Big Data Little Help in Megafauna Mysteries

Total Page:16

File Type:pdf, Size:1020Kb

Big Data Little Help in Megafauna Mysteries COMMENT GEOSCIENCE Did the GENETICS Dark start of ARCTIC Early-career climate- EARTH OBSERVATION AI experts Anthropocene heredity science traced to science collaborations needed to map road- begin in the 1600s? p.26 asylum statistics p.28 transcend tensions p.30 building boom p.30 ROMAN UCHYTEL An artist’s impression of the extinct woolly rhinoceros (Coelodonta antiquitatis). Big data little help in megafauna mysteries Too many meta-analyses of extinctions of giant kangaroos or huge sloths use data that are poor or poorly understood, warn Gilbert J. Price and colleagues. n March, the last male northern white Was the culprit early humans who Understanding why some groups rhinoceros died. The sub-species joins a dispersed from Africa more than 75,000 succumbed while others survived could pro- long list of large land animals that have years ago? Or was it climate change? The vide insights into how modern-day species Igone extinct over the past 100,000 years. latest way to try to settle the debate involves might — or might not — survive climatic The reason for the demise of the northern meta-analyses. These attempt to link the tim- and environmental changes, and into the white rhinoceros (Ceratotherium simum ing of extinctions to shifts in the climate, or to resilience of natural ecosystems to increas- cottoni) is undisputed: poaching and land evidence of the first appearance of humans in ing anthropogenic impact. disturbance by people. By contrast, who or a particular region. Over the past five years, But in our view, the ‘big-data’ approach what caused the extinctions of mammoths, the number of meta-analyses has greatly cannot, at this point, get us closer to an enormous ground sloths and other Quater- increased (see ‘In fashion’). Many have been answer. There simply aren’t enough good- nary megafauna remains one of the most con- published in high-impact journals, and they quality data. An understanding of what drove tested topics in the historical sciences. are starting to shape the debate. the extinctions requires detailed analysis ©2018 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts rese7rv JUNEed. 2018 | VOL 558 | NATURE | 23 COMMENT on a species-by-species basis. This means investing effort into finding more fossil speci- mens and verifying the ages of those that have already been discovered using improved dating methods. It also means relating the ROMAN UCHYTEL timing of species’ existence and disappear- ance to detailed local environmental, climatic and archaeological records. HUMAN LINK For a typical meta-analysis, researchers mine the literature for dates associated with now- extinct megafauna, as well as for estimates of when humans arrived at a particular region (on the basis of archaeological and other data). In some cases, they then combine these records with global-scale palaeocli- mate data, such as those obtained from ice cores collected from the Arctic. By mapping correlations between events, investigators try to identify the dominant factor driving species losses. Over the past two decades, most of the meta-analyses that merge continental or Artist’s impression of the extinct land crocodile, a giant kangaroo and a giant wombat-like marsupial. global-scale data sets have pointed the finger at modern humans. In fact, some researchers that have never even been dated, directly or the pollen and spore fossil record. Because contend that the results are so clear that there indirectly. A 2016 study4, for instance, listed it occurs on animal dung, an abundance of is no need for further debate1. Australian animals such as the land crocodile it in a sediment core is often taken to indi- For any meta-analysis, however, the Quinkana and the giant wombat Ramsayia cate high numbers of big herbivores. Some reliability of results is largely governed by the among the megafauna thought to have investigators assume that a decrease in the ‘GIGO’ principle: garbage in, garbage out. In existed in the past 100,000 years. The fos- appearance of the fungus over time and our view, most of these analyses depend on sils of these species have never been dated9. its eventual disappearance from the fossil questionable data, making the results hard (More than 25 of Australia’s megafaunal spe- record signal the extinction of megafauna11. to interpret at best. Six key problems under- cies, or around 30%, have never been dated, Yet Sporormiella lives on the excrement of mine many of the studies conducted so far. simply because no one has done the work.) a vast range of both big and small animals, including mammals and birds, herbivores and Outdated geochronological information. Insufficient data. Some meta-analyses take even some carnivores12. Its abundance is also Models frequently use data from studies that the last appearance of a species in the fossil affected by factors such as climate and water have been super- record to be the time when the animal went flow. Thus, on its own, levels of Sporormiella seded. For instance, “With good data, extinct5. In the rare cases where hundreds in a pollen core can’t provide information during the 1980s, models could of samples have been found, for instance about which species were present at any one radiocarbon dat- provide crucial for mammoths and mastodons, a species’ time, or in what numbers. ing of species such insights about disappearance from the fossil record could as the Eurasian large-scale well signal its demise. Yet where only a few Insufficient scrutiny. Lastly, long lists of woolly rhinoceros changes.” specimens exist, the last appearance in the extinct species (frequently just names and (Coelodonta antiq- fossil record might have little bearing on the numbers in supplementary materials) uitatis) suggested that it survived well into timing of the extinction. often do not receive the necessary level of the Holocene — perhaps until as recently A step in the right direction are probabilis- scrutiny. This has led to some unfortunate as 3,600 years ago2. But refinements in dat- tic models of extinction times. These incor- errors. The authors of at least two studies4,13 ing methods have shown that the rhinos had porate a degree of error associated with the have argued, for instance, that Homo sapiens actually disappeared by about 14,000 years age of specimens, based in part on the qual- caused the demise of giant marsupials such ago3. Some of the most recent big-data stud- ity of the methods used to date them. Again, as Euryzygoma dunense and Euowenia grata. ies still use erroneous early dates for the rhino4 the robustness of the results depends on the These were extinct for millions of years before and other species5. quality of the data fed in. At this point, very Homo sapiens even appeared; they are known few of the species that went extinct over the only from the Pliocene, the period 5.3 million Contested dates. In other cases, the dates past 100,000 years are associated with reliable to 2.6 million years ago. Another paper14 sug- associated with certain species are still in dates10. (In our view, the cave lion (Panthera gested that the genus Macropus went extinct question. For instance, researchers first esti- spelaea), woolly rhino and woolly mammoth in Australia some 40,000 years ago. In fact, mated the age of the elephant-like Stegodon (Mammuthus primigenius) are among the Macropus is alive and kicking: it includes Aus- trigonocephalus not by dating the fossils handful of species for which sufficient data tralia’s extant kangaroos. themselves, but by dating fossils from other exist to enable a modelling approach.) animals collected from deposits more than Arbitrary definition. Megafauna are 100 kilometres away6. Other investigators Problematic proxies. In the absence of fossil commonly defined as Quaternary ter- have flagged problems associated with using bones, some researchers have used proxy restrial vertebrates with a mass of at least inferred ages7, yet these continue to be fed data to test megafaunal extinction hypo- 44 kilograms — roughly 100 pounds. This into meta-analyses8. theses. For instance, the coprophilous fun- is a nice, round cut-off, but it is essentially In some cases, ages are assigned to species gus Sporormiella is a common component of arbitrary. Also, in some cases, ‘megafauna’ 24 | NATURE | VOL 558 | 7 JUNE 2018©2018 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. ©2018 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. COMMENT are not so mega. For instance, they could IN FASHION of years ago. This is thanks to various include extinct terrestrial vertebrates that Meta-analyses are increasingly being used to study advances, such as combined U-series and are larger than their extant cousins but that the drivers of past extinctions of big animals. electron-spin resonance dating. Other weigh considerably less than 44 kilograms. emerging techniques, such as the extrac- SOURCE: G. PRICE An extinct relative of the modern-day Aus- = 1 paper tion and analysis of ancient DNA, can shed tralian echidna — Megalibgwilia ramsayi light on changes to the population size of — is considered to be megafauna, even now-extinct species. Several studies have though it weighed only around 15 kilo- used such approaches to demonstrate that grams when it existed (until at least around 1997 2002 2007 2012 2017 populations of taxa, from giant Irish elk 100,000 years ago). (Megaloceros giganteus)17 to the Beringian *Studies included are those that have modelled large data sets of 18 In other words, megafauna are highly published ages. steppe bison (Bison priscus) , plummeted biologically and ecologically diverse, with many thousands of years before their ulti- several species separated from each other by or in the deposition of sand dunes, might mate extinction, apparently because of dete- hundreds of millions of years of evolution.
Recommended publications
  • Megafauna Extinction, Tree Species Range Reduction, and Carbon Storage in Amazonian Forests
    Ecography 39: 194–203, 2016 doi: 10.1111/ecog.01587 © 2015 The Authors. Ecography © 2015 Nordic Society Oikos Subject Editor: Yadvinder Mahli. Editor-in-Chief: Nathan J. Sanders. Accepted 27 September 2015 Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests Christopher E. Doughty, Adam Wolf, Naia Morueta-Holme, Peter M. Jørgensen, Brody Sandel, Cyrille Violle, Brad Boyle, Nathan J. B. Kraft, Robert K. Peet, Brian J. Enquist, Jens-Christian Svenning, Stephen Blake and Mauro Galetti C. E. Doughty ([email protected]), Environmental Change Inst., School of Geography and the Environment, Univ. of Oxford, South Parks Road, Oxford, OX1 3QY, UK. – A. Wolf, Dept of Ecology and Evolutionary Biology, Princeton Univ., Princeton, NJ 08544, USA. – N. Morueta-Holme, Dept of Integrative Biology, Univ. of California – Berkeley, CA 94720, USA. – B. Sandel, J.-C. Svenning and NM-H, Section for Ecoinformatics and Biodiversity, Dept of Bioscience, Aarhus Univ., Ny Munkegade 114, DK-8000 Aarhus C, Denmark. – P. M. Jørgensen, Missouri Botanical Garden, PO Box 299, St Louis, MO 63166-0299, USA. – C. Violle, CEFE UMR 5175, CNRS – Univ. de Montpellier – Univ. Paul-Valéry Montpellier – EPHE – 1919 route de Mende, FR-34293 Montpellier Cedex 5, France. – B. Boyle and B. J. Enquist, Dept of Ecology and Evolutionary Biology, Univ. of Arizona, Tucson, AZ 85721, USA. – N. J. B. Kraft, Dept of Biology, Univ. of Maryland, College Park, MD 20742, USA. BJE also at: The Santa Fe inst., 1399 Hyde Park Road, Santa Fe, NM 87501, USA. – R. K. Peet, Dept of Biology, Univ. of North Carolina, Chapel Hill, NC 27599-3280, USA.
    [Show full text]
  • Evolution and Extinction of the Giant Rhinoceros Elasmotherium Sibiricum Sheds Light on Late Quaternary Megafaunal Extinctions
    ARTICLES https://doi.org/10.1038/s41559-018-0722-0 Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions Pavel Kosintsev1, Kieren J. Mitchell2, Thibaut Devièse3, Johannes van der Plicht4,5, Margot Kuitems4,5, Ekaterina Petrova6, Alexei Tikhonov6, Thomas Higham3, Daniel Comeskey3, Chris Turney7,8, Alan Cooper 2, Thijs van Kolfschoten5, Anthony J. Stuart9 and Adrian M. Lister 10* Understanding extinction events requires an unbiased record of the chronology and ecology of victims and survivors. The rhi- noceros Elasmotherium sibiricum, known as the ‘Siberian unicorn’, was believed to have gone extinct around 200,000 years ago—well before the late Quaternary megafaunal extinction event. However, no absolute dating, genetic analysis or quantita- tive ecological assessment of this species has been undertaken. Here, we show, by accelerator mass spectrometry radiocarbon dating of 23 individuals, including cross-validation by compound-specific analysis, that E. sibiricum survived in Eastern Europe and Central Asia until at least 39,000 years ago, corroborating a wave of megafaunal turnover before the Last Glacial Maximum in Eurasia, in addition to the better-known late-glacial event. Stable isotope data indicate a dry steppe niche for E. sibiricum and, together with morphology, a highly specialized diet that probably contributed to its extinction. We further demonstrate, with DNA sequencing data, a very deep phylogenetic split between the subfamilies Elasmotheriinae and Rhinocerotinae that includes all the living rhinoceroses, settling a debate based on fossil evidence and confirming that the two lineages had diverged by the Eocene. As the last surviving member of the Elasmotheriinae, the demise of the ‘Siberian unicorn’ marked the extinction of this subfamily.
    [Show full text]
  • The Asymmetry in the Great American Biotic Interchange in Mammals Is Consistent with Differential Susceptibility to Mammalian Predation
    Coversheet This is the accepted manuscript (post-print version) of the article. Contentwise, the accepted manuscript version is identical to the final published version, but there may be differences in typography and layout. How to cite this publication Please cite the final published version: Faurby, S. and Svenning, J.-C. (2016), The asymmetry in the Great American Biotic Interchange in mammals is consistent with differential susceptibility to mammalian predation. Global Ecol. Biogeogr., 25: 1443–1453. doi:10.1111/geb.12504 Publication metadata Title: The asymmetry in the Great American Biotic Interchange in mammals is consistent with differential susceptibility to mammalian predation Author(s): Faurby, S. and Svenning, J.-C. Journal: Global Ecology and Biogeography DOI/Link: https://doi.org/10.1111/geb.12504 Document version: Accepted manuscript (post-print) This is the peer reviewed version of the following article: [Faurby, S. and Svenning, J.-C. (2016), The asymmetry in the Great American Biotic Interchange in mammals is consistent with differential susceptibility to mammalian predation. Global Ecol. Biogeogr., 25: 1443–1453. doi:10.1111/geb.12504], which has been published in final form at [https://doi.org/10.1111/geb.12504]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. General Rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
    [Show full text]
  • Variable Impact of Late-Quaternary Megafaunal Extinction in Causing
    Variable impact of late-Quaternary megafaunal SPECIAL FEATURE extinction in causing ecological state shifts in North and South America Anthony D. Barnoskya,b,c,1, Emily L. Lindseya,b, Natalia A. Villavicencioa,b, Enrique Bostelmannd,2, Elizabeth A. Hadlye, James Wanketf, and Charles R. Marshalla,b aDepartment of Integrative Biology, University of California, Berkeley, CA 94720; bMuseum of Paleontology, University of California, Berkeley, CA 94720; cMuseum of Vertebrate Zoology, University of California, Berkeley, CA 94720; dRed Paleontológica U-Chile, Laboratoria de Ontogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile; eDepartment of Biology, Stanford University, Stanford, CA 94305; and fDepartment of Geography, California State University, Sacramento, CA 95819 Edited by John W. Terborgh, Duke University, Durham, NC, and approved August 5, 2015 (received for review March 16, 2015) Loss of megafauna, an aspect of defaunation, can precipitate many megafauna loss, and if so, what does this loss imply for the future ecological changes over short time scales. We examine whether of ecosystems at risk for losing their megafauna today? megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We Approach compare ecological impacts of late-Quaternary megafauna extinction The late-Quaternary impact of losing 70–80% of the megafauna in five American regions: southwestern Patagonia, the Pampas, genera in the Americas (19) would be expected to trigger biotic northeastern United States, northwestern United States, and Berin- transitions that would be recognizable in the fossil record in at gia. We find that major ecological state shifts were consistent with least two respects.
    [Show full text]
  • Neanderthal Hunting Activity Pack
    Insights into Neanderthal hunting An activity pack for 3-6 year olds Authors: Dr Karen Ruebens & Dr Geoff M Smith Illustrations: Dr Anna Goldfield This activity pack is aimed at children between 3 and 6 years old (preliteracy, Early Years Foundation Stage up to Early Years 3). It can be used in the classroom as well as at home. It aims to introduce kids to the lifeways and hunting strategies of Neanderthals based on the most recent scientific discoveries through a series of hands-on activities (colouring, cutting, connect the dots, memory game). About the authors: Dr. Karen Ruebens About the illustrator: reconstructs Neanderthal behaviour by studying the Dr. Anna Goldfield is an archaeologist, different types of stone tools illustrator, and science communicator they made across Europe. who loves thinking about life in the past. She writes about archaeology and the human story for Sapiens.org and Dr. Geoff M Smith identifies hosts The Dirt, a podcast bringing the animal bones found at stories from anthropology and Neanderthal sites and looks archaeology to listeners of all ages and for traces of hunting and backgrounds. butchery activities. Watch Karen and Geoff talk about Neanderthal hunting: https://neanderthalseminars.wixsite.com/home/videos 1 Today we are the only type of humans alive. In the past there were many different types of humans living at the same time. One of these, the Neanderthals, lived a long, long time ago (300,000 to 40,000 years ago to be exact), long before there were even houses, shops and cars. Colour this group of Neanderthals.
    [Show full text]
  • Megafauna Extinction
    Episode 15 Teacher Resource 2nd June 2020 Megafauna Extinction 1. Before watching the BTN story, record what you know about Students will learn more about Australian megafauna and megafauna. investigate why they became 2. What is megafauna? extinct. 3. About how many years ago did megafauna exist in Australia? a. 4,000 b. 40,000 c. 400,000 Science – Year 6 The growth and survival of living 4. Complete the following sentence. A Diprotodon was a giant things are affected by physical _________________. conditions of their environment. 5. What did palaeontologist Dr Scott Hocknull and his team discover? Science – Year 7 6. Where did they make the discovery? Scientific knowledge has changed peoples’ understanding of the 7. What did they use to create images of what the megafauna might world and is refined as new have looked like? evidence becomes available. 8. Give some examples of the megafauna species they discovered. Interactions between organisms, 9. What might have caused megafauna to become extinct? including the effects of human 10. What did you learn watching the BTN story? activities can be represented by food chains and food webs. What do you know about megafauna? As a class discuss the BTN Megafauna Extinction story and ask students to record what they learnt watching the story. Record any questions they have. Here are some questions they can use to help guide their discussion. • What does the term megafauna mean? • When did megafauna exist? • How do we know they existed? • Why did megafauna grow so big? • What might have caused Australia’s megafauna to die out? Glossary Students will brainstorm a list of key words and terms that relate to the BTN Megafauna Extinction story.
    [Show full text]
  • Isotopic Evidence for Diet and Subsistence Pattern of the Saint-Ce´Saire I Neanderthal: Review and Use of a Multi-Source Mixing Model
    Journal of Human Evolution 49 (2005) 71e87 Isotopic evidence for diet and subsistence pattern of the Saint-Ce´saire I Neanderthal: review and use of a multi-source mixing model Herve´Bocherens a,b,*, Dorothe´e G. Drucker c, Daniel Billiou d, Maryle` ne Patou-Mathis e, Bernard Vandermeersch f a Institut des Sciences de l’Evolution, UMR 5554, Universite´ Montpellier 2, Place E. Bataillon, F-34095 Montpellier cedex 05, France b PNWRC, Canadian Wildlife Service, Environment Canada, 115 Perimeter Road, Saskatoon, Saskatchewan, S7N 0X4 Canada c PNWRC, Canadian Wildlife Service, Environment Canada, 115 Perimeter Road, Saskatoon, Saskatchewan, S7N 0X4 Canada d Laboratoire de Bioge´ochimie des Milieux Continentaux, I.N.A.P.G., EGER-INRA Grignon, URM 7618, 78026 Thiverval-Grignon, France e Institut de Pale´ontologie Humaine, 1 rue Rene´ Panhard, 75 013 Paris, France f C/Nun˜ez de Balboa 4028001 Madrid, Spain Received 10 December 2004; accepted 16 March 2005 Abstract The carbon and nitrogen isotopic abundances of the collagen extracted from the Saint-Ce´saire I Neanderthal have been used to infer the dietary behaviour of this specimen. A review of previously published Neanderthal collagen isotopic signatures with the addition of 3 new collagen isotopic signatures from specimens from Les Pradelles allows us to compare the dietary habits of 5 Neanderthal specimens from OIS 3 and one specimen from OIS 5c. This comparison points to a trophic position as top predator in an open environment, with little variation through time and space. In addition, a comparison of the Saint-Ce´saire I Neanderthal with contemporaneous hyaenas has been performed using a multi-source mixing model, modified from Phillips and Gregg (2003, Oecologia 127, 171).
    [Show full text]
  • Alaska's Indigenous Muskoxen: a History
    The Second International Arctic Ungulate Conference, Fairbanks, Alaska, 13-17 August, 1995. Alaska's indigenous muskoxen: a history Peter C. Lent Box 101, Glenwood, NM 88039, U.S.A. Abstract: Muskoxen (Ovibos moschatus) were widespread in northern and interior Alaska in the late Pleistocene but were never a dominant component of large mammal faunas. After the end of the Pleistocene they were even less common. Most skeletal finds have come from the Arctic Coastal Plain and the foothills of the Brooks Range. Archaeological evi• dence, mainly from the Point Barrow area, suggests that humans sporadically hunted small numbers of muskoxen over about 1500 years from early Birnirk culture to nineteenth century Thule culture. Skeletal remains found near Kivalina represent the most southerly Holocene record for muskoxen in Alaska. Claims that muskoxen survived into the early nineteenth century farther south in the Selawik - Buckland River region are not substantiated. Remains of muskox found by Beechey's party in Eschscholtz Bay in 1826 were almost certainly of Pleistocene age, not recent. Neither the introduction of firearms nor overwintering whalers played a significant role in the extinction of Alaska's muskoxen. Inuit hunters apparently killed the last muskoxen in northwestern Alaska in the late 1850s. Several accounts suggest that remnant herds survived in the eastern Brooks Range into the 1890s. However, there is no physical evidence ot independent confirmation of these reports. Oral traditions tegarding muskoxen survived among the Nunamiut and the Chandalar Kutchin. With human help, muskoxen have successfully recolonized their former range from the Seward Peninsula north, across the Arctic Slope and east into the northern Yukon Territory.
    [Show full text]
  • Megafauna in the Earth System
    Ecography 39: 99–108, 2016 doi: 10.1111/ecog.02156 © 2015 The Authors. Ecography © 2015 Nordic Society Oikos Megafauna in the Earth system Felisa A. Smith, Christopher E. Doughty, Yadvinder Malhi, Jens-Christian Svenning and John Terborgh F. A. Smith ([email protected]), Dept of Biology, Univ. of New Mexico, Albuquerque, NM 87131, USA. – C. E. Doughty and Y. Malhi, Environmental Change Inst., School of Geography and the Environment, Univ. of Oxford, OX1 3QY, UK. – J.-C. Svenning, Section for Ecoinformatics and Biodiversity, Dept of Bioscience, Aarhus Univ., DK-8000 Aarhus C, Denmark. – J. Terborgh, Center for Tropical Conservation, Nicholas School of the Environment and Earth Sciences, Duke Univ., Durham, NC 27708, USA. Understanding the complex role of large-bodied mammals in contemporary ecosystems and the likely consequences of their continued decline is essential for effective management of the remaining wild areas on Earth. The very largest animals are in particular peril owing to a disastrous combination of continued hunting or poaching, habitat alterations, and loss of habitat. Because these threats are ongoing, conservation biologists may not be able to wait for the results of long-term studies before proposing potential mitigation strategies. A recent conference on ‘Megafauna and ecosystem function: from the Pleistocene to the Anthropocene’ at Oxford Univ. brought together paleontologists, conservation and environmental scientists and others who share an interest in characterizing the influence of large animals on ecosystems. Integrating his- torical perspectives of Late Pleistocene ecosystems when large-bodied animals were still widespread, with modern studies of areas with varying levels of intact megafauna, the aim was to develop a more holistic understanding of the consequences of the ongoing decline of large-bodied animals around the Earth.
    [Show full text]
  • Woolly Rhinoceros Fossil Jaw
    Museum objects are irreplaceable evidence of our history and heritage and can really bring your lessons to life. Each of these downloadable resources explores one of the objects in our collection. For even more ideas, discover our loan boxes at http://schoolloans.readingmuseum.org.uk/ and search our amazing online database at http://collections.readingmuseum.org.uk/ Woolly Rhinoceros fossil jaw Follow this link to online database to see the object’s full record Object: Woolly rhino jaw fragments Museum object number: REDMG: 1997.15.1 Material: Fossil jaw (bone and teeth) Size: 220 mm wide and 160mm wide Date: circa 26,000 BCE The woolly rhinoceros had a thick fur coat and lived in Europe during the Last Ice Age. They could reach 2 metres in height, five metres in length and weigh 3.5 tonnes. These fossilised pieces of the woolly rhino’s jaws, found in Pleistocene cave deposits at Kent's Cavern (Torquay), show the big and powerful teeth of these prehistoric animals. Woolly rhinos (Coelodonta antiquitatis) are an extinct rhino species that lived in open grassland and tundra. The woolly rhinoceros was related to the modern rhino. Some woolly rhino species (nick-named unicorns) had one horn, but these jaws belonged to a species with two horns. Rhino’s horn is made from keratin (the protein in hair and fingernails). The front horn was large, curved and could also be used in fights with other animals. Rhinos held their heads low to the ground and used their horns to push snow aside. They were herbivores, the high-crowned molars, the largest teeth were adapted to chewing the tough steppe grasses that were spread across Ice Age Europe.
    [Show full text]
  • The Brazilian Megamastofauna of the Pleistocene/Holocene Transition and Its Relationship with the Early Human Settlement of the Continent
    Earth-Science Reviews 118 (2013) 1–10 Contents lists available at SciVerse ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev The Brazilian megamastofauna of the Pleistocene/Holocene transition and its relationship with the early human settlement of the continent Alex Hubbe a,b,⁎, Mark Hubbe c,d, Walter A. Neves a a Laboratório de Estudos Evolutivos Humanos, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, SP. 05508-090, Brazil b Instituto do Carste, Rua Barcelona 240/302, Belo Horizonte, MG. 30360-260, Brazil c Department of Anthropology, The Ohio State University, 174W 18th Avenue, Columbus, OH. 43210, United States d Instituto de Investigaciones Arqueológicas y Museo, Universidad Católica del Norte, Calle Gustavo LePaige 380, San Pedro de Atacama, 141-0000, Chile article info abstract Article history: One of the most intriguing questions regarding the Brazilian Late Quaternary extinct megafauna and Homo Received 4 October 2012 sapiens is to what extent they coexisted and how humans could have contributed to the former's extinction. Accepted 18 January 2013 The aim of this article is to review the chronological and archaeological evidences of their coexistence in Available online 25 January 2013 Brazil and to evaluate the degree of direct interaction between them. Critical assessment of the Brazilian megafauna chronological data shows that several of the late Pleistoscene/early Holocene dates available so Keywords: far cannot be considered reliable, but the few that do suggest that at least two species (Catonyx cuvieri, Quaternary Mammals ground sloth; Smilodon populator, saber-toothed cat) survived until the beginning of the Holocene in Southeast Extinction Brazil.
    [Show full text]
  • Recycling of Badger/Fox Burrows in Late Pleistocene Loess by Hyenas
    Hindawi Publishing Corporation Journal of Geological Research Volume 2013, Article ID 190795, 31 pages http://dx.doi.org/10.1155/2013/190795 Review Article Recycling of Badger/Fox Burrows in Late Pleistocene Loess by Hyenas at the Den Site Bad Wildungen-Biedensteg (NW, Germany): Woolly Rhinoceros Killers and Scavengers in a Mammoth Steppe Environment of Europe Cajus Diedrich PaleoLogic Private Research Institute, Petra Bezruce 96, 26751 Zdice, Czech Republic Correspondence should be addressed to Cajus Diedrich; [email protected] Received 15 September 2012; Accepted 27 January 2013 Academic Editor: Atle Nesje Copyright © 2013 Cajus Diedrich. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Late Pleistocene (MIS 5c-d) Ice Age spotted hyena open air den and bone accumulation site Bad Wildungen-Biedensteg (Hesse, NW, Germany) represents the first open air loess fox/badger den site in Europe, which must have been recycled by Crocuta crocuta spelaea (Goldfuss, 1823) as a birthing den. Badger and fox remains, plus remains of their prey (mainly hare), have been found within the loess. Hyena remains from that site include parts of cub skeletons which represent 10% of the megafauna bones. Also a commuting den area existed, which was well marked by hyena faecal pellets. Most of the hyena prey bones expose crack, bite, and nibbling marks, especially the most common bones, the woolly rhinoceros Coelodonta antiquitatis (NISP = 32%). The large amount of woolly rhinoceros bones indicate hunting/scavenging specializing on this large prey by hyenas.
    [Show full text]