Electronic Structure and Physical Properties of 13C Carbon Composite

Total Page:16

File Type:pdf, Size:1020Kb

Electronic Structure and Physical Properties of 13C Carbon Composite Electronic structure and physical properties of 13C carbon composite ABSTRACT: This review is devoted to the application of graphite and graphite composites in science and technology. Structure and electrical properties, as so technological aspects of producing of high-strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry. Author was focused on the properties of graphite composites based on carbon isotope 13C. Generally, the review relies on the original results and concentrates on actual problems of application and testing of graphite materials in modern nuclear physics and science and its technology applications. Translated by author from chapters 5 of the Russian monograph by Zhmurikov E.I., Bubnenkov I.A., Pokrovsky A.S. et al. Graphite in Science and Nuclear Technique// eprint arXiv:1307.1869, 07/2013 (BC 2013arXiv1307.1869Z Author: Evgenij I. Zhmurikov Address: 68600 Pietarsaari, Finland E-mail: [email protected] KEYWORDS: Structure and properties of carbon; Isotope 13C; Radioactive ion beams 2 1. Introduction In order to explore ever-more exotic regions of the nuclear chart, towards the limits of stability of nuclei, European nuclear physicists have built several large-scale facilities in various countries of the European Union. Today they are collaborating in planning of a new radioactive ion beam (RIB) facility which will permit them to investigate hitherto unreachable parts of the nuclear chart. This European ISOL (isotope-separation-on-line) facility is called EURISOL [1]. At the present moment experiments with RIB of the first generation have yielded important results. But the first generation RIB facilities are often limited by the low intensity of the beams. This is why there have been discussed and developed quite a number of new projects with a new generation RIB (KEK, Tsukuba; ARENAS REX ISOLDE, CERN; ARGONNE; HRIBF, Oak Ridge). The SPES project at LNL (Italy) also belongs here [2, 3]. The proposed project is aimed at an R&D study of a conversion element in the framework of the SPES program at LNL. LNL has proposed a double-acceleration scheme of producing an ISOL type RIB. A primary proton beam accelerated at a superconducing RFQ linac is directed to a special neutron target and produces an intense (3×1014 cm-2×s-1) flux of fast neutrons. The parameters of the primary beam are: the energy is up 100 MeV, the average power is up to 300 kW, the diameter is 1 cm. Thus obtained neutron flux then comes to a hot thick target of a 238U compound. The vapors of the radionuclides get ionized, extracted from the target at an energy of 20-60 keV and then being separated by isotopes get into the experimental zone for low-energy experiments or further accelerated to an energy of up to 1-5 MeV/nucleon. The conversion element consisting of a neutron target and a source of radioactive ions plays a the most important role in this scheme [4-7]. Version converter with a target made of a carbon composite with a high content of the isotope 13C was developed for the proton primary beam. The threshold of the 13C nuclear reaction 13C (p, n) 14N with yield neutrons is of the 3.24 MeV, while reaction threshold 12C (p, n) 13N reaction for usual carbon is significantly above and equal to 20.1 MeV [8, p .895]. It is supposed, the neutron yield from a carbon target that made of pure isotope 13C, can be considerably higher if energy of the proton beam is smaller than 20 MeV. However, it is turned out quite quickly that at higher energies this difference is not so noticeable [9]. Nevertheless, in principle, such a cooled by radiation target can provide in 3-10 times more high neutron yield than natural carbon 12C target at low energies of the proton beam. An argument in favor of such a target is that the using of the deutron beam, as well as an increase of its power, it will be resulting into a significant increase of the cost and complexity of the project EURISOL in whole. 3 Moreover, the 13C isotope composite finds out its application in the resonance gamma spectroscopy [10, 11]. This method is based on that the nuclei of many chemical elements have the property of resonance absorption. In particular, the nucleus of the nitrogen atoms can resonantly absorb gamma quanta with energy of 9.1724 MeV, and the width of the absorption peak is of 125eV only. Method of nitrogen detection is found in comparison to the resonance and non-resonant absorption when a radiation comes through the matter. Nuclear reaction 13C (p, ɤ) 14N is used to generate a resonance ɤ-quanta. In this case accelerated up to 1.75 MeV proton beam bombards the graphite target with a high content of 13C carbon isotope, therefore it is formed an excited nucleus 14N that emits gamma quanta with energy of 9.17 MeV. In this case, the necessary energy for resonance spectrometry has gamma-quanta with emission angle 80,7 ±0,10 to the axis of the proton beam [11]. This review summarizes the results of studies of an electronic structure and properties of 13C carbon composite, because it can allow to predict its lifetime and its possibilities as a construction material. Samples of this composite with a high content of the 13C isotope were made in "NIIgraphit"[12] of powder that was obtained by chemical vapor deposition. Properties of the graphitization and a technological scheme of the graphite preparation were described earlier [13, 14]. 2. X-ray and high-resolution microscopy of the 13C carbon composite X-Ray measurements and high-resolution microscopy measurements were carried out and described by leading of prof. S.V. Tsybulya in the Boreskov Institute of Catalysis SB RAS and published earlier in [15]. It was used URD-6 with monochromatic CuKα- radiation. The registration of diffractograms was performed in steps mode with step 0.05o, the accumulation time is 10 seconds and the angle range 2θ was from 10 to 100o. The XRD profile of the 13C carbon composite is shown on fig. 1. It is clear visible 00l and hk0 reflection (line 2) of graphite planes, the hk0 reflexes have an asymmetrical shape with a large blurring towards larger angles than in the case of high-ordered polycrystalline graphite (line 1). This diffraction pattern complies to the turbostratic graphite structure in which there are not ordered graphene layers along the c - crystallographic direction [16]. The diffractogram of 13C carbon isotope really shows (line 3) really only one well-defined broad diffraction peak, that complies to the 002 reflex of the graphite structure. Enlarged image of the diffraction pattern allows us to identify a 4 broad peak 100, located at 2θ =44° (fig. 2). The size of the coherent scattering region CSR (Å) for the structural components of the 13C powder isotope is shown in table 1. Table 1. The dimensions of the coherent scattering region (Å) for the structural components of the initial 13C powder A more detailed structure of the 002 reflex of the 13C powder is shown in the inset to fig. 2. The presence of an inflection indicates that the powder is composed of two structural components, which differ in size. Indeed, the 002 peak is a superposition of two components, relating to the graphite particles with CSR of 20Å and 40Å and different interplanar distance d002 (table 1). Similar values of integral component of intensities indicate to equal proportion of these particles in the sample. Low intensity of 100 peak does not allow to attribute it to one or another of the structural component. Fig. 1. The X-Ray phase diagram: 1) MPG-6; 2) the initial tablet of 13C carbon composite 3) initial powder of 13C pure isotope [17]. 5 Fig. 2 The X-Ray phase diagram of the initial powder of 13C pure isotope. The shape of the diffraction 002 peak (inset at top) indicates the presence in the sample of two structural components with different dispersion and, probably, with different interplanar spacing d002. [17]. High-resolution transmission electron microscopy (HRTEM) is shown that the sample of 13C carbon composite of density less than 0.8 g/cm3 consists of particle aggregates with size up to 1000 nm (fig. 3a). However, the morphology of particles that make up the aggregate is really different from carbon composite of MPG class, because each thin plate is arranged so, that looks like a sheet of paper, that was crumpled in the middle, and then a little straightened [15]. Structure of the plate is not a monocrystalline, and complies a polycrystalline state: a set of randomly oriented interconnected blocks, giving the ring microdiffraction that is shown on the inset to fig. 3 a. It is interesting that curving edges of such plates are similar to carbon fiber that can be clearly seen in the micrograph of larger scale (fig. 3,b). Constructional composites are based on 13C isotope with high density (ρ ~ 1.55 g/cm3), and isotope content of from 50% up to 75% are composed of three types of carbon particles. The main mass of the samples are the crumpled and broken graphite plate with thickness from of 1 to 50 nm, which have a tendency to agglomerate. Moreover, the sample contains graphite globules, which are generally well faceted and have the sizes from 50 to 150 nm; some globules are partially destroyed. Every facet of the globule is a graphite plate of thickness about 15-20 nm. 6 Fig. 3. The micrographs and microdiffraction of 13C carbon composite of density less than 0.8 g/cm3 [15].
Recommended publications
  • Density Functional Theory
    Density Functional Theory Fundamentals Video V.i Density Functional Theory: New Developments Donald G. Truhlar Department of Chemistry, University of Minnesota Support: AFOSR, NSF, EMSL Why is electronic structure theory important? Most of the information we want to know about chemistry is in the electron density and electronic energy. dipole moment, Born-Oppenheimer charge distribution, approximation 1927 ... potential energy surface molecular geometry barrier heights bond energies spectra How do we calculate the electronic structure? Example: electronic structure of benzene (42 electrons) Erwin Schrödinger 1925 — wave function theory All the information is contained in the wave function, an antisymmetric function of 126 coordinates and 42 electronic spin components. Theoretical Musings! ● Ψ is complicated. ● Difficult to interpret. ● Can we simplify things? 1/2 ● Ψ has strange units: (prob. density) , ● Can we not use a physical observable? ● What particular physical observable is useful? ● Physical observable that allows us to construct the Hamiltonian a priori. How do we calculate the electronic structure? Example: electronic structure of benzene (42 electrons) Erwin Schrödinger 1925 — wave function theory All the information is contained in the wave function, an antisymmetric function of 126 coordinates and 42 electronic spin components. Pierre Hohenberg and Walter Kohn 1964 — density functional theory All the information is contained in the density, a simple function of 3 coordinates. Electronic structure (continued) Erwin Schrödinger
    [Show full text]
  • Electron Density Functions for Simple Molecules (Chemical Bonding/Excited States) RALPH G
    Proc. Natl. Acad. Sci. USA Vol. 77, No. 4, pp. 1725-1727, April 1980 Chemistry Electron density functions for simple molecules (chemical bonding/excited states) RALPH G. PEARSON AND WILLIAM E. PALKE Department of Chemistry, University of California, Santa Barbara, California 93106 Contributed by Ralph G. Pearson, January 8, 1980 ABSTRACT Trial electron density functions have some If each component of the charge density is centered on a conceptual and computational advantages over wave functions. single point, the calculation of the potential energy is made The properties of some simple density functions for H+2 and H2 are examined. It appears that for a diatomic molecule a good much easier. However, the kinetic energy is often difficult to density function would be given by p = N(A2 + B2), in which calculate for densities containing several one-center terms. For A and B are short sums of s, p, d, etc. orbitals centered on each a wave function that is composed of one orbital, the kinetic nucleus. Some examples are also given for electron densities that energy can be written in terms of the electron density as are appropriate for excited states. T = 1/8 (VP)2dr [5] Primarily because of the work of Hohenberg, Kohn, and Sham p (1, 2), there has been great interest in studying quantum me- and in most cases this integral was evaluated numerically in chanical problems by using the electron density function rather cylindrical coordinates. The X integral was trivial in every case, than the wave function as a means of approach. Examples of and the z and r integrations were carried out via two-dimen- the use of the electron density include studies of chemical sional Gaussian bonding in molecules (3, 4), solid state properties (5), inter- quadrature.
    [Show full text]
  • Chemistry 1000 Lecture 8: Multielectron Atoms
    Chemistry 1000 Lecture 8: Multielectron atoms Marc R. Roussel September 14, 2018 Marc R. Roussel Multielectron atoms September 14, 2018 1 / 23 Spin Spin Spin (with associated quantum number s) is a type of angular momentum attached to a particle. Every particle of the same kind (e.g. every electron) has the same value of s. Two types of particles: Fermions: s is a half integer 1 Examples: electrons, protons, neutrons (s = 2 ) Bosons: s is an integer Example: photons (s = 1) Marc R. Roussel Multielectron atoms September 14, 2018 2 / 23 Spin Spin magnetic quantum number All types of angular momentum obey similar rules. There is a spin magnetic quantum number ms which gives the z component of the spin angular momentum vector: Sz = ms ~ The value of ms can be −s; −s + 1;:::; s. 1 1 1 For electrons, s = 2 so ms can only take the values − 2 or 2 . Marc R. Roussel Multielectron atoms September 14, 2018 3 / 23 Spin Stern-Gerlach experiment How do we know that electrons (e.g.) have spin? Source: Theresa Knott, Wikimedia Commons, http://en.wikipedia.org/wiki/File:Stern-Gerlach_experiment.PNG Marc R. Roussel Multielectron atoms September 14, 2018 4 / 23 Spin Pauli exclusion principle No two fermions can share a set of quantum numbers. Marc R. Roussel Multielectron atoms September 14, 2018 5 / 23 Multielectron atoms Multielectron atoms Electrons occupy orbitals similar (in shape and angular momentum) to those of hydrogen. Same orbital names used, e.g. 1s, 2px , etc. The number of orbitals of each type is still set by the number of possible values of m`, so e.g.
    [Show full text]
  • Electron Charge Density: a Clue from Quantum Chemistry for Quantum Foundations
    Electron Charge Density: A Clue from Quantum Chemistry for Quantum Foundations Charles T. Sebens California Institute of Technology arXiv v.2 June 24, 2021 Forthcoming in Foundations of Physics Abstract Within quantum chemistry, the electron clouds that surround nuclei in atoms and molecules are sometimes treated as clouds of probability and sometimes as clouds of charge. These two roles, tracing back to Schr¨odingerand Born, are in tension with one another but are not incompatible. Schr¨odinger'sidea that the nucleus of an atom is surrounded by a spread-out electron charge density is supported by a variety of evidence from quantum chemistry, including two methods that are used to determine atomic and molecular structure: the Hartree-Fock method and density functional theory. Taking this evidence as a clue to the foundations of quantum physics, Schr¨odinger'selectron charge density can be incorporated into many different interpretations of quantum mechanics (and extensions of such interpretations to quantum field theory). Contents 1 Introduction2 2 Probability Density and Charge Density3 3 Charge Density in Quantum Chemistry9 3.1 The Hartree-Fock Method . 10 arXiv:2105.11988v2 [quant-ph] 24 Jun 2021 3.2 Density Functional Theory . 20 3.3 Further Evidence . 25 4 Charge Density in Quantum Foundations 26 4.1 GRW Theory . 26 4.2 The Many-Worlds Interpretation . 29 4.3 Bohmian Mechanics and Other Particle Interpretations . 31 4.4 Quantum Field Theory . 33 5 Conclusion 35 1 1 Introduction Despite the massive progress that has been made in physics, the composition of the atom remains unsettled. J. J. Thomson [1] famously advocated a \plum pudding" model where electrons are seen as tiny negative charges inside a sphere of uniformly distributed positive charge (like the raisins|once called \plums"|suspended in a plum pudding).
    [Show full text]
  • Nature of Noncovalent Carbon-Bonding Interactions Derived from Experimental Charge-Density Analysis
    Nature of Noncovalent Carbon-Bonding Interactions Derived from Experimental Charge-Density Analysis Eduardo C. Escudero-Adán, Antonio Bauzffl, Antonio Frontera, and Pablo Ballester E. C. Escudero-Adán,+ Prof. P. Ballester X-Ray Diffraction Unit Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans 16, 43007 Tarragona (Spain) E-mail : [email protected] A. Bauzffl,+ Prof. A. Frontera Department of Chemistry Universitat de les Illes Balears Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Spain) E-mail : [email protected] Prof. P. Ballester Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluïs Companys 23, 08010 Barcelona (Spain) In an effort to better understand the nature of noncovalent carbon-bonding interactions, we undertook accurate high-res- olution X-ray diffraction analysis of single crystals of 1,1,2,2-tet- racyanocyclopropane. We selected this compound to study the fundamental characteristics of carbon-bonding interactions, because it provides accessible s holes. The study required ex- tremely accurate experimental diffraction data, because the in- teraction of interest is weak. The electron-density distribution around the carbon nuclei, as shown by the experimental maps of the electrophilic bowl defined by a (CN)2C-C(CN)2 unit, was assigned as the origin of the interaction. This fact was also evidenced by plotting the D21(r) distribution. Taken together, the obtained results clearly indicate that noncovalent carbon bonding can be explained as an interaction between confront- ed oppositely polarized regions. The interaction is, thus elec- trophilic–nucleophilic (electrostatic) in nature and unambigu- ously considered as attractive. Attractive intermolecular electrostatic interactions encompass electron-rich and electron-poor regions of two molecules that complement each other.[1] Electron-rich entities are typically anions or lone-pair electrons and the most well-known elec- tron-poor entity is the hydrogen atom.
    [Show full text]
  • 10 Mar 2015 Density Functional Theory for Field Theorists I
    RUNHETC-2015-07 SCIPP 15/11 Density Functional Theory for Field Theorists I Tom Banks NHETC and Department of Physics Rutgers University, Piscataway, NJ 08854-8019 and Department of Physics and SCIPP University of California, Santa Cruz, CA 95064 E-mail: [email protected] Abstract I summarize Density Functional Theory (DFT) in a language familiar to quantum field theorists, and introduce several apparently novel ideas for constructing systematic approximations for the density functional. I also note that, at least within the large K approximation (K is the number of electron spin components), it is easier to compute the quantum effective action of the Coulomb photon field, which is related to the density functional by algebraic manipulations in momentum space. arXiv:1503.02925v1 [cond-mat.mtrl-sci] 10 Mar 2015 0 Contents 1 Density Functional Theory for Quantum Field Theorists 1 2 Expansions in the Number of Spin Components 5 2.1 The Large K Expansion ............................. 5 2.2 SmallKExpansion ................................ 8 2.3 TheKSEquations ................................ 9 3 Expansions of the Functional Determinant 10 4 1/K expansion of the HEG 11 5 Conclusions 12 6 Acknowledgments 13 1 Density Functional Theory for Quantum Field The- orists Much of atomic, molecular and (quantum) condensed matter physics, reduces, in the non- relativistic limit, to the problem of solving the Schr¨odinger equation for point-like nuclei and electrons, interacting via the Coulomb potential. The electrons are fermions, and are best treated by introducing an electron field ik x ψi(x)= ai(k)e · , (1.1) Xk where i is a spin label. If we introduce dimensionless space-time coordinates, by using the Bohr radius to measure length, and the Rydberg to measure energy, the only parameters in me the problem are the nuclear charges Za and the mass ratios ma .
    [Show full text]
  • Density Functional Theory
    NEA/NSC/R(2015)5 Chapter 12. Density functional theory M. Freyss CEA, DEN, DEC, Centre de Cadarache, France Abstract This chapter gives an introduction to first-principles electronic structure calculations based on the density functional theory (DFT). Electronic structure calculations have a crucial importance in the multi-scale modelling scheme of materials: not only do they enable one to accurately determine physical and chemical properties of materials, they also provide data for the adjustment of parameters (or potentials) in higher-scale methods such as classical molecular dynamics, kinetic Monte Carlo, cluster dynamics, etc. Most of the properties of a solid depend on the behaviour of its electrons, and in order to model or predict them it is necessary to have an accurate method to compute the electronic structure. DFT is based on quantum theory and does not make use of any adjustable or empirical parameter: the only input data are the atomic number of the constituent atoms and some initial structural information. The complicated many-body problem of interacting electrons is replaced by an equivalent single electron problem, in which each electron is moving in an effective potential. DFT has been successfully applied to the determination of structural or dynamical properties (lattice structure, charge density, magnetisation, phonon spectra, etc.) of a wide variety of solids. Its efficiency was acknowledged by the attribution of the Nobel Prize in Chemistry in 1998 to one of its authors, Walter Kohn. A particular attention is given in this chapter to the ability of DFT to model the physical properties of nuclear materials such as actinide compounds.
    [Show full text]
  • Theoretical Basis of Quantum-Mechanical Modeling of Functional Nanostructures
    S S symmetry Review Theoretical Basis of Quantum-Mechanical Modeling of Functional Nanostructures Aleksey Fedotov 1,2 , Alexander Vakhrushev 1,2,*, Olesya Severyukhina 1,2, Anatolie Sidorenko 2 , Yuri Savva 2, Nikolay Klenov 3,4 and Igor Soloviev 3 1 Department Simulation and Synthesis Technology Structures, Institute of Mechanics, Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 426067 Izhevsk, Russia; [email protected] (A.F.); [email protected] (O.S.) 2 Laboratory of Functional Nanostructures, Orel State University named after I.S. Turgenev, 302026 Orel, Russia; [email protected] (A.S.); su_fi[email protected] (Y.S.) 3 Laboratory of Nanostructure Physics, Department of Microelectronics, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; [email protected] (N.K.); [email protected] (I.S.) 4 Science and Research Department, Moscow Technical University of Communication and Informatics, 111024 Moscow, Russia * Correspondence: [email protected] Abstract: The paper presents an analytical review of theoretical methods for modeling functional nanostructures. The main evolutionary changes in the approaches of quantum-mechanical modeling are described. The foundations of the first-principal theory are considered, including the stationery and time-dependent Schrödinger equations, wave functions, the form of writing energy operators, and the principles of solving equations. The idea and specifics of describing the motion and inter- action of nuclei and electrons in the framework of the theory of the electron density functional are Citation: Fedotov, A.; Vakhrushev, A.; Severyukhina, O.; Sidorenko, A.; presented. Common approximations and approaches in the methods of quantum mechanics are Savva, Y.; Klenov, N.; Soloviev, I.
    [Show full text]
  • The Radial Electron Density in the Hydrogen Atom and the Model of Oscillations in a Chain System
    July, 2012 PROGRESS IN PHYSICS Volume 3 The Radial Electron Density in the Hydrogen Atom and the Model of Oscillations in a Chain System Andreas Ries Universidade Federal de Pernambuco, Centro de Tecnologia e Geociencias,ˆ Laboratorio´ de Dispositivos e Nanoestruturas, Rua Academicoˆ Helio´ Ramos s/n, 50740-330 Recife – PE, Brazil E-mail: [email protected] The radial electron distribution in the Hydrogen atom was analyzed for the ground state and low-lying excited states by means of a fractal scaling model originally published by Muller¨ in this journal. It is shown that Muller’s¨ standard model is not fully adequate to fit these data and an additional phase shift must be introduced into its mathematical apparatus. With this extension, the radial expectation values could be expressed on the logarithmic number line by very short continued fractions where all numerators are Euler’s number. Within the rounding accuracy, no numerical differences between the expectation values (calculated from the wavefunctions)and the corresponding modeled values exist, so the model matches these quantum mechanical data exactly. Besides that, Muller’s¨ concept of proton resonance states can be transferred to electron resonances and the radial expectation values can be interpreted as both, proton resonance lengths and electron resonance lengths. The analyzed data point to the fact that Muller’s¨ model of oscillations in a chain system is compatible with quantum mechanics. 1 Introduction partial denominators are positive or negative integer values: The radial electron probability density in the Hydrogen atom 1 S = n + . (2) was analyzed by a new fractal scaling model, originally pub- 0 1 n + lished by Muller¨ [1–3] in this journal.
    [Show full text]
  • Introduction to First-Principles Method
    Joint ICTP/CAS/IAEA School & Workshop on Plasma-Materials Interaction in Fusion Devices, July 18-22, 2016, Hefei Introduction to First-Principles Method by Guang-Hong LU (吕广宏) Beihang University Computer Modeling & Simulation Theory ComputerComputer modeling & simulation” has Modeling emerged as an indespensableExperiment method for & scientificSimulation research of materials in parallel to experiment and theory. Outline Introduction (first principles) Introduction (history of first principles) Basic principles • calculation of total energy • electron-electron interaction (DFT-LDA) • Bloch’s theorem – periodic system • electron-ion interaction (pseudopotential) Supercell technique Computational procedure Future 3 Multiscale Modeling & Simulation: Conceptual framework First-principles method First-principles method Solve quantum mechanic Schrodinger equation to obtain Eigen value and Eigen function, and thus the electronic structure. • The charm: only atomic number and crystal structure as input, which can determine precisely the structure and the properties of the real materials. • first principles - physics, materials Density functional theory • ab initio -quantum chemistry Hartree-Fork self-consistent field A connection between atomic and macroscopic levels (不同尺度之间的联系) First-principles method Elastic constants Binding energy Energy barrier mechanics thermodynamics kinetics 7 Outline Introduction (first principles) Introduction (history of first principles) Basic principles • calculation of total energy • electron-electron interaction
    [Show full text]
  • Quantum Mechanics
    Quantum Mechanics • No real understanding of the chemical bond is possible in terms of classical mechanics because very small particles such as electrons do not obey the laws of classical mechanics. • Their behavior is determined by quantum mechanics, which was developed in the second half of the 1920s culminating in a mathematical formalism that we still use today. • Quantum mechanics is used by chemists as a tool to obtain the wave function and corresppgonding energy and ggyeometry of a molecule by solving the fundamental equation of quantum mechanics, called the Schrödinger equation. • The Schrödinger equation can only be completely solved for the hydrogen atom, or isoelectronic ions, with just one electron. Approximation methods must be used for multi‐ electron atoms and polyatomic molecules. • The most characteristic feature of quantum mechanics which differentiates it from classical mechanics is its probalistic character. Classical statistical Quantum probabilistic Dual Wave‐Particle Nature of Light • Light is not just emitted or absorbed in light quanta but that it travels through space as small bundles of energy called photons. • Although photons are regarded as mass‐less particles, their energy is remarkably expressed in terms of the frequency of a wave. • Although light has no mass it has momentum, which depends on the wavelength of the light. E = h . = c/ E = h . c / h / pde Broglie wavelength E = p.c (E = m.c2) Ephoton photon 1 / photon pphoton • In summary, the energy of light is transmitted in the form of particle‐like photons, which have an energy that depends of the frequency and momentum of the photon.
    [Show full text]
  • A Chemical Interpretation of Protein Electron Density Maps in The
    bioRxiv preprint doi: https://doi.org/10.1101/613109; this version posted April 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A chemical interpretation of protein electron density maps in the worldwide protein data bank Sen Yao1,2,3 and Hunter N.B. Moseley1,2,3,4,5,* 1Department of Molecular & Cellular Biochemistry 2Markey Cancer Center 3Resource Center for Stable Isotope Resolved Metabolomics 4Institute for Biomedical Informatics 5Center for Clinical and Translational Science University of Kentucky, Lexington KY, United States *Corresponding Author: [email protected] Software and full results available at: https://github.com/MoseleyBioinformaticsLab/pdb_eda (software on GitHub) https://pypi.org/project/pdb-eda/ (software on PyPI) https://pdb-eda.readthedocs.io/en/latest/ (documentation on ReadTheDocs) https://doi.org/10.6084/m9.figshare.7994294 (code and results on FigShare) Abstract High-quality three-dimensional structural data is of great value for the functional interpretation of biomacromolecules, especially proteins; however, structural quality varies greatly across the entries in the worldwide Protein Data Bank (wwPDB). Since 2008, the wwPDB has required the inclusion of structure factors with the deposition of x-ray crystallographic structures to support the independent evaluation of structures with respect to the underlying experimental data used to derive those structures. However, interpreting the discrepancies between the structural model and its underlying electron density data is difficult, since derived electron density maps use arbitrary electron density units which are inconsistent between maps from different wwPDB entries.
    [Show full text]