David López Escardó
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Runella Slithyformis Type Strain (LSU 4(T))
Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of the aquatic bacterium Runella slithyformis type strain (LSU 4(T)). Permalink https://escholarship.org/uc/item/52p6k8qb Journal Standards in genomic sciences, 6(2) ISSN 1944-3277 Authors Copeland, Alex Zhang, Xiaojing Misra, Monica et al. Publication Date 2012-05-04 DOI 10.4056/sigs.2475579 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2012) 6:145-154 DOI:10.4056/sigs.2485911 Complete genome sequence of the aquatic bacterium T Runella slithyformis type strain (LSU 4 ) Alex Copeland1, Xiaojing Zhang1,2, Monica Misra1,2, Alla Lapidus1, Matt Nolan1, Susan Lucas1, Shweta Deshpande1, Jan-Fang Cheng1, Roxanne Tapia1,2, Lynne A. Goodwin1,2, Sam Pitluck1, Konstantinos Liolios1, Ioanna Pagani1, Natalia Ivanova1, Natalia Mikhailova1, Amrita Pati1, Amy Chen3, Krishna Palaniappan3, Miriam Land1,4, Loren Hauser1,4, Chongle Pan1,4, Cynthia D. Jeffries1,4, John C. Detter1, Evelyne-Marie Brambilla5, Manfred Rohde6, Olivier D. Ngatchou Djao6, Markus Göker5, Johannes Sikorski5, Brian J. Tindall5, Tanja Woyke1, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz3, Philip Hugenholtz1,8, Nikos C. Kyrpides1, Hans-Peter Klenk5*, and Konstantinos Mavromatis1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 3 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, -
A Six-Gene Phylogeny Provides New Insights Into Choanoflagellate Evolution Martin Carr, Daniel J
A six-gene phylogeny provides new insights into choanoflagellate evolution Martin Carr, Daniel J. Richter, Parinaz Fozouni, Timothy J. Smith, Alexandra Jeuck, Barry S.C. Leadbeater, Frank Nitsche To cite this version: Martin Carr, Daniel J. Richter, Parinaz Fozouni, Timothy J. Smith, Alexandra Jeuck, et al.. A six- gene phylogeny provides new insights into choanoflagellate evolution. Molecular Phylogenetics and Evolution, Elsevier, 2017, 107, pp.166 - 178. 10.1016/j.ympev.2016.10.011. hal-01393449 HAL Id: hal-01393449 https://hal.archives-ouvertes.fr/hal-01393449 Submitted on 7 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Molecular Phylogenetics and Evolution 107 (2017) 166–178 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A six-gene phylogeny provides new insights into choanoflagellate evolution ⇑ Martin Carr a, ,1, Daniel J. Richter b,1,2, Parinaz Fozouni b,3, Timothy J. Smith a, Alexandra Jeuck c, Barry S.C. Leadbeater d, Frank Nitsche c a School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK b Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA c University of Cologne, Biocentre, General Ecology, Zuelpicher Str. -
Download This Publication (PDF File)
PUBLIC LIBRARY of SCIENCE | plosgenetics.org | ISSN 1553-7390 | Volume 2 | Issue 12 | DECEMBER 2006 GENETICS PUBLIC LIBRARY of SCIENCE www.plosgenetics.org Volume 2 | Issue 12 | DECEMBER 2006 Interview Review Knight in Common Armor: 1949 Unraveling the Genetics 1956 An Interview with Sir John Sulston e225 of Human Obesity e188 Jane Gitschier David M. Mutch, Karine Clément Research Articles Natural Variants of AtHKT1 1964 The Complete Genome 2039 Enhance Na+ Accumulation e210 Sequence and Comparative e206 in Two Wild Populations of Genome Analysis of the High Arabidopsis Pathogenicity Yersinia Ana Rus, Ivan Baxter, enterocolitica Strain 8081 Balasubramaniam Muthukumar, Nicholas R. Thomson, Sarah Jeff Gustin, Brett Lahner, Elena Howard, Brendan W. Wren, Yakubova, David E. Salt Matthew T. G. Holden, Lisa Crossman, Gregory L. Challis, About the Cover Drosophila SPF45: A Bifunctional 1974 Carol Churcher, Karen The jigsaw image of representatives Protein with Roles in Both e178 Mungall, Karen Brooks, Tracey of various lines of eukaryote evolution Splicing and DNA Repair Chillingworth, Theresa Feltwell, refl ects the current lack of consensus as Ahmad Sami Chaouki, Helen K. Zahra Abdellah, Heidi Hauser, to how the major branches of eukaryotes Salz Kay Jagels, Mark Maddison, fi t together. The illustrations from upper Sharon Moule, Mandy Sanders, left to bottom right are as follows: a single Mammalian Small Nucleolar 1984 Sally Whitehead, Michael A. scale from the surface of Umbellosphaera; RNAs Are Mobile Genetic e205 Quail, Gordon Dougan, Julian Amoeba, the large amoeboid organism Elements Parkhill, Michael B. Prentice used as an introduction to protists for Michel J. Weber many school children; Euglena, the iconic Low Levels of Genetic 2052 fl agellate that is often used to challenge Soft Sweeps III: The Signature 1998 Divergence across e215 ideas of plants (Euglena has chloroplasts) of Positive Selection from e186 Geographically and and animals (Euglena moves); Stentor, Recurrent Mutation Linguistically Diverse one of the larger ciliates; Cacatua, the Pleuni S. -
Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. -
Towards a Management Hierarchy (Classification) for the Catalogue of Life
TOWARDS A MANAGEMENT HIERARCHY (CLASSIFICATION) FOR THE CATALOGUE OF LIFE Draft Discussion Document Rationale The Catalogue of Life partnership, comprising Species 2000 and ITIS (Integrated Taxonomic Information System), has the goal of achieving a comprehensive catalogue of all known species on Earth by the year 2011. The actual number of described species (after correction for synonyms) is not presently known but estimates suggest about 1.8 million species. The collaborative teams behind the Catalogue of Life need an agreed standard classification for these 1.8 million species, i.e. a working hierarchy for management purposes. This discussion document is intended to highlight some of the issues that need clarifying in order to achieve this goal beyond what we presently have. Concerning Classification Life’s diversity is classified into a hierarchy of categories. The best-known of these is the Kingdom. When Carl Linnaeus introduced his new “system of nature” in the 1750s ― Systema Naturae per Regna tria naturae, secundum Classes, Ordines, Genera, Species …) ― he recognised three kingdoms, viz Plantae, Animalia, and a third kingdom for minerals that has long since been abandoned. As is evident from the title of his work, he introduced lower-level taxonomic categories, each successively nested in the other, named Class, Order, Genus, and Species. The most useful and innovative aspect of his system (which gave rise to the scientific discipline of Systematics) was the use of the binominal, comprising genus and species, that uniquely identified each species of organism. Linnaeus’s system has proven to be robust for some 250 years. The starting point for botanical names is his Species Plantarum, published in 1753, and that for zoological names is the tenth edition of the Systema Naturae published in 1758. -
Evidence for Glycolytic Reactions in the Mitochondrion?
Broad Distribution of TPI-GAPDH Fusion Proteins among Eukaryotes: Evidence for Glycolytic Reactions in the Mitochondrion? Takuro Nakayama1, Ken-ichiro Ishida2, John M. Archibald1* 1 Department of Biochemistry & Molecular Biology, Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Dalhousie University, Halifax, Nova Scotia, Canada, 2 Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan Abstract Glycolysis is a central metabolic pathway in eukaryotic and prokaryotic cells. In eukaryotes, the textbook view is that glycolysis occurs in the cytosol. However, fusion proteins comprised of two glycolytic enzymes, triosephosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were found in members of the stramenopiles (diatoms and oomycetes) and shown to possess amino-terminal mitochondrial targeting signals. Here we show that mitochondrial TPI- GAPDH fusion protein genes are widely spread across the known diversity of stramenopiles, including non-photosynthetic species (Bicosoeca sp. and Blastocystis hominis). We also show that TPI-GAPDH fusion genes exist in three cercozoan taxa (Paulinella chromatophora, Thaumatomastix sp. and Mataza hastifera) and an apusozoan protist, Thecamonas trahens. Interestingly, subcellular localization predictions for other glycolytic enzymes in stramenopiles and a cercozoan show that a significant fraction of the glycolytic enzymes in these species have mitochondrial-targeted isoforms. These results suggest that part -
Protist Phylogeny and the High-Level Classification of Protozoa
Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane). -
The Revised Classification of Eukaryotes
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. -
S41467-021-25308-W.Pdf
ARTICLE https://doi.org/10.1038/s41467-021-25308-w OPEN Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota ✉ ✉ Luis Javier Galindo 1 , Purificación López-García 1, Guifré Torruella1, Sergey Karpov2,3 & David Moreira 1 Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living fla- gellated stages (zoospores) remain poorly known and their phylogenetic position is often 1234567890():,; unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and San- chytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchy- trids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids’ phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages. 1 Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. 2 Zoological Institute, Russian Academy of Sciences, St. ✉ Petersburg, Russia. 3 St. -
Group of Microorganisms at the Animal-Fungal Boundary
16 Aug 2002 13:56 AR AR168-MI56-14.tex AR168-MI56-14.SGM LaTeX2e(2002/01/18) P1: GJC 10.1146/annurev.micro.56.012302.160950 Annu. Rev. Microbiol. 2002. 56:315–44 doi: 10.1146/annurev.micro.56.012302.160950 First published online as a Review in Advance on May 7, 2002 THE CLASS MESOMYCETOZOEA: A Heterogeneous Group of Microorganisms at the Animal-Fungal Boundary Leonel Mendoza,1 John W. Taylor,2 and Libero Ajello3 1Medical Technology Program, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing Michigan, 48824-1030; e-mail: [email protected] 2Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102; e-mail: [email protected] 3Centers for Disease Control and Prevention, Mycotic Diseases Branch, Atlanta Georgia 30333; e-mail: [email protected] Key Words Protista, Protozoa, Neomonada, DRIP, Ichthyosporea ■ Abstract When the enigmatic fish pathogen, the rosette agent, was first found to be closely related to the choanoflagellates, no one anticipated finding a new group of organisms. Subsequently, a new group of microorganisms at the boundary between an- imals and fungi was reported. Several microbes with similar phylogenetic backgrounds were soon added to the group. Interestingly, these microbes had been considered to be fungi or protists. This novel phylogenetic group has been referred to as the DRIP clade (an acronym of the original members: Dermocystidium, rosette agent, Ichthyophonus, and Psorospermium), as the class Ichthyosporea, and more recently as the class Mesomycetozoea. Two orders have been described in the mesomycetozoeans: the Der- mocystida and the Ichthyophonida. So far, all members in the order Dermocystida have been pathogens either of fish (Dermocystidium spp. -
Reconstruction of Protein Domain Evolution Using Single-Cell Amplified
Reconstruction of protein domain evolution using single-cell amplified royalsocietypublishing.org/journal/rstb genomes of uncultured choanoflagellates sheds light on the origin of animals Research David López-Escardó 1,2 , Xavier Grau-Bové 1,3,4 , Amy Guillaumet-Adkins 5,6 , Marta Gut 5,6 , Michael E. Sieracki 7 and Iñaki Ruiz-Trillo 1,3,8 Cite this article: López-Escardó D, Grau-Bové X, Guillaumet-Adkins A, Gut M, Sieracki ME, 1Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Ruiz-Trillo I. 2019 Reconstruction of protein 08003 Barcelona, Catalonia, Spain 2Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain domain evolution using single- cell amplified 3Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain genomes of uncultured choanoflagellates sheds 4Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK light on the origin of animals. Phil. 5CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Trans. R. Soc. B 374 : 20190088. Barcelona, Spain 6Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain http://dx.doi.org/10.1098/rstb.2019.0088 7National Science Foundation, Arlington, VA 22314, USA 8ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain Accepted: 15 June 2019 DL-E, 0000-0002-9122-6771; XG-B, 0000-0003-1978-5824; IR-T, 0000-0001-6547-5304 One contribution of 18 to a discussion meeting Understanding the origins of animal multicellularity is a fundamental biologi- cal question. Recent genome data have unravelled the role that co-option of issue ‘Single cell ecology ’. -
Revisiting the Phylogenetic Position of Caullerya Mesnili (Ichthyosporea), a Common
Revisiting the phylogenetic position of Caullerya mesnili (Ichthyosporea), a common Daphnia parasite, based on 22 protein-coding genes Yameng Lu 1, 2, *, Eduard Ocaña-Pallarès 3, *, David López-Escardó 3, 4, Stuart R. Dennis 2, Michael T. Monaghan 1, 5, 6, Iñaki Ruiz-Trillo 3, 7, 8, Piet Spaak 2, Justyna Wolinska 1, 6 *these authors contributed equally to this work 1Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; 2Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland; 3Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain; 4Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain; 5Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany; 6Institut für Biologie, Freie Universität Berlin (FU), Berlin, Germany; 7Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Catalonia, Spain; 8ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain; This document is the accepted manuscript version of the following article: Lu, Y., Ocaña-Pallarès, E., López-Escardó, D., Dennis, S. R., Monaghan, M. T., Ruiz- Trillo, I., … Wolinska, J. (2020). Revisiting the phylogenetic position of Caullerya mesnili (Ichthyosporea), a common Daphnia parasite, based on 22 protein-coding genes. Molecular Phylogenetics and Evolution, 106891 (31 pp.). https://doi.org/10.1016/ j.ympev.2020.106891 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Abstract Caullerya mesnili is a common and virulent parasite of the water flea, Daphnia. It was classified within the Haplosporidia (Rhizaria) for over a century.