Magical Music Technology

Total Page:16

File Type:pdf, Size:1020Kb

Magical Music Technology Magical Music Technology Mark Hildred An overview of music technology Music technology can be used to enable children with physical disabilities to play music and sounds. They Motion often make use of alternative controllers, that detect Sensors a range of specific movements or gestures. In music technology there are several key components: ● Motion sensors – a sensor or switch to detect the Interface movement. ● Interface - convert the signal from the sensor into an electronic signal, probably MIDI. ● Sound generator - a box that can turn the information from the interface into a sound, for Sound Generator example a MIDI sound module or keyboard. ● Speakers - to make the sound audible. These may be integrated into a single unit or each be a specific box connected together. Speakers Why?Why? Access Presets Sounds MicMic && FXFX The ability to amplify voices and add effects such as reverb or echo is enormously engaging. Children reluctant to vocalise will often find their voice when presented with a microphone. They can also lend additional colours to storytelling.. Soundbeam The 'red torch' sends out clicks like a bat to detect movement. Movement is changed to musical notes and chords. You can also connect a switch box allowing the use of standard accessible switches. The latest version (see overleaf) just needs a pair of speakers, but older versions might require additional equipment such as a sound module. www.soundbeam.co.uk The Soundbeam 6 (left) adds a touchscreen for easier editing and access to presets. Apollo Ensemble PC software links switches and sensors to notes, chords and sounds. Can also trigger images and lighting. Wide range of different input devices include dice, wireless switches and Xbox games controllers. www.apolloensemble.co.uk Skoog A squeezy instrument with five coloured sides, each one can trigger different sounds. Connected via USB to a computer (PC or Mac) which generates the sounds. www.skoogmusic.com The Skoog 2.0 connects to an iPad via Bluetooth and has a rechargeable battery. The app can link to Spotify or iTunes to autotune the Skoog for playing along to your favourite tracks. https://itunes.apple.com/gb/app/skoog/id987500143 Beamz A 'laser harp' with four beams that you break to trigger sounds. Software keeps everything in time and sounding good. Includes backing tracks for complete performances. Connects to PC, Mac or iPad. The software is usable with eye gaze control, with variable on-screen beam width to suit different users. There is also a switch interface opening up access for users who can’t physically break the beams. www.the-beamz.myshopify.com MakeyMakey MakeyMakey The MakeyMakey plugs into a USB port and can turn any conductive object into a switch or mouse action. It can be used with free software for games and music, or with the Ensemble software. http://www.makeymakey.com Wavedrum Mini An example of a 'mainstream' piece of technology that has great results in SEN/D settings. Electronic drum pad with clip-on trigger and built- in sounds and speaker. Trigger turns most objects into an instrument, including wheelchair trays. Range of interesting sounds that respond to the velocity of the hit. Low cost, all-in-one unit. www.korg.com/us/products/drums/wavedrum_mini/ NumarkNumark OrbitOrbit AlphasphereAlphasphere Wireless DJ controller, sends MIDI that can be used to trigger sounds. Needs additional software on the PC or Mac to work. DJ controller with pressure sensitive rubber pads of PC configuration software can be different sizes, arranged around used to change the colours of the a sphere. Needs additional buttons. software to generate sounds. https://www.numark.com/product/orbit http://www.alphasphere.com iPadiPad Always use with a decent case and think about adding a bluetooth speaker to improve the sound quality. Thumbjam A flexible musical instrument, responds to http://www.thumbjam.com touch and also to the angle and movements of the iPad/iPod. You can change instruments and musical notes. Consider using with the ‘Improvise Approach’ which provides backing tracks and instructions for setting up. https://www.improviseapproach.com Bloom HD http://www.generativemusic.com/bloom.html Beautiful visuals and relaxing music. Small movements have a big impact due to looping. Consider using this alongside an Apple TV to project the image onto a wall to create an immersive space. GaragebandGarageband https://www.apple.com/uk/ios/garageband/ Try Smart Instruments to provide access to guitars, strings, pianos and drums. Use the iPad with ‘Guided Access’ to lock off areas of the screen and stop the Home button from working. .
Recommended publications
  • Brief History of Electronic and Computer Musical Instruments
    Brief History of Electronic and Computer Musical Instruments Roman Kogan April 15th, 2008 1 Theremin: the birth of electronic music It is impossible to speak of electronic music and not speak of Theremin (remember that high-pitch melody sound sound in Good Vibrations ?) Theremin was the instrument that has started it all. Invented remarkably early - around 1917 - in Russia by Leon Termen (or Theremin, spelling varies) it was the first practical (and portable) electronic music instrument, and also the one that brought the electronic sound to the masses (see [27]). It was preceded by Thelarmonium, a multi-ton monstrocity that never really get a lot of attention (although technically very innovative, see [25]), and some other instruments that fell into obscurity. On the other hand, Leon Theremin got popular well beyond the Soviet Union (where even Lenin got to play his instrument once!). He became a star in the US and taught a generation of Theremin players, Clara Rockmore being the most famous one. In fact, RCA even manufactured Theremins under Leon's design in 1929 ( [27])!. So what was this instrument ? It was a box with two antennas that produced continuous, high-pitch sounds. The performer would approach the instrument and wave hands around the antennas to play it. The distance to the right (vertical) antenna would change the pitch, while the distance to the left (horizontal) antenna would change the volume of the sound (see [2], [3] for more technical details). The Theremin is difficult to play, since, like on violin, the notes and the volume are not quantized (the change in pitch is continuous).
    [Show full text]
  • Computer Music Products Guide 2010
    Computer Music Products Guide 2010 Computer Music Products Guide 2010 V-STUDIO MIDI KEYBOARD CONTROLLERS AUDIO INTERFACES MICRO MONITORS Cakewalk is a registered trademark and SONAR, V-STUDIO 700, Active Controller Technology, Dimension Pro, Rapture and the Cakewalk logo are trademarks of Cakewalk, Inc. Roland, BOSS, COSM, EDIROL, SuperNATURAL, VariPhrase, V-LINK and V-Vocal are either registered trademarks or trademarks of Roland Corporation in the United States and/or other countries. Mac and Mac OS are trademarks of Apple Inc. ASIO and VST are trademarks of Steinberg Media Technologies AG. ReWire is a trademark of Propellerhead Software, AB. iZotope Radius copyright c 2005-2010 iZotope, Inc. Other trademarks mentioned are held by their respective owners. All specifications and appearances are subject to change without notice. All specifications and appearances are subject to change without notice. All trademarks are the property of their respective companies. MIDI INTERFACES MUSIC SOFTWARE www.cakewalk.com | (888) CAKEWALK | +1 (617) 423-9004 outside the US May. 2010 RAM-4594 GR-UPR-SS B1EC1 Made for Musicians By Musicians Cakewalk Computer Music Products These products are created by musicians who listen, understand, and respond to the needs of our customers, who include award-winning producers, engineers, composers, and musicians. Our mission is to inspire your creativity through the combination of superior sound quality, industry-leading technology, and unmatched ease of use. There are Cakewalk products that are right for you at every stage of your musical career and ability. Read on to learn more... V-STUDIO 04 MIDI INTERFACES 15 MICRO MONITORS 18 AUDIO INTERFACES 11 MIDI KEYBOARD CONTROLLERS 16 MUSIC SOFTWARE 19 visit us online at V-STUDIO www.cakewalk.com WDM VS-700R V-STUDIO I/O VS-700C V-STUDIO Console Windows® Windows® High-speed USB 2.0 audio interface that provides all the recording and routing The VS-700C Console offers broader ranging control and deeper editing and AUDIO AUDIO MIDI capabilities needed to handle any music production task.
    [Show full text]
  • Music-Program-Sheet.Pdf
    MUSIC TECHNOLOGY Music Technology Associate in Science Major Code 2206 Program Description Entrance Requirements The Associate in Science degree in Music Technology is HS Diploma or GED designed for students who intend to seek employment in the commercial music field and for those who are presently Music Student Advising employed in the music technology field and desire Prior to seeking general academic advisement on their home advancement. Some of the careers, to which this sequence campuses, AA students majoring in music, and AS students may lead, are recording engineer, sound designer, live sound majoring in music production must first seek advisement reinforcement engineer and producer. on the music course of study through the office of the Visual & Performing Arts Department on Central Campus (Building Related Programs 4, Room 130). Auditions for performance and registration for Audio Technology Certificate Major Code 6309 music courses will be handled in the V&PA offices only. Broward College is accredited by the National Association of Vocal Studies Students Language Requirement Schools of Music (NASM), 11250 Roger Bacon Drive, Suite All Broward College music students who are majoring in vocal 21 Reston, VA 20190-5248. Telephone: 703-437-0700, E- studies MUST as a required part of their studies take one of the following languages: French, German and/or mail: [email protected] Italian. Courses in these languages are available through the communications department at Broward College. First Year, Term I Second Year, Term I MUS1360
    [Show full text]
  • Take Your Guitar Further
    The VGA-3 V-Guitar Amplifier puts Roland’s most sought-after guitar and amp models in a compact digital amp at a very friendly price. This 50-watt brute uses COSM modeling to deliver a stunning range of electric and acoustic guitar models—plus unique GK effects—from any GK pickup-equipped guitar. There are also 11 programmable COSM amp models, 3-band EQ, and three independent effects processors that can be accessed using any standard electric guitar. TaTaTa k k k e e e Yo Yo Yoururur Guitar Guitar Guitar Further Further Further ● Rated Power Output 50 W ● Patches 10 (Recalled from Panel), 40 (Recalled from MIDI Foot Controller) ● Nominal Input Level (1 kHz) INPUT: -10 dBu, EXT IN: -10 dBu ● Speaker 30 cm (12 inches) x 1 ● Connectors Front: GK In, Input, Recording Out/Phones, Rear: EXT In, EXP Pedal, Foot SW, MIDI In ● Power Supply AC 117/230/240 V ● Power Consumption 55 W ● Dimensions 586 (W) x 260 (D) x 480 (H) mm / 23-1/8 (W) x 10-1/4 (D) x 18-15/16 (H) inches ● Weight 18.5 kg / 40 lbs. 13 oz. ● Accessory Owner's Manual * 0 dBu=0.775 Vrms ■ Roland’s Flagship Modeling Amplifier. The VGA-7 V-Guitar Amplifier is the most powerful and complete modeling amplifier in history. This technological marvel serves up a range of COSM amp sounds, onboard effects, and speaker cabinet simulations—plus models of different electric and acoustic guitars, pickups, and tunings using any steel-string guitar and an optional GK-2A Divided Pickup.
    [Show full text]
  • Music (MUSIC) 1
    Music (MUSIC) 1 Music (MUSIC) Courses MUSIC 103. Music Technology Tools. 1 Credit. An introduction to music software and technology commonly used by musicians. P: conc enr Music 151 Fall Only. MUSIC 115. Ear Training and Sight Singing I. 1 Credit. Concentrated drill in all aspects of musicianship. Emphasis on sight singing and aural perception in intervals, melodies, chords and rhythms. Fall Only. MUSIC 116. Ear Training and Sight Singing II. 1 Credit. Concentrated drill in all aspects of musicianship. Emphasis on sight singing and aural perception in intervals, melodies, chords and rhythms. P: MUSIC 115 Spring. MUSIC 120. Video Game Music. 3 Credits. This course will equip students to understand the interdisciplinary role, historical progression, musical methodology, technological application, and unique artistry of music in video games. Students will contribute to the class learning environment by researching and presenting a game music composer from an interdisciplinary perspective. Through guided instruction, students will also compose their own basic game music. (No musical background required!) Spring. MUSIC 121. Survey of Western Music. 3 Credits. The musical styles of several well-known composers as evident in selected compositions; review of a basic repertoire of musical compositions of various forms and styles. Fall Only. MUSIC 122. Electronic Music Production. 3 Credits. This project-based course will teach the basic principles of modern music production using the Ableton Live software platform. Topics covered include audio and MIDI tracking, clip editing, software instruments, effects, synthesis, sampling, and elementary editing and mixing. Fall and Spring. MUSIC 151. Music Theory I. 3 Credits. The materials of which Western music is made are viewed not only in structural terms, but also in psychological, aesthetic and social perspective.
    [Show full text]
  • Owner's Manual
    Owner’s Manual For the following languages, a PDF version of the Owner’s Manual can be found on the CD-ROM. Deutsch, Français, Italiano, Español, Português, Nederlands What is MIDI? MIDI is an internationally recognized standard for exchanging performance information between electronic musical instruments and computers. For example, in the illustration below, a MIDI signal meaning “the ‘C’ key on the MIDI keyboard was pressed” passes through the A-49 and is received by the computer’s software sound module, and then the software sound module plays the note “C.” MIDI signal Information meaning “the ‘C’ key was pressed” “C” is played Software sound module “C” key is pressed In this way, MIDI is used to send performance information to other instruments; for example “the ‘C’ key was pressed with a certain amount of force,” “the instrument was changed to a violin sound,” “the volume was raised/lowered,” “the pitch was raised/lowered,” etc. In other words, MIDI is the “language of musical instruments.” MIDI signals are merely performance instructions, therefore a MIDI sound module, such as a software sound module, is required to produce sound. All software sound modules and DAW (Digital Audio Workstation) software support MIDI. MEMO DAW software is a term that refers to music production software. Note Do not connect the A-49 to the computer until the driver has been installed (p. 13). Before using this unit, carefully read the sections entitled:”USING THE UNIT SAFELY” (p. 3) and “IMPORTANT NOTES” (p. 4). These sections provide important information concerning the proper operation of the unit.
    [Show full text]
  • Sound Studies: New Technologies and Music
    Sound Studies: New Technologies and Music Trevor Pinch and Karin Bijsterveld Developments in sound technologies over the last 50 years have dramat- ically changed the way that music is produced and consumed. In the 19th century most music was experienced as live performance. Today most music is listened to individually through technologically mediated devices, such as a personal stereo or a personal computer that enables the down- loading of MP3 files over the Internet, and in the past few decades music has been produced with new electronic instruments such as the Theremin, the Hammond Organ, the electric guitar, the synthesizer, and the digital sampler. Technologies such as the phonograph, tape-recorder, and com- pact disk have enabled ‘sound’ to be produced, controlled, and manipu- lated independently from musicians. In today’s recording studios the sound engineers can be as important in the production of ‘the sound’ as are the musicians themselves. But how can such changes be understood and what do they mean for listeners and for science and technology studies (S&TS)? The papers in this special issue address such issues. The papers were first presented at an international workshop, ‘Sound Matters: New Tech- nology in Music’, held at the University of Maastricht, the Netherlands, in November 2002. The scholars at the workshop were drawn from such diverse fields as ethnomusicology, history, anthropology, cultural studies, sociology, and S&TS. All were working on some aspect of what we might call ‘auditory culture’. For such scholars, sound matters. The topic of the workshop was new technologies and music. The papers covered a range of technological innovations in the way in which music was produced and consumed.
    [Show full text]
  • Scarlett 4I4 3Rd Gen User Guide.Indd
    User Guide www.focusrite.com Version 1.0 TABLE OF CONTENTS OVERVIEW . 3 Introduction . 3 Features . 3 Box Contents . 4 System requirements . 4 GETTING STARTED . 5 Quick Start Tool . 5 Mac users only . 5 Windows only . 7 All users . 9 Manual Registration.............................................................9 Audio Setup in your DAW . 10 Loopback Inputs...............................................................11 Examples of Usage . 12 Connecting a microphone or instrument ...........................................12 Using Direct Monitoring.........................................................13 Connecting Scarlett 4i4 to loudspeakers ...........................................13 Creating an effects loop.........................................................15 Connecting Scarlett 4i4 to a DJ mixer . 16 HARDWARE FEATURES . 17 Front Panel.................................................................17 Back Panel .................................................................18 CHANNEL LISTINGS . 19 Performance Specifications . 19 Physical and Electrical Characteristics..........................................21 TROUBLESHOOTING . 22 COPYRIGHT AND LEGAL NOTICES . 22 2 OVERVIEW Introduction Thank you for purchasing this Third Generation Scarlett 4i4, one of the family of Focusrite professional computer audio interfaces incorporating high quality Focusrite analogue preamps. You now have a simple and compact solution for routing high quality audio to and from your computer and you will also be able to download some exciting
    [Show full text]
  • The Journey from Instrumentalist to Musician
    THE JOURNEY FROM INSTRUMENTALIST TO MUSICIAN: REFLECTIONS ON THE IMPLEMENTATION OF THE CONSERVATORY METHOD IN MUSICAL PERFORMANCE ©CYNTHIA MARIE MALITOWSW B.Mus., University of Lethbridge, 1995 A Thesis Submitted to the Faculty of Education of the University of Lethbridge in Partial Fulfilment of the Requirements for the Degree MASTER OF EDUCATION LETHBRIDGE, ALBERTA APRIL 2001 Dedication - To Stacey and Dyson, for constantly reminding me of the many joys of life. - To my mother, Nancy Fabro, for being my mentor and my best friend iii Abstract The Journey From Instrumentalist to Musician is a reflective study that addresses the effect of the Conservatory method in musical performance. The discussion begins with the author's early experiences as a young piano student who wanted to please her teacher and after many hours of practice soon became a performance specialist - a performance specialist who excelled as a pianist. The instrument that she studied, instead of the discipline of music itself, is what defined her as a pianist. Throughout her early music career, she learned that exact replication of the score was more important than the process of creativity and individuality. The Conservatory method often emphasizes the importance of teaching specific instrumental skills rather than simply teaching music. This prompted the author to explore philosophies of music educators who were not considered educators of the traditional conservatory method. After discussing the methodologies of Suzuki, Kodaly, Dalcroze, and Orff, the author then reflects on her own educational methodology. In evaluating the methodologies, the author identified four common themes for comparison: rhythm, pitch recognition, patterning of sounds, and literacy.
    [Show full text]
  • Introduction to Music Technology
    PUBLIC SCHOOLS OF EDISON TOWNSHIP DIVISION OF CURRICULUM AND INSTRUCTION INTRODUCTION TO MUSIC TECHNOLOGY Length of Course: Semester (Full Year) Elective / Required: Elective Schools: High Schools Student Eligibility: Grade 9-12 Credit Value: 5 credits Date Approved: September 24, 2012 Introduction to Music Technology TABLE OF CONTENTS Statement of Purpose ----------------------------------------------------------------------------------- 3 Introduction ------------------------------------------------------------------------------------------------- 4 Course Objectives ---------------------------------------------------------------------------------------- 6 Unit 1: Introduction to Music Technology Course and Lab ------------------------------------9 Unit 2: Legal and Ethical Issues In Digital Music -----------------------------------------------11 Unit 3: Basic Projects: Mash-ups and Podcasts ------------------------------------------------13 Unit 4: The Science of Sound & Sound Transmission ----------------------------------------14 Unit 5: Sound Reproduction – From Edison to MP3 ------------------------------------------16 Unit 6: Electronic Composition – Tools For The Musician -----------------------------------18 Unit 7: Pro Tools ---------------------------------------------------------------------------------------20 Unit 8: Matching Sight to Sound: Video & Film -------------------------------------------------22 APPENDICES A Performance Assessments B Course Texts and Supplemental Materials C Technology/Website References D Arts
    [Show full text]
  • Comparing the Cost of Preamplifiers to Their Sonic Fidelity and Frequency Output
    California State University, Monterey Bay Digital Commons @ CSUMB Capstone Projects and Master's Theses Spring 5-20-2016 Comparing the Cost of Preamplifiers ot Their Sonic Fidelity and Frequency Output Jackson O. Hunter California State University, Monterey Bay Follow this and additional works at: https://digitalcommons.csumb.edu/caps_thes Part of the Audio Arts and Acoustics Commons Recommended Citation Hunter, Jackson O., "Comparing the Cost of Preamplifiers ot Their Sonic Fidelity and Frequency Output" (2016). Capstone Projects and Master's Theses. 548. https://digitalcommons.csumb.edu/caps_thes/548 This Capstone Project is brought to you for free and open access by Digital Commons @ CSUMB. It has been accepted for inclusion in Capstone Projects and Master's Theses by an authorized administrator of Digital Commons @ CSUMB. Unless otherwise indicated, this project was conducted as practicum not subject to IRB review but conducted in keeping with applicable regulatory guidance for training purposes. For more information, please contact [email protected]. Hunter 1 Jackson Hunter Professor Sammons MPA 475 20 May 2015 COMPARING THE COST OF PREAMPLIFIERS TO THEIR SONIC FIDELITY AND FREQUENCY OUTPUT More than ever, too many times, audio engineers get caught up in the hype of big name brands and large price tags. However, the popularity of a brand, as well as the cost of its gear does not always equate to quality hardware. The microphone preamplifier is a perfect example of this disparity between price tags and brand names and performance of the equipment. The goal of this paper is to make one second guess the intrinsic idea that things that cost more and have a solid brand reputation actually sound better.
    [Show full text]
  • Musical Instruments for the Music Unit
    Chapter XI Instruments and Equipment Nicholas DeCarbo, Associate Dean Frost School of Music, University of Miami It goes without saying that music units need considerable equipment such as acoustical shells, staging, risers, chairs, music stands, podiums, instrument storage cabinets, laboratory workstations, music library systems, audio systems, and quality instruments. All music programs also need equipment devoted to technology, including hardware, software, and furniture. Because of advances in technology, music units use an array of electronic keyboard instruments for piano labs, classrooms, recording studios, music technology centers, and faculty studio/offices. Of course, music units also continue to need traditional acoustic instruments, such as concert grand pianos, upright pianos, harps, contra clarinets, English horns, contrabassoons, a full complement of percussion instruments, and sousaphones for the marching band. According to the Higher Education Arts Data Survey (HEADS), 474 public and private accredited and nonaccredited music units in the United States reported spending an average of $53,440 on equipment, $16,336 on leases and rentals, and $9,861 on repair during 2004–5. During that same period, 358 music units reported spending an average of $17,051 on technology. This chapter discusses the planning process needed for the purchase and/or lease of equipment, instruments, and technology-related items, along with guidelines for maintaining inventories. Planning for Equipment and Instrument Purchases Due to the lack of competition, the cost of equipment for performance venues, rehearsal spaces, and faculty studios is high compared to equipment purchases in many other areas of the university, excepting the sciences. Moreover, the music executive is often in the position of having to convince the higher administration that the needs are valid.
    [Show full text]