders and Treatment options ............................................................... 36 Ankle Arthrodesis ...................................................................................................... 43 Total Ankle Replacement .......................................................................................... 48 Arthrodesis vs. Total Ankle Replacement ................................................................. 56 Demographics of TAR .................................................................................................. 60 National registries ...................................................................................................... 60 Failure Modes ............................................................................................................ 65 Previous Works ............................................................................................................. 69 Chapter 3: Biomechanical Evaluation of Tibiotalocalcaneal Arthrodesis System ........... 81 Introduction ................................................................................................................... 81 Background ................................................................................................................... 83 Case Study ................................................................................................................. 83 Failed Device ............................................................................................................. 83 Materials and Methods .................................................................................................. 84 Visual and Optical Microscope Examination ............................................................ 84 Radiological Analysis ................................................................................................ 86 Material Property Determination ............................................................................... 87 iv Microstructural Analysis ........................................................................................... 87 Fractography .............................................................................................................. 89 Quantitative Engineering Analysis ............................................................................ 94 Discussion ................................................................................................................... 101 Chapter 4: Characterization of Retrieved Total Ankle Replacement Liners .................. 106 Introduction ................................................................................................................. 106 Background ................................................................................................................. 108 Case Studies ............................................................................................................. 108 Device Details .......................................................................................................... 108 Experimental ............................................................................................................... 111 Visual and Optical Microscope Examination .......................................................... 111 Characterization ....................................................................................................... 115 Fractography ............................................................................................................ 118 Discussion ................................................................................................................... 125 Chapter 5: Measurement of 3D Morphological Characteristics of Ankle Joint ............. 133 Introduction ................................................................................................................. 133 Methods ....................................................................................................................... 136 Reference Cardinal System ..................................................................................... 137 Morphometric Evaluation ........................................................................................ 139 Results ......................................................................................................................... 143 Discussion ................................................................................................................... 150 Chapter 6: Simulation of Passive Ankle Joint Kinematics ............................................. 155 Introduction ................................................................................................................