Updated March 16 2017 Drugs of Abuse Screen, Urine Qualitative Average Turnaround Time: 74 Minutes Compound/Class Cutoff (Ng/Ml

Total Page:16

File Type:pdf, Size:1020Kb

Updated March 16 2017 Drugs of Abuse Screen, Urine Qualitative Average Turnaround Time: 74 Minutes Compound/Class Cutoff (Ng/Ml Drugs of Abuse Screen, Urine Qualitative Average Turnaround Time: 74 minutes Compound/Class Cutoff (ng/mL) Compound/Class Cutoff (ng/mL) Amphetamines 1000 Opiates 300 Barbiturates 200 Oxycodone 100 Benzodiazepines 200 PCP 25 Cocaine 300 Propoxyphene 300 Methadone 300 THC 50 Additional Drug Immunoassay Available Buprenorphine 5 Alcohol (urine) 10 mg/dL Cotinine (nicotine metabolite) 500 Alcohol (serum) 10 mg/dL Toxicology Drug Screen, Urine or Serum Qualitative Turnaround Time: 24 hrs Cutoff Cutoff Cutoff Amphetamines Antihistamines Opioids ng/mL ng/mL ng/mL Amphetamine 250 Chlorpheniramine 100 6-monoacetylmorphine 300 Methamphetamine 500 Dextromethorphan 100 Codeine 200 MDA 250 Diphenhydramine 100 Dihydrocodeine 100 MDMA 250 Ephedrine/ Pseudoephedrine 100 Hydromorphone 200 Antiarrhythmics Ranitidine 500 Hydrocodone 100 Diltiazem 50 Pheniramine 25 Morphine 200 Lidocaine 25 Antipsychotics Oxycodone 100 Verapamil 100 Haloperidol 25 Oxymorphone 200 Quinidine/Quinine 500 Olanzapine 200 Noroxycodone 100 Anticonvulsants Quetiapine 25 Buprenorphine/Norbupren 50/300 Pregabalin 1500 Risperidone 100 Fentanyl/Norfentanyl 25/100 Gabapentin 1500 Benzodiazepines Ketamine 25 Antidepressants(non TCA) Alprazolam/ Hydroxyalprazolam 50/200 Meperidine 50 Bupropion 25 Clonazepam/7-amino 200/50 Methadone/EDDP 50/100 Citalopram 100 Chlordiazepoxide 50 Nalbuphine 50 Fluoxetine 200 Diazepam 100 Naloxone 200 Sertraline 50 Nordiazepam 100 Propoxyphene/Norpropox 100/50 Trazodone 25 Oxazepam 200 Tramadol 50 Venlafaxine 50 Temazepam 100 Phenothiazines Antidepressants (TCA) Flurazepam/desalkylfluraz 50 Chlorpromazine 50 Amitriptyline 50 Flunitrazepam/7-amino 100/25 Promethazine 50 Desipramine 50 Lorazepam 100 Thioridazine 100 Desmethyldoxepin 100 Triazolam /Hydroxytriazolam 100/400 Trifluorperazine 100 Doxepin 100 Stimulants Various Imipramine 50 Caffeine 15000 Cocaine 25 Maprotiline 200 Cotinine (nicotine) 500 Benzoylecgonine 50 Nortriptyline/Protriptyline 50 Methylphenidate 50 LSD 25 Beta-blockers PCP 25 Zolpidem 100 Atenolol 500 7-Hydroxymitragynine 100 Metoprolol 50 Propranolol 50 Updated March 16 2017 Toxicology Drug Screen, Umbilical Cord Turnaround Time: 48 hrs Cutoff Cutoff Cutoff Amphetamines Antihistamines Opioids ng/mL ng/mL ng/mL Amphetamine 125 Chlorpheniramine 50 6-monoacetylmorphine 150 Methamphetamine 250 Dextromethorphan 50 Codeine 100 MDA 125 Diphenhydramine 50 Dihydrocodeine 50 MDMA 125 Ephedrine/ Pseudoephedrine 50 Hydromorphone 100 Antiarrhythmics Ranitidine 250 Hydrocodone 50 Diltiazem 25 Pheniramine 13 Morphine 100 Lidocaine 13 Antipsychotics Oxycodone 50 Verapamil 50 Haloperidol 13 Oxymorphone 100 Quinidine/Quinine 250 Olanzapine 100 Noroxycodone 50 Anticonvulsants Quetiapine 13 Buprenorphine/Norbupren 5/150 Pregabalin 750 Risperidone 50 Fentanyl/Norfentanyl 13/50 Gabapentin 750 Benzodiazepines Ketamine 13 Antidepressants(non TCA) Alprazolam/ Hydroxyalprazolam 25/100 Meperidine 25 Bupropion 13 Clonazepam/7-amino 100/25 Methadone/EDDP 25/50 Citalopram 50 Chlordiazepoxide 25 Nalbuphine 25 Fluoxetine 100 Diazepam 50 Naloxone 100 Sertraline 25 Nordiazepam 50 Propoxyphene/Norpropox 50/25 Trazodone 13 Oxazepam 100 Tramadol 25 Venlafaxine 25 Temazepam 50 Phenothiazines Antidepressants (TCA) Flurazepam/desalkylfluraz 25 Chlorpromazine 25 Amitriptyline 25 Flunitrazepam/7-amino 50/13 Promethazine 25 Desipramine 25 Lorazepam 50 Thioridazine 50 Desmethyldoxepin 50 Triazolam /Hydroxytriazolam 50/200 Trifluorperazine 50 Doxepin 50 Stimulants Various Imipramine 25 Caffeine 750 Cocaine 13 Maprotiline 100 Cotinine (nicotine) 250 Benzoylecgonine 25 Nortriptyline/Protriptyline 25 Methylphenidate 25 LSD 13 Beta-blockers PCP 13 Zolpidem 50 Atenolol 250 7-Hydroxymitragynine 50 Metoprolol 25 Propranolol 25 THC- Immunoassay 10 Barbiturates- Immunoassay 200 Updated March 16 2017 .
Recommended publications
  • NORPRAMIN® (Desipramine Hydrochloride Tablets USP)
    NORPRAMIN® (desipramine hydrochloride tablets USP) Suicidality and Antidepressant Drugs Antidepressants increased the risk compared to placebo of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults in short-term studies of major depressive disorder (MDD) and other psychiatric disorders. Anyone considering the use of NORPRAMIN or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in risk with antidepressants compared to placebo in adults aged 65 and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Patients of all ages who are started on antidepressant therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior. Families and caregivers should be advised of the need for close observation and communication with the prescriber. NORPRAMIN is not approved for use in pediatric patients. (See WARNINGS: Clinical Worsening and Suicide Risk, PRECAUTIONS: Information for Patients, and PRECAUTIONS: Pediatric Use.) DESCRIPTION NORPRAMIN® (desipramine hydrochloride USP) is an antidepressant drug of the tricyclic type, and is chemically: 5H-Dibenz[bƒ]azepine-5-propanamine,10,11-dihydro-N-methyl-, monohydrochloride. 1 Reference ID: 3536021 Inactive Ingredients The following inactive ingredients are contained in all dosage strengths: acacia, calcium carbonate, corn starch, D&C Red No. 30 and D&C Yellow No. 10 (except 10 mg and 150 mg), FD&C Blue No. 1 (except 25 mg, 75 mg, and 100 mg), hydrogenated soy oil, iron oxide, light mineral oil, magnesium stearate, mannitol, polyethylene glycol 8000, pregelatinized corn starch, sodium benzoate (except 150 mg), sucrose, talc, titanium dioxide, and other ingredients.
    [Show full text]
  • Prescription Drug Management
    Check out our new site: www.acllaboratories.com Prescription Drug Management Non Adherence, Drug Misuse, Increased Healthcare Costs Reports from the Centers for DiseasePrescription Control and Prevention (CDC) say Drug deaths from Managementmedication overdose have risen for 11 straight years. In 2008 more than 36,000 people died from drug overdoses, and most of these deaths were caused by prescription Nondrugs. Adherence,1 Drug Misuse, Increased Healthcare Costs The CDC analysis found that nearly 40,000 drug overdose deaths were reported in 2010. Prescribed medication accounted for almost 60 percent of the fatalities—far more than deaths from illegal street drugs. Abuse of painkillers like ReportsOxyContin from and the VicodinCenters forwere Disease linked Control to the and majority Prevention of the (CDC) deaths, say deaths from according to the report.1 medication overdose have risen for 11 straight years. In 2008 more than 36,000 people died from drug overdoses, and most of these deaths were caused by prescription drugs. 1 A health economics study analyzed managed care claims of more than 18 million patients, finding that patients undergoing opioid therapyThe CDCfor chronic analysis pain found who that may nearly not 40,000 be following drug overdose their prescription deaths were regimenreported in 2010. Prescribed medication accounted for almost 60 percent of the fatalities—far more than deaths have significantly higher overall healthcare costs. from illegal street drugs. Abuse of painkillers like OxyContin and Vicodin were linked to the majority of the deaths, according to the report.1 ACL offers drug management testing to provide information that can aid clinicians in therapy and monitoring to help improve patientA health outcomes.
    [Show full text]
  • Recommended Methods for the Identification and Analysis of Fentanyl and Its Analogues in Biological Specimens
    Recommended methods for the Identification and Analysis of Fentanyl and its Analogues in Biological Specimens MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Recommended Methods for the Identification and Analysis of Fentanyl and its Analogues in Biological Specimens MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES UNITED NATIONS Vienna, 2017 Note Operating and experimental conditions are reproduced from the original reference materials, including unpublished methods, validated and used in selected national laboratories as per the list of references. A number of alternative conditions and substitution of named commercial products may provide comparable results in many cases. However, any modification has to be validated before it is integrated into laboratory routines. ST/NAR/53 Original language: English © United Nations, November 2017. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of names of firms and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Acknowledgements The Laboratory and Scientific Section of the UNODC (LSS, headed by Dr. Justice Tettey) wishes to express its appreciation and thanks to Dr. Barry Logan, Center for Forensic Science Research and Education, at the Fredric Rieders Family Founda- tion and NMS Labs, United States; Amanda L.A.
    [Show full text]
  • LC-MS for Pain Management Support
    LC-MS for Pain Management Support Gwen McMillin, PhD, DABCC(CC,TC) University of Utah ARUP Laboratories Outline .Overview of drug testing, as a component of the therapeutic plan, in the management of chronic pain .A mini-SWOT analysis for application of LC- MS to pain management drug testing .Considerations for optimizing utility of LC-MS results Drug testing in pain management . Baseline testing, before initiating opioid therapy . Routine testing . Periodic, based on patient risk assessment . To evaluate changes . Therapeutic plan (drugs, formulations, dosing) . Clinical response (poor pain control, toxicity) . Clinical events (disease, surgery, pregnancy) . Patient behavior Objectives of drug testing Non- Detect and encourage Adherence appropriate drug use Detect and discourage Adherence inappropriate drug use Traditional approach . Immunoassay-based screen Screen . Confirm screen positive results with mass spectrometric method (GC-MS, LC-MS) Not appropriate for pain management Confirm + . Reflex testing leads to unnecessary expenses if the results are consistent with expectations, or if results are not used to make patient care decisions Confirm + . Confirmation of negative results may be more important than confirmation of positive results . Immunoassay-based screens may not be available Confirm + for specimens and drugs of interest Drugs monitored for pain management represent ~25% of “Top 200” prescriptions filled, 2011 .Analgesics .Anxiolytics, muscle . Hydrocodone (#1, 2, 14, 139) relaxants . Oxycodone (#45, 48, 121, 129, 196)
    [Show full text]
  • 169 2016 Interim Meeting Science and Public Health - 1
    169 2016 Interim Meeting Science and Public Health - 1 REPORTS OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH The following reports, 1–4, were presented by S. Bobby Mukkamala, MD, Chair: 1. URINE DRUG TESTING Reference committee hearing: see report of Reference Committee K. HOUSE ACTION: RECOMMENDATIONS ADOPTED AS FOLLOWS REMAINDER OF REPORT FILED See Policies H-95.985 and D-120.936 INTRODUCTION Over the past two decades, the rate of opioid prescribing, especially for patients with chronic non-cancer pain, has increased dramatically. It is estimated that between 9.6 and 11.5 million Americans are currently being prescribed long-term opioid therapy.1 The overall increase in prescribing has been associated with a parallel increase in unintentional overdoses and deaths from prescription opioids.2 In 2014, a total of 47,055 drug overdose deaths occurred in the United States; 61% of these involved some type of opioid, including heroin. Overdose deaths from heroin have quadrupled in recent years, and the majority of past year users of heroin report they used opioids in a nonmedical fashion prior to heroin initiation; hence, the availability of pharmaceutical opioids is relevant to the national heroin use and overdose death epidemics. In the most recent available report, benzodiazepines were involved in 31% of the opioid-related overdoses.3 Despite clinical recommendations to the contrary, the rate of opioid and benzodiazepine co-prescribing also continues to rise.3-5 Identifying patients at risk for drug misuse is a challenge. There is no definitive way for physicians to predict which of their patients will develop misuse problems with controlled substances.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0024006 A1 Simon (43) Pub
    US 2004.0024006A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0024006 A1 Simon (43) Pub. Date: Feb. 5, 2004 (54) OPIOID PHARMACEUTICAL May 30, 1997, now abandoned, and which is a COMPOSITIONS continuation-in-part of application No. 08/643,775, filed on May 6, 1996, now abandoned. (76) Inventor: David Lew Simon, Mansfield Center, CT (US) Publication Classification Correspondence Address: (51) Int. Cl. ................................................ A61K 31/485 David L. Simon (52) U.S. Cl. .............................................................. 514/282 P.O. Box 618 100 Cemetery Road (57) ABSTRACT Mansfield Center, CT 06250 (US) The invention is directed in part to dosage forms comprising a combination of an analgesically effective amount of an (21) Appl. No.: 10/628,089 opioid agonist analgesic and a neutral receptor binding agent or a partial mu-opioid agonist, the neutral receptor binding (22) Filed: Jul. 25, 2003 agent or partial mu-opioid agonist being included in a ratio Related U.S. Application Data to the opioid agonist analgesic to provide a combination product which is analgesically effective when the combina (63) Continuation-in-part of application No. 10/306,657, tion is administered as prescribed, but which is leSS analge filed on Nov. 27, 2002, which is a continuation-in-part Sically effective or less rewarding when administered in of application No. 09/922,873, filed on Aug. 6, 2001, excess of prescription. Preferably, the combination product now Pat. No. 6,569,866, which is a continuation-in affects an opioid dependent individual differently from an part of application No. 09/152,834, filed on Sep.
    [Show full text]
  • Analysis of Oxycodone and Its Metabolites-Noroxycodone, Oxymorphone, and Noroxymorphone in Plasma by LC/MS with an Agilent ZORBAX Stablebond SB -C18 LC Column
    Analysis of Oxycodone and Its Metabolites-Noroxycodone, Oxymorphone, and Noroxymorphone in Plasma by LC/MS with an Agilent ZORBAX StableBond SB -C18 LC Column Application Note Pharmaceutical Authors Abstract Linda L. Risler Oxycodone and its oxidative metabolites (noroxycodone, oxymorphone, and Fred Hutchinson Cancer Research noroxymorphone) were analyzed by high performance liquid chromatography/mass Center, spectrometry (HPLC/MS), coupled with chromatographic separation by an Agilent Seattle, WA 98109 ZORBAX Rapid Resolution High Throughput (RRHT) StableBond SB-C18 column. The method used an ammonium acetate/acetonitrile gradient with detection by a mass Anne E. Mack spectrometer in electrospray mode with positive polarity. Spiked human plasma Agilent Technologies, Inc. samples underwent solid phase extraction (SPE) prior to LC/MS analysis. This method provided good linearity (R 2 > 0.9900) and reproducibility (< 10% difference between duplicates) for all compounds, while increasing productivity with a fast, efficient analysis and minimal solvent usage. Introduction Experimental Oxycodone was developed in 1916 as an opioid analgesic An Agilent 1100 Series LC/MS was used for this work: medication intended to replace the far too addictive analgesic at the time, heroin. Today, oxycodone is a Schedule II drug in • Agilent G1312A Binary Pump. Mobile phase A: 20 mM the US, which means, while it has proven medical uses, it is ammonium acetate, pH 4.0 and B: acetonitrile. Flow rate still considered highly addictive with the possibility of both was 0.300 mL/min. Hold 5% B for 2.33 minutes, then physical and psychological dependencies. Figure 1 shows increase B from 5% to 20% from 2.33 to 4.33 minutes, stop oxycodone and its metabolic scheme, yielding noroxycodone, time is 6 minutes, and post time is 4 minutes.
    [Show full text]
  • Heat Related Illness in Psychotropic Medication Users
    Common psychotropic medications which Prevention of Heat can impair your response to heat Related Illness Trade Name Generic Name Abilify aripiprazole During periods of high temperature (85º Asendin amoxapine and above) and humidity, there are things Artane trihexyphenidyl everyone, particularly people at high risk, Aventil, Pamelor nortriptyline should do to lessen the chances of heat Clozaril clozapine illness. Cogentin benztropine Compazine prochlorperazine ¾ Try to stay cool. Desyrel trazodone • Stay in air conditioned areas if Elavil, Limbitrol, possible. If you do not have air Triavil amitriptyline conditioning at home, go to a Eskalith, Lithobid, shopping mall or public library. Lithonate lithium • Keep windows shut and draperies, Geodon ziprasidone shades, or blinds drawn during the Haldol haloperidol heat of the day. Loxitane loxapine • Open windows in the evening or Ludiomil maprotiline night hours when the air outside is Mellaril thioridazine Heat Related Illness cooler. Moban molindone • Move to cooler rooms during the Navane thiothixene in heat of the day. Norpramin desipramine Psychotropic ¾ Avoid overexertion and outdoor Phenergan promethazine activity, particularly during warmer Prolixin fluphenazine Medication Users periods of the day. Risperdal risperidone ¾ Apply sunscreen and lotion as needed. Serentil mesoridazine Seroquel quetiapine ¾ Drink plenty of fluids (avoid coffee, tea, and alcohol). Sinequan doxepin ¾ Dress in loose fitting, light colored Stelazine trifluoperazine clothing. Wear a hat, sunglasses, and Thorazine chlorpromazine other protective clothing. Tofranil imipramine ¾ Take a cool shower or bath. Trilafon perphenazine ¾ Lose weight if you are overweight. Wellbutrin buproprion ¾ Eat regular meals to ensure that you Zyprexa olanzapine Ohio Department of Mental Health have adequate salt and fluids. *Note: This is not an all inclusive list.
    [Show full text]
  • Comprehensive Multi-Analytical Screening Of
    COMPREHENSIVE MULTI-ANALYTICAL SCREENING OF DRUGS OF ABUSE, INCLUDING NEW PSYCHOACTIVE SUBSTANCES, IN URINE WITH BIOCHIP ARRAYS APPLIED TO THE EVIDENCE ANALYSER Darragh J., Keery L., Keenan R., Stevenson C., Norney G., Benchikh M.E., Rodríguez M.L., McConnell R. I., FitzGerald S.P. Randox Toxicology Ltd., Crumlin, United Kingdom e-mail: [email protected] Introduction Biochip array technology allows the simultaneous detection of multiple drugs from a single undivided sample, which This study summarises the analytical performance of three different biochip arrays applied to the screening of increases the screening capacity and the result output per sample. Polydrug consumption can be detected and by acetylfentanyl, AH-7921, amphetamine, barbiturates, benzodiazepines (including etizolam and clonazepam), incorporating new immunoassays on the biochip surface, this technology has the capacity to adapt to the new trends benzoylecgonine/cocaine, benzylpiperazines, buprenorphine, cannabinoids, carfentanil, dextromethorphan, fentanyl, in the drug market. furanylfentanyl, meprobamate, mescaline, methamphetamine, methadone, mitragynine, MT-45, naloxone, ocfentanyl, opioids, opiates, oxycodone, phencyclidine, phenylpiperazines, salvinorin, sufentanil, synthetic cannabinoids (JWH-018, UR-144, AB-PINACA, AB-CHMINACA), synthetic cathinones [mephedrone, methcathinone, alpha- pyrrolidinopentiophenone (alpha-PVP)], tramadol, tricyclic antidepressants, U-47700, W-19, zolpidem. Methodology Three different biochip arrays were used (DOA ULTRA,
    [Show full text]
  • Association of Selective Serotonin Reuptake Inhibitors with the Risk for Spontaneous Intracranial Hemorrhage
    Supplementary Online Content Renoux C, Vahey S, Dell’Aniello S, Boivin J-F. Association of selective serotonin reuptake inhibitors with the risk for spontaneous intracranial hemorrhage. JAMA Neurol. Published online December 5, 2016. doi:10.1001/jamaneurol.2016.4529 eMethods 1. List of Antidepressants for Cohort Entry eMethods 2. List of Antidepressants According to the Degree of Serotonin Reuptake Inhibition eMethods 3. Potential Confounding Variables Included in Multivariate Models eMethods 4. Sensitivity Analyses eFigure. Flowchart of Incident Antidepressant (AD) Cohort Definition and Case- Control Selection eTable 1. Crude and Adjusted Rate Ratios of Intracerebral Hemorrhage Associated With Current Use of SSRIs Relative to TCAs eTable 2. Crude and Adjusted Rate Ratios of Subarachnoid Hemorrhage Associated With Current Use of SSRIs Relative to TCAs eTable 3. Crude and Adjusted Rate Ratios of Intracranial Extracerebral Hemorrhage Associated With Current Use of SSRIs Relative to TCAs. eTable 4. Crude and Adjusted Rate Ratios of Intracerebral Hemorrhage Associated With Current Use of Antidepressants With Strong Degree of Inhibition of Serotonin Reuptake Relative to Weak eTable 5. Crude and Adjusted Rate Ratios of Subarachnoid Hemorrhage Associated With Current Use of Antidepressants With Strong Degree of Inhibition of Serotonin Reuptake Relative to Weak eTable 6. Crude and Adjusted Rate Ratios of Intracranial Extracerebral Hemorrhage Associated With Current Use of Antidepressants With Strong Degree of Inhibition of Serotonin Reuptake Relative to Weak This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/02/2021 eMethods 1.
    [Show full text]
  • Drug Plasma Half-Life and Urine Detection Window | January 2019
    500 Chipeta Way | Salt Lake City, UT 84108-1221 Phone: (800) 522-2787 | Fax: (801) 583-2712 www.aruplab.com | www.arupconsult.com DRUG PLASMA HALF-LIFE AND URINE DETECTION WINDOW | JANUARY 2019 URINE- PLASMA DRUG, DRUG METABOLITE(S)* COMMON TRADE AND STREET NAMES, NOTES DETECTION HALF-LIFEt WINDOWt STIMULANTS Benzedrine, dexedrine, Adderall, Vyvanse, speed; could be methamphetamine Amphetamine 7–34 hours 1–5 days metabolite; if so, typically < 30 percent of parent Cocaine Coke, crack; parent drug rarely observed due to short half-life 0.7–1.5 hours < 1 day Benzoylecgonine Cocaine metabolite 5.5–7.5 hours 1–2 days Desoxyn, methedrine, Vicks inhaler (D- and L-isomers not resolved; low concentrations Methamphetamine expected if the source is Vicks); selegeline (Atapryl, Carbex, Eldepryl, Zelapar) 6–17 hours 1–5 days metabolite Methylenedioxyamphetamine (MDA) MDA 11–17 hours 1–3 days Methylenedioxyethylamphetamine (MDEA) MDEA, MDE, Eve 6–11 hours 1–3 days Methylenedioxymethamphetamine (MDMA) MDMA, XTC, ecstasy, Molly 6–10 hours 1–3 days Methylphenidate Ritalin, Concerta, Focalin, Metadate, Methylin 1.4–4.2 hours < 1 day Ritalinic acid Methylphenidate metabolite 1.8–2.5 hours < 1 day Phentermine Adipex-P, Lomaira, Qsymia 19–24 hours 1–5 days OPIOIDS Buprenorphine Belbuca, Buprenex, Butrans, Suboxone, Subutex, Sublocade, Zubsolv 26–42 hours 1–7 days Norbuprenorphine, Glucuronides Buprenorphine metabolites 15–150 hours 1–14 days Included in many preparations; morphine metabolite; may be a contaminant if < 2 Codeine 1.9–3.9 hours 1–3 days percent of morphine Fentanyl Actiq, Duragesic, Fentora, Lazanda, Sublimaze, Subsys, Ionsys 3–12 hours 1–3 days Norfentanyl Fentanyl metabolite 9–10 hours 1–3 days Heroin Diacetylmorphine, dope, smack, dust; parent drug not detected.
    [Show full text]
  • Appendix-2Final.Pdf 663.7 KB
    North West ‘Through the Gate Substance Misuse Services’ Drug Testing Project Appendix 2 – Analytical methodologies Overview Urine samples were analysed using three methodologies. The first methodology (General Screen) was designed to cover a wide range of analytes (drugs) and was used for all analytes other than the synthetic cannabinoid receptor agonists (SCRAs). The analyte coverage included a broad range of commonly prescribed drugs including over the counter medications, commonly misused drugs and metabolites of many of the compounds too. This approach provided a very powerful drug screening tool to investigate drug use/misuse before and whilst in prison. The second methodology (SCRA Screen) was specifically designed for SCRAs and targets only those compounds. This was a very sensitive methodology with a method capability of sub 100pg/ml for over 600 SCRAs and their metabolites. Both methodologies utilised full scan high resolution accurate mass LCMS technologies that allowed a non-targeted approach to data acquisition and the ability to retrospectively review data. The non-targeted approach to data acquisition effectively means that the analyte coverage of the data acquisition was unlimited. The only limiting factors were related to the chemical nature of the analyte being looked for. The analyte must extract in the sample preparation process; it must chromatograph and it must ionise under the conditions used by the mass spectrometer interface. The final limiting factor was presence in the data processing database. The subsequent study of negative MDT samples across the North West and London and the South East used a GCMS methodology for anabolic steroids in addition to the General and SCRA screens.
    [Show full text]