NBHM Library Department of Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

NBHM Library Department of Mathematics NBHM Library Department of Mathematics Accession No. Title Author 1 Euclid - The Creation of Mathematics Artmann B. 2 Fourier Analysis on Number fields (GTM-186) Ramkrishnan D. et al. 3 Topologies and Uniformities James I.M. 4 Topics in Topology (LNM-1652) Todorcevic S.H. 5 Encyclopedia of Math. Sci.-Vol 21 : Lie Groups and Onishchik A.L. et al. Lie Algebras Vol-II 6 A First Course in Discrete Dynamical System Holmgren R. 7 An Introduction to Programming with Mathematica Gaylord R. et al. 8 Introduction to Maple Heck A. 9 Chaos in Discrete Dynamical Systems Abraham R. et al. 10 Berkeley Problems in Mathematics DeSouza P.N. et al. 11 An invitation to C* Algebras Arveson W. 12 The Uncertainity Principle in Harmonic Analysis Havin V. et al. 13 Abstract Harmonic Analysis Vol- II Hewitt E. et al. 14 Encyclopedia of Math. Sci.-Vol 59 : Representation Theory and Noncommutative Harmonic Analysis Vol- Kirillov A.(Ed.) II 15 Encyclopedia of Math. Sci.-Vol 25: Commutative Havin V. et al.(Ed.) Harmonic Analysis Vol - II 16 Metric Spaces of non-positive curvature Bridson P.M. et al. 17 Dynamical Systems Robinson C. 18 Harmonic Analysis and Applications Benedetto J. 19 Gravitation & Cosmology Weinberg S. 20 Algebra Vol-I (Groups) Luthar I. et al. 21 Algebra Vol-II( Rings) Luthar I. et al. 22 Rings and Modules Musili C. 23 Introduction to Measure and Integration Rana I.K. 24 Lie Groups and Ergodic Theory Dani S.G. 25 Dynamics of one dimensional Maps Sharkovsky H. 26 Categorical Topology Giuli E. 27 Inverse Spectra Chigogidze A. 28 Topological Theory of Dynamical Systems recent Aoki N. et al. advances 29 The Importance of being fuzzy Sangalli A. 30 Chaos : A Program collection for PC Korsch.H. et al. 31 Archemedes Stein.S. 32 Geometry from Africa Gerdes.P. 33 A Panorama of Harmonic Analysis Karntz.S. 34 Labyrinth of Thoughts Ferreiros J. 35 Fourier Analysis on Finite Groups And Applications Terras A. 36 Fermat's Last Theorem for Ametuers Ribenboin.P. 37 Encyclopedia of Mathematics 71: Special Functions Andrews G. et al. 38 Topics In Ergodic Theory Sinai Y.G. 39 Essays on Fourier Analysis in Honour of E.M. Stein Fefferman et al. (Ed.) 40 An Introduction to G-Function Dwork B. et al. 41 Harmonic Analysis in Phase Space Folland G. 42 The Classical Groups Weyl H. 43 Topology from the differentiable view point Milnor J. 44 Convex Analysis Rockafellar 45 General Theory of Relativity Dirac P.A.M. 46 George Cantor Dauben T.W. NBHM Library Department of Mathematics Accession No. Title Author 47 The Mathematical Career of Peirre De Fermat Mahoney M.S. 48 An Imaginary Tale - The Story of square root of ( -1) Nahin P.J. 49 The Mathematician's Mind Hadamard J. 50 The Enjoyment of Math Rademacher H. et al. 51 Discrete Mathematics with Applications Epp. S.S. 52 A Course in Approximation Theory Cheney W. et al. 53 Numerical Analysis Burden R.L. et al. 54 Data Analysis and Decision making With Excel Albright S. et al. 55 Differential Equations with BVP Zill D.G. et al. 56 Modern Computer Algebra Gathen J.V.Z. e t al 57 Fourier And Wavelet Analysis Bachman et al. 58 Introduction to Cardinal Arithmatic Holz M. e t al 59 Mathematical Mysteries Clawson C. 60 Theory of Numbers Vol-I Dickson 61 Theory of Numbers Vol-II Dickson 62 Theory of Numbers Vol-III Dickson 63 Elements of Topological Dynamics Vries de I 64 Lectures on Hermite and Laguerre Expansions Thangavelu 65 Analysis and Geometry on Groups Varopoulos et al. 66 Harmonic Analysis and Special Functions On Heckman Symmetric Spaces 67 An Introduction to Wavelets Chui. K.C. 68 Harmonic Analysis and Special Functions On Heckman Symmetric Spaces 69 Integral Transforms & their Applications Loknath Debnath 70 A First course on Wavelets Eugenio H. & Weiss G. 71 Applied Numerical Methods Gourdin A. & Boumahrat M. 72 Geometric Measure Theory Morgan F. 73 Banach Algebra Techniques in Operator Theory Douglas R.G. 74 Tensor Geometry Dodson C.T.J. & Posyon T. 75 Riemannian Geometry Petersen P. 76 Elementary Methods in Number Theory Nathanson M.B. 77 The Random Walks Of George Polya Alexanderson G.L. 78 The Beginning and Evolution of Algebra Bashmakova & Smirnova G.S. 79 Geometric Methods in Degree Theory for Equivariant Kushkuley A. & Balanov Z. Maps 80 A Course in Number Theory and Cryptography Koblitz N. 81 Linear Algebra Janich K. 82 Transformation Groups in Differential Geometry Kobayashi S. 83 Fuzzy Set Theory Lowen R. 84 Differential Equations, Dynamical Systems, and Hirsch M. & Smale S. Linear Algebra 85 From Numbers To Analysis Rana I.K. 86 Introduction to the Analysis of Normed Linear Spaces Giles 87 Ergodic Theory and Topological Dynamics of Group Bekka B. & Mayer M. Actions on Homogeneous Spaces 88 Mathematical Fallacies, Flaws and Flimflam Barbeau E.J. 89 Finite Group Theory Aschbacher 90 Wavelets and Operators Meyer Y. 91 An Introduction To Rings and Modules: With K- Berrick A.J. & Keating M.E. Theory in view 92 Topological Methods in Hydrodynamics Arnold V.I. & Khesin B.A. 93 Lie Groups Duistermaat J.J. & Kolk J.A.C. 94 Function Spaces and Potential Theory Adams D. & Hedberg L. NBHM Library Department of Mathematics Accession No. Title Author 95 Dynamical Systems , Ergodic Theory and Bunimovich L. A. et al. Applications 96 Elemental Methods in Ergodic Ramsey Theory (LNM McCutcheon R. 1722) 97 Fuzzy Measures and Integrals Grabisch M. et al (Ed.) 98 Mathematics And Its History Stillwell J. 99 Representation Theory- A First Course Fulton W. & Harris J. 100 Theory and Applications of Numerical Analysis Phillips G.M. & Taylor P.J. 101 Calculus of Variations with Applications Gupta A.S. 102 Mathematical Methods Potter M.C. & Goldberg J. 103 The Most Beautiful Mathematical Formulas Wuest J.D. (Tr.) 104 Black Holes, White Dwarfs, and Neutron Stars Shapiro S.L. & Teukolsky S.A. 105 A Course in Number Theory and Cryptography Koblitz N. 106 Wonders of Numbers Pickover C.A. 107 An Introduction to Numerical Methods in C++ Flowers B.H. 108 Modern Mathematical Methods For Physicists And Cantrell C.. Engineers 109 Abelian Groups and Representations of Finite Arnold D. Partially Ordered Sets 110 Matrix Theory Zhang Fuzhen 111 Linear Algebraic Groups (GTM-126) Borel A. 112 An Introduction to Wavelets Through Linear Algebra Frazier M.W. 113 Digital Image Processing and analysis Chanda B. & Majumder D.D. 114 Computer Graphics Foley J.D. et al 115 Matrix analysis Horn R.A. & Johnson C.R. 116 Linear Algebraic Groups Springer T.A. 117 History of Topology James I.M. (Ed.) 118 Unitary Representations And Harmonic Analysis Sugiura M. 119 Invitation to C*-Algebras and Topological Dynamics Tomiyama J. 120 Fourier Series in Orthogonal Polynomials Osilenker B. 121 Lectures on Real Analysis Yeh J. 122 Recurrence in Topological Dynamics Akin E. 123 The General Topology of Dynamical Systems Akin E. 124 Topological Rings Warner S. 125 History of Functional Analysis Dieudonne J. 126 An Introduction to Complex Analysis in Several Hormander L. Variables 127 Modern General Topology Nagata J. 128 Cosmology a first course Lachieze-Rey M. 129 Operations Research Principles and Practice Ravindran, Phillips and Solberg 130 Cosmology a first course Marc Lachieze-Rey 131 Numerical Methods For Engineers Chapra S.C. & Canale R.P. 132 Writing TSRs Through C Kanetkar Y. 133 Fundamentals of Approximation Theory Mhaskar H. & Pai D. 134 Recent Trend In Mathematical Sciences Misra J.C. & Sinha S.B. 135 Applicable Mathematics Misra J.C. (Ed.) 136 Differential Equations with BVP Zill D.G. et al. 137 Numerical analysis Burden R. & Faires J.D. 138 HandBook of Geometric topology Daverman R.G. & Sher R.B. (Ed.) 139 An Introduction To Ergodic Theory Walters P 140 Stellar Structure And Evolution Kippenhahn R. & Wiegert A. 141 Introduction to Topological Manifolds Lee J.M. 142 Algebras of Linear Transformations Farenick D.R. NBHM Library Department of Mathematics Accession No. Title Author 143 Ergodic Theory, Analysis and Efficient Simulation of Fiedler B. (Ed.) Dynamical systems 144 Shadowing in Dynamical systems Pilyugin S.Yu. 145 Best Approximation in Inner Product Spaces Deutsch F. 146 Lectures on Analysis On Metric Spaces Heinonen J. 147 A Topological Aperitif Huggett S. & Jordan D. 148 Special Functions of Mathematical Physics Nikiforov A. & Uvarov V. 149 Vector Analysis Janich K. 150 Two Millennia Of Mathematics - from Archimedes to Phillips G.M. Gauss 151 Mathematics Unlimited- 2001 And Beyond Engquist B. & Schmid W. (Ed.) 152 What is Random? Beltrami E. 153 Fantasia Mathematica Fadiman C. (Ed.) 154 Mahtematical Encounters of the 2nd kind Davis P.J. 155 The Historical Development of the Calculus Edwards C.H. Jr. 156 Hilbert Reid C. 157 Discrete thoughts Kac M. & Rota G., Schwartz J. 158 Introduction to Calculus and Analysis- Volume I Courant R. & John F. 159 Introduction to Calculus and Analysis- Volume II Courant R. & John F. 160 General Relativity and Cosmology- A First Course Chow T. 161 Multifractals and 1/f Noise Mandelbrot B. 162 Seminaire de Probabilites XXXIV Azema J. et al (Ed.) 163 Random Sets Goutsias J. et al (Ed.) 164 Geometry : Euclid and Beyond Hartshorne R. 165 A First Course in Coding Theory Hill R. 166 Visual Complex Analysis Needham 167 The Last Recreations Gardner M. 168 Chaos in Dynamical Systems Ott E. 169 The Book of Numbers Conway J. & Guy R. 170 Convex Analysis and Non Linear Optimizations Borwein R. & Lewis A. 171 Lie Groups , Lie Algebras And Their Representations Varadarajan V. 172 The Geometry of Discrete Groups Beardon A.F. 173 Linear Algebraic Groups Humphreys J. 174 Computer Algebra in Scientific Computing Ganzha V.G.
Recommended publications
  • Graphs and Patterns in Mathematics and Theoretical Physics, Volume 73
    http://dx.doi.org/10.1090/pspum/073 Graphs and Patterns in Mathematics and Theoretical Physics This page intentionally left blank Proceedings of Symposia in PURE MATHEMATICS Volume 73 Graphs and Patterns in Mathematics and Theoretical Physics Proceedings of the Conference on Graphs and Patterns in Mathematics and Theoretical Physics Dedicated to Dennis Sullivan's 60th birthday June 14-21, 2001 Stony Brook University, Stony Brook, New York Mikhail Lyubich Leon Takhtajan Editors Proceedings of the conference on Graphs and Patterns in Mathematics and Theoretical Physics held at Stony Brook University, Stony Brook, New York, June 14-21, 2001. 2000 Mathematics Subject Classification. Primary 81Txx, 57-XX 18-XX 53Dxx 55-XX 37-XX 17Bxx. Library of Congress Cataloging-in-Publication Data Stony Brook Conference on Graphs and Patterns in Mathematics and Theoretical Physics (2001 : Stony Brook University) Graphs and Patterns in mathematics and theoretical physics : proceedings of the Stony Brook Conference on Graphs and Patterns in Mathematics and Theoretical Physics, June 14-21, 2001, Stony Brook University, Stony Brook, NY / Mikhail Lyubich, Leon Takhtajan, editors. p. cm. — (Proceedings of symposia in pure mathematics ; v. 73) Includes bibliographical references. ISBN 0-8218-3666-8 (alk. paper) 1. Graph Theory. 2. Mathematics-Graphic methods. 3. Physics-Graphic methods. 4. Man• ifolds (Mathematics). I. Lyubich, Mikhail, 1959- II. Takhtadzhyan, L. A. (Leon Armenovich) III. Title. IV. Series. QA166.S79 2001 511/.5-dc22 2004062363 Copying and reprinting. Material in this book may be reproduced by any means for edu• cational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledg• ment of the source is given.
    [Show full text]
  • ABSTRACT Chaos in Dendritic and Circular Julia Sets Nathan Averbeck, Ph.D. Advisor: Brian Raines, D.Phil. We Demonstrate The
    ABSTRACT Chaos in Dendritic and Circular Julia Sets Nathan Averbeck, Ph.D. Advisor: Brian Raines, D.Phil. We demonstrate the existence of various forms of chaos (including transitive distributional chaos, !-chaos, topological chaos, and exact Devaney chaos) on two families of abstract Julia sets: the dendritic Julia sets Dτ and the \circular" Julia sets Eτ , whose symbolic encoding was introduced by Stewart Baldwin. In particular, suppose one of the two following conditions hold: either fc has a Julia set which is a dendrite, or (provided that the kneading sequence of c is Γ-acceptable) that fc has an attracting or parabolic periodic point. Then, by way of a conjugacy which allows us to represent these Julia sets symbolically, we prove that fc exhibits various forms of chaos. Chaos in Dendritic and Circular Julia Sets by Nathan Averbeck, B.S., M.A. A Dissertation Approved by the Department of Mathematics Lance L. Littlejohn, Ph.D., Chairperson Submitted to the Graduate Faculty of Baylor University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved by the Dissertation Committee Brian Raines, D.Phil., Chairperson Will Brian, D.Phil. Markus Hunziker, Ph.D. Alexander Pruss, Ph.D. David Ryden, Ph.D. Accepted by the Graduate School August 2016 J. Larry Lyon, Ph.D., Dean Page bearing signatures is kept on file in the Graduate School. Copyright c 2016 by Nathan Averbeck All rights reserved TABLE OF CONTENTS LIST OF FIGURES vi ACKNOWLEDGMENTS vii DEDICATION viii 1 Preliminaries 1 1.1 Continuum Theory and Dynamical Systems . 1 1.2 Unimodal Maps .
    [Show full text]
  • ABSTRACT the Specification Property and Chaos In
    ABSTRACT The Specification Property and Chaos in Multidimensional Shift Spaces and General Compact Metric Spaces Reeve Hunter, Ph.D. Advisor: Brian E. Raines, D.Phil. Rufus Bowen introduced the specification property for maps on a compact met- ric space. In this dissertation, we consider some implications of the specification d property for Zd-actions on subshifts of ΣZ as well as on a general compact metric space. In particular, we show that if σ : X X is a continuous Zd-action with ! d a weak form of the specification property on a d-dimensional subshift of ΣZ , then σ exhibits both !-chaos, introduced by Li, and uniform distributional chaos, intro- duced by Schweizer and Smítal. The !-chaos result is further generalized for some broader, directional notions of limit sets and general compact metric spaces with uniform expansion at a fixed point. The Specification Property and Chaos in Multidimensional Shift Spaces and General Compact Metric Spaces by Reeve Hunter, B.A. A Dissertation Approved by the Department of Mathematics Lance L. Littlejohn, Ph.D., Chairperson Submitted to the Graduate Faculty of Baylor University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved by the Dissertation Committee Brian E. Raines, D.Phil., Chairperson Nathan Alleman, Ph.D. Will Brian, D.Phil. Markus Hunziker, Ph.D. David Ryden, Ph.D. Accepted by the Graduate School August 2016 J. Larry Lyon, Ph.D., Dean Page bearing signatures is kept on file in the Graduate School. Copyright c 2016 by Reeve Hunter All rights reserved TABLE OF CONTENTS LIST OF FIGURES vi ACKNOWLEDGMENTS vii DEDICATION viii 1 Introduction 1 2 Preliminaries 4 2.1 Dynamical Systems .
    [Show full text]
  • Measuring Complexity in Cantor Dynamics
    Measuring Complexity in Cantor Dynamics Karl Petersen cantorsalta2015: Dynamics on Cantor Sets CIMPA Research School, 2-13 November 2015 December 11, 2017 1 Contents Contents 2 1 Introduction 5 1.1 Preface . 5 1.2 Complexity and entropy . 5 1.3 Some definitions and notation . 5 1.4 Realizations of systems . 7 2 Asymptotic exponential growth rate 9 2.1 Topological entropy . 9 2.2 Ergodic-theoretic entropy . 9 2.3 Measure-theoretic sequence entropy . 13 2.4 Topological sequence entropy . 13 2.5 Slow entropy . 14 2.6 Entropy dimension . 17 2.7 Permutation entropy . 18 2.8 Independence entropy . 19 2.9 Sofic, Rokhlin, na¨ıve entropies . 20 2.10 Kolmogorov complexity . 23 3 Counting patterns 25 3.1 The complexity function in one-dimensional symbolic dynamics . 25 3.2 Sturmian sequences . 26 3.3 Episturmian sequences . 28 3.4 The Morse sequence . 29 3.5 In higher dimensions, tilings, groups, etc. 29 3.6 Topological complexity . 31 3.7 Low complexity, the number of ergodic measures, automorphisms . 31 3.8 Palindrome complexity . 33 3.9 Nonrepetitive complexity and Eulerian entropy . 35 3.10 Mean topological dimension . 36 3.11 Amorphic complexity via asymptotic separation numbers . 37 3.12 Inconstancy . 38 3.13 Measure-theoretic complexity . 38 3.14 Pattern complexity . 39 4 Balancing freedom and interdependence 41 4.1 Neurological intricacy . 41 4.2 Topological intricacy and average sample complexity . 43 4.3 Ergodic-theoretic intricacy and average sample complexity . 46 4.4 The average sample complexity function . 46 4.5 Computing measure-theoretic average sample complexity .
    [Show full text]
  • ONE HUNDRED YEARS of COMPLEX DYNAMICS the Subject of Complex Dynamics, That Is, the Behaviour of Orbits of Holomorphic Functions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Liverpool Repository ONE HUNDRED YEARS OF COMPLEX DYNAMICS MARY REES The subject of Complex Dynamics, that is, the behaviour of orbits of holomorphic functions, emerged in the papers produced, independently, by Fatou and Julia, almost 100 years ago. Although the subject of Dynami- cal Systems did not then have a name, the dynamical properties found for holomorphic systems, even in these early researches, were so striking, so unusually comprehensive, and yet so varied, that these systems still attract widespread fascination, 100 years later. The first distinctive feature of iter- ation of a single holomorphic map f is the partition of either the complex plane or the Riemann sphere into two sets which are totally invariant under f: the Julia set | closed, nonempty, perfect, with dynamics which might loosely be called chaotic | and its complement | open, possibly empty, but, if non-empty, then with dynamics which were completely classified by the two pioneering researchers, modulo a few simply stated open questions. Before the subject re-emerged into prominence in the 1980's, the Julia set was alternately called the Fatou set, but Paul Blanchard introduced the idea of calling its complement the Fatou set, and this was immediately universally accepted. Probably the main reason for the remarkable rise in interest in complex dynamics, about thirty-five years ago, was the parallel with the subject of Kleinian groups, and hence with the whole subject of hyperbolic geome- try. A Kleinian group acting on the Riemann sphere is a dynamical system, with the sphere splitting into two disjoint invariant subsets, with the limit set and its complement, the domain of discontinuity, having exactly similar properties to the Julia and Fatou sets.
    [Show full text]
  • Thermodynamic Formalism in Neuronal Dynamics and Spike Train Statistics
    Thermodynamic Formalism in Neuronal Dynamics and Spike Train Statistics Rodrigo Cofré ∗1, Cesar Maldonado †2, and Bruno Cessac ‡3 1CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile. 2IPICYT/División de Matemáticas Aplicadas, San Luis Potosí, Mexico 3Université Côte d’Azur, Inria, France, Inria Biovision team and Neuromod Institute November 20, 2020 Abstract The Thermodynamic Formalism provides a rigorous mathematical framework to study quantitative and qualitative aspects of dynamical systems. At its core there is a variational principle corresponding, in its simplest form, to the Maximum Entropy principle. It is used as a statistical inference procedure to represent, by specific prob- ability measures (Gibbs measures), the collective behaviour of complex systems. This framework has found applications in different domains of science.In particular, it has been fruitful and influential in neurosciences. In this article, we review how the Thermodynamic Formalism can be exploited in the field of theoretical neuroscience, as a conceptual and operational tool, to link the dynamics of interacting neurons and the statistics of action potentials from either experimental data or mathematical mod- els. We comment on perspectives and open problems in theoretical neuroscience that could be addressed within this formalism. Keywords. thermodynamic formalism; neuronal networks dynamics; maximum en- tropy principle; free energy and pressure; linear response; large deviations, ergodic theory. arXiv:2011.09512v1 [q-bio.NC] 18 Nov 2020 1 Introduction Initiated by Boltzmann [1, 2], the goal of statistical physics was to establish a link between the microscopic mechanical description of interacting particles in a gas or a fluid, and the macroscopic description provided by thermodynamics [3, 4].
    [Show full text]
  • Maximal Entropy Measures for Certain Partially Hyperbolic, Derived from Anosov Systems
    MAXIMAL ENTROPY MEASURES FOR CERTAIN PARTIALLY HYPERBOLIC, DERIVED FROM ANOSOV SYSTEMS J. BUZZI, T. FISHER, M. SAMBARINO, C. VASQUEZ´ Abstract. We show that a class of robustly transitive diffeomor- phisms originally described by Ma˜n´eare intrinsically ergodic. More precisely, we obtain an open set of diffeomorphisms which fail to be uniformly hyperbolic and structurally stable, but nevertheless have the following stability with respect to their entropy. Their topological entropy is constant and they each have a unique measure of maximal entropy with respect to which peri- odic orbits are equidistributed. Moreover, equipped with their re- spective measure of maximal entropy, these diffeomorphisms are pairwise isomorphic. We show that the method applies to several classes of systems which are similarly derived from Anosov, i.e., produced by an iso- topy from an Anosov system, namely, a mixed Ma˜n´eexample and one obtained through a Hopf bifurcation. 1. Introduction Let f be a diffeomorphism of a manifold M to itself. The diffeomor- phism f is transitive if there exists a point x ∈ M where + n Of (x)= {f (x)|n ∈ N} is dense in M. It is robustly transitive [4, Ch. 7] if there exists a neighborhood U of f in the space Diff1(M) of C1 diffeomorphisms such that each g in U is transitive. Since robust transitivity is an open condition, it is an important component of the global picture of dynamical systems [23]. Date: July 17, 2009. 2000 Mathematics Subject Classification. 37C40, 37A35, 37C15. Key words and phrases. Measures of maximal entropy, topological entropy, ro- bust ergodicity, ergodic theory, partial hyperbolicity, intrinsic ergodicity.
    [Show full text]
  • NEWSLETTER Issue: 483 - July 2019
    i “NLMS_483” — 2019/6/21 — 14:12 — page 1 — #1 i i i NEWSLETTER Issue: 483 - July 2019 50 YEARS OF MATHEMATICS EXACT AND THERMODYNAMIC AND MINE APPROXIMATE FORMALISM DETECTION COMPUTATIONS i i i i i “NLMS_483” — 2019/6/21 — 14:12 — page 2 — #2 i i i EDITOR-IN-CHIEF COPYRIGHT NOTICE Iain Moatt (Royal Holloway, University of London) News items and notices in the Newsletter may [email protected] be freely used elsewhere unless otherwise stated, although attribution is requested when reproducing whole articles. Contributions to EDITORIAL BOARD the Newsletter are made under a non-exclusive June Barrow-Green (Open University) licence; please contact the author or photog- Tomasz Brzezinski (Swansea University) rapher for the rights to reproduce. The LMS Lucia Di Vizio (CNRS) cannot accept responsibility for the accuracy of Jonathan Fraser (University of St Andrews) information in the Newsletter. Views expressed Jelena Grbic´ (University of Southampton) do not necessarily represent the views or policy Thomas Hudson (University of Warwick) of the Editorial Team or London Mathematical Stephen Huggett (University of Plymouth) Society. Adam Johansen (University of Warwick) Bill Lionheart (University of Manchester) ISSN: 2516-3841 (Print) Mark McCartney (Ulster University) ISSN: 2516-385X (Online) Kitty Meeks (University of Glasgow) DOI: 10.1112/NLMS Vicky Neale (University of Oxford) Susan Oakes (London Mathematical Society) Andrew Wade (Durham University) NEWSLETTER WEBSITE Early Career Content Editor: Vicky Neale The Newsletter is freely available electronically News Editor: Susan Oakes at lms.ac.uk/publications/lms-newsletter. Reviews Editor: Mark McCartney MEMBERSHIP CORRESPONDENTS AND STAFF Joining the LMS is a straightforward process.
    [Show full text]
  • Notices of the American Mathematical Society
    z 0 -1 ('"') I'T'1 Vl )> 3: !'T'l ?' 3: )>..., :I: Vl 0 ('"') Notices of the American Mathematical Society z s::: 3 CT ...~ z i 0 < ~ 3 November 1980, Issue 205 CT ...~ Volume 27, Number 7, Pages 577-656 ..... 1.0 Providence, Rhode Island USA 00 0 ISSN 0002-9920 CALENDAR OF AMS MEETINGS THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet· ing. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab· stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below.
    [Show full text]
  • Lecture Notes on Dynamical Systems, Chaos and Fractal Geometry
    LECTURE NOTES ON DYNAMICAL SYSTEMS, CHAOS AND FRACTAL GEOMETRY Geoffrey R. Goodson Towson University Mathematics Department 1 2 Preface These notes were created over a number of years of teaching senior seminar type courses to senior year students at Towson University and graduate courses in the Towson University Applied Mathematics Graduate Program. Originally I based the course on some of the existing text books currently available, such as [63], [22], [28] and [20], but gradually realized that these didn’t fully suit the needs of our students, so I produced my own lecture notes. However, these notes owe a debt to the above mentioned books. The first 12 chapters cover fairly standard topics in (mostly) one- dimensional dynamics and should be accessible to most upper level undergraduate students. The requirements from real analysis and topology (metric spaces) are de- veloped as the material progresses. Chapter 13 gives a (non-rigorous) introduction to the theory of substitutions (via examples) and we show how these can give rise to cer- tain types of fractals. Subsequent chapters develop the rigorous mathematical theory of substitutions and Sturmian sequences. Although there are numerous expositions of this material, most either give a non-rigorous account with no depth, or assume a level of sophistication above that of the upper level undergraduate or beginning graduate student. Our study of substitutions is purely topological and avoids any measure theory. Consequently we do not touch on some important topics of current interest such as the spectral properties of substitutions (see [49]). Some of this material owes a debt to quite recent publications in the field of dy- namical systems appearing in journals such as the American Mathematical Monthly, the College Mathematics Journal, Mathematical Intelligencer and Mathematics Mag- azine.
    [Show full text]
  • Reviewed by Thomas Ward
    Citations From References: 1 Previous Up Next Article From Reviews: 0 MR2342699 (2008i:37001) 37-02 (01A60 28D20 37-03 37A35) Katok, Anatole (1-PAS) Fifty years of entropy in dynamics: 1958–2007. J. Mod. Dyn. 1 (2007), no. 4, 545–596. This is an attractive overview of the role played by “entropy” in the study of dynamical systems since its discovery by Kolmogorov at the end of the 1950s. Several features make it a particularly interesting read. First, the author has been an active participant in the field, often very close to the most exciting and influential developments. Second, the article does not attempt to provide a (potentially indigestible) complete history shaped by time, but instead an overview exposing the mathematical story, taking full advantage of later insights and developments. Third, it is written with candour (for example, one of the many interesting footnotes records the extent to which the disjointness paper of Furstenberg in 1967 was underestimated), with a vision of great extent in time and breadth in topic, with much detailed knowledge (for example, the ergodic-theory aspect of Wiener’s monograph of 1958 was new to me), and with great authority (both mathematical and personal: the author interacted directly with many of the key contributors both in the “Moscow school” and later in the United States). The breadth of the pervasive influence of entropy is re- flected in the main sections: Early history of entropy; Isomorphism problem; Topological entropy, variational principle, symbolic dynamics; Entropy and nonuniform hyperbolicity; Entropy as a source of rigidity; Rigidity of positive entropy measures for higher-rank abelian actions.
    [Show full text]
  • GIBBS MEASURES and SYMBOLIC DYNAMICS Contents 1
    GIBBS MEASURES AND SYMBOLIC DYNAMICS SAMUEL A. HARDER Abstract. In this paper we outline the arguments put forth by Rufus Bowen in his 1975 monograph, Equilibrium States and the Ergodic theory of Anasov Diffeomorphisms. We show the existence of Gibbs measures for H¨oldercontin- uous potentials on Markov shift spaces, then use the tools of symbolic dynamics and Markov partitions to apply our results to Axiom A diffeomorphisms. Contents 1. Introduction 1 2. Gibbs Measures 3 2.1. Gibbs Measures in Finite Systems 3 2.2. Gibbs Measures for Infinite Systems 5 2.3. The Construction of Gibbs Measures 8 2.4. The Variational Principle and Equilibrium States 10 3. Symbolic Dynamics 11 3.1. Axiom A Diffeomorphisms 14 3.2. Rectangles 17 3.3. Existence of Markov Partitions 19 3.4. Encoding 21 4. SRB Measures on Anosov Diffeomorphisms 22 4.1. Physical Measures 24 5. Further Reading 24 6. Acknowledgements 24 References 24 1. Introduction In the field of Dynamical Systems we study spaces and maps on those spaces. Often we are interested in describing the behavior of a dynamical system exactly, but in many cases this is very hard to do. In the subset of Dynamical systems known as ergodic theory we introduce the tools of measure theory into dynamics. This is useful because we can obtain sta- tistical results for our dynamical systems. In ergodic theory we study invariant measures. Suppose we have a dynamical system on a space X with f : X ! X measurable. Then a measure µ is f-invariant if µ(A) = µ(f −1(A)) Date: DEADLINES: Draft AUGUST 14 and Final version AUGUST 26, 2018.
    [Show full text]