The Biharmonic Mean of the Divisors of N

Total Page:16

File Type:pdf, Size:1020Kb

The Biharmonic Mean of the Divisors of N THE BIHARMONIC MEAN MARCO ABRATE, STEFANO BARBERO, UMBERTO CERRUTI, NADIR MURRU University of Turin, Department of Mathematics Via Carlo Alberto 10, Turin, Italy [email protected], [email protected] [email protected], [email protected] Abstract We briefly describe some well–known means and their properties, focusing on the relationship with integer sequences. In particular, the harmonic numbers, de- riving from the harmonic mean, motivate the definition of a new kind of mean that we call the biharmonic mean. The biharmonic mean allows to introduce the bihar- monic numbers, providing a new characterization for primes. Moreover, we highlight some interesting divisibility properties and we characterize the semi–prime biharmonic numbers showing their relationship with linear recurrent sequences that solve certain Diophantine equations. Keyword: arithmetic mean, divisibility, geometric mean, harmonic mean, harmonic numbers, inte- ger sequences. AMS Subject Classification: 11N80, 26E60. 1 INTRODUCTION The need to explore the Nature and establish from direct observations its rules, encouraged the ancient thinkers in finding appropriate mathematical tools, able to extrapolate numerical data. The arithmetic mean is one of the arXiv:1601.03081v1 [math.NT] 12 Jan 2016 oldest quantities introduced for this purpose, in order to find an unique ap- proximate value of some physical quantity from the empirical data. It has been probably used for the first time in the third century B.C., by the ancient Babylonian astronomers, in their studies on the positions and motions of ce- lestial bodies. The mathematical relevance of the arithmetic mean has been enhanced by the Greek astronomer Hipparchus (190–120 B.C.). Some other Greek mathematicians, following the Pythagoric ideals, have also introduced and rigorously defined further kinds of means. For example, Archytas (428– 360 B.C.) named the harmonic mean and used it in the theory of music and in the algorithms for doubling the cube. His disciple Eudoxus (408–355 B.C.) 1 Biharmonic mean introduced the contraharmonic mean in his studies on proportions. At the same time as the practical use of many numerical means in various sciences, a deep exploration of their arithmetic and geometric properties took place dur- ing the centuries. The book of Bullen [2] is a classical reference for a good survey about the various kinds of means and their history. In this paper, we especially focus our attention on some arithmetic aspects related to the most used means in many fields of mathematics. We also define a new kind of mean, showing how it also allows to give a new characterization for the prime numbers. We start recalling the classical definitions and properties of the involved means. Definition 1. Let a1, a2, . , at be t positive real numbers, then we define their arithmetic mean • a1 + a2 + + at (a , a , . , at)= · · · ; (1) A 1 2 t geometric mean • t (a , a , . , at)= √a a at; (2) G 1 2 1 2 · · · harmonic mean • − 1 1 1 1 1 (a1, a2, . , at)= + + + ; (3) H t a a · · · at 1 2 contraharmonic mean • 2 2 2 a1 + a2 + + at (a1, a2, . , at)= · · · . (4) C a + a + + at 1 2 · · · We have the well–known inequalities (a , a , . , at) (a , a , . , at) (a , a , . , at) (a , a , . , at). H 1 2 ≤ G 1 2 ≤A 1 2 ≤C 1 2 A very interesting problem is to determine whether at least one of these equali- ties holds. If we have only two positive real numbers a and b, we always obtain the following relations: (a, b)= ( (a, b), (a, b)), (5) A A H C 2 Biharmonic mean (a, b)= ( (a, b), (a, b)). (6) G G H A In 1948 Oystein Ore ([4], [5]) introduced the idea of the harmonic number finding related properties and a quite surprising answer to this question. He evaluated the four means of all the divisors of a positive integer n. Let us denote the set of divisors of n as D(n)= d , d ,...,dt . { 1 2 } For the sake of simplicity we pose A(n) = (d , d ,...,dt), A 1 2 G(n) = (d , d ,...,dt), G 1 2 H(n) = (d , d ,...,dt), H 1 2 C(n) = (d , d ,...,dt). C 1 2 Recalling that the divisor function is t x σx(n)= di , x N (7) i ∈ X=1 the first immediate result of Ore can be summarized in the following theorem. Theorem 1. σ (n) A(n)= 1 , (8) σ0(n) G(n)= √n, (9) nσ (n) H(n)= 0 , (10) σ1(n) σ (n) C(n)= 2 . (11) σ1(n) Proof. We give a proof only for equalities (10) and (9) since (8) and (11) clearly arise from (1) and (4), respectively. From equation (3) clearly − 1 1 1 1 1 H(n)= + + + t d d · · · dt 1 2 1 1 1 and the sum d + d + + d , when reduced to the least common denominator 1 2 · · · t n, gives as numerator σ1(n) (the sum of all divisors of n). Moreover, since 3 Biharmonic mean t = σ0(n) (the number of all divisors of n), relation (10) easily follows. Now, to prove equation (9), we start from (2) σ0(n) t σ (n) G(n)= d d dt = 0 di 1 2 v · · · u i u Y=1 p t distinguishing two cases: n = m2 or n = m2. When n = m2, n has an even 6 n 6 σ (n) di i ,..., 0 number of divisors, so we multiply by di for all = 1 2 , finding σ n σ (n) 0( ) 0 2 i=1 di = n 2 . On the other hand, if n = m , then t = σ0(n) is odd. n Similarly, we multiply di by , but in this case we can do this only when Q di di = m, finding 6 σ0(n) σ n − σ n − 0( ) 1 2 0( ) 1 σ (n) di = n 2 m = (m ) 2 m = m 0 . i Y=1 Thus σ0(n) σ n σ (n) 0( ) σ n G(n)= 0 di = m 0( ) = m = √n. v u i u Y=1 p t A straightforward consequence, observed by Ore in [4], shows that a similar equality to (6) holds taking into account elements of D(n). Corollary 1. For any positive integer n G(n)= (H(n), A(n)). (12) G Proof. By previous theorem, we clearly obtain nσ (n) σ (n) (H(n), A(n)) = H(n) A(n)= 0 1 = √n = G(n). G · s σ1(n) σ0(n) p Equality (12) can be interpreted also as a formal identity. For example when n = p2q, with p and q primes, D(n)= 1,p,q,pq,p2,p2q and, by (12), { } we have (1,p,q,pq,p2,p2q)= ( (1,p,q,pq,p2,p2q), (1,p,q,pq,p2,p2q)). (13) G G H A 4 Biharmonic mean The astonishing fact is that this equality also holds substituting p and q with any other couple of positive real numbers. For example, if we use p = √2 and q = π, we obtain the identity (1, √2, π, √2 π, 2, 2π)= ( (1, √2, π, √2 π, 2, 2π), (1, √2, π, √2 π, 2, 2π)). G G H A which is not so immediate. As previously observed, for randomly chosen pos- itive distinct real numbers a1, . , at the equality (a , a , . , at)= ( (a , a , . , at), (a , a , . , at)), G 1 2 G H 1 2 A 1 2 is false. The second question is pretty natural: when do the means of the divisors of an integer n also give a result which is an integer? The case of G(n) is not so interesting because G(n) is an integer if and only if n is a square. The integers n for which A(n) is an integer form the sequence A003601 in OEIS [6]: 1, 3, 5, 6, 7, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 27, 29, 30, 31, 33, 35, 37,... (14) These integers are the so–called arithmetic numbers. Moreover, every integer n giving an integer value for C(n) belongs to the sequence A020487: 1, 4, 9, 16, 20, 25, 36, 49, 50, 64, 81, 100, 117, 121, 144, 169, 180, 196, 200, 225,.... The most interesting case is related to the harmonic mean. Ore provided the following definition. Definition 2. A positive integer n is called a harmonic (divisor) number (or Ore number) if H(n) is an integer. The first harmonic numbers are 1, 6, 28, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 18620, 27846, 30240,... and they form the sequence A001599. The corresponding values of H(n) are listed in A001600: 1, 2, 3, 5, 6, 5, 8, 9, 11, 10, 7, 15, 15, 14, 17, 24,.... Ore also proved that all perfect numbers are harmonic numbers. In the next section, moving from the above beautiful properties, we will define a new kind of mean which we will call a biharmonic mean. We will also define the biharmonic numbers, which provide a new characterization for prime numbers. Moreover, the composite biharmonic numbers will lead to the study of interesting divisibility properties, involving consecutive terms of linear recurrent sequences and solutions of Diophantine equations. 5 Biharmonic mean 2 BIHARMONIC MEAN AND BIHARMONIC NUMBERS Definition 3. For positive real numbers a1, a2, . , at, we define the bihar- monic mean as (a1, a2, . , at)+ (a1, a2, . , at) (a , a , . , at)= ( (a , . , at), (a , . , at)) = H C B 1 2 A H 1 C 1 2 which corresponds to the arithmetic mean of the harmonic and contraharmonic means of ai’s.
Recommended publications
  • Gpindex: Generalized Price and Quantity Indexes
    Package ‘gpindex’ August 4, 2021 Title Generalized Price and Quantity Indexes Version 0.3.4 Description A small package for calculating lots of different price indexes, and by extension quan- tity indexes. Provides tools to build and work with any type of bilateral generalized-mean in- dex (of which most price indexes are), along with a few important indexes that don't be- long to the generalized-mean family. Implements and extends many of the meth- ods in Balk (2008, ISBN:978-1-107-40496-0) and ILO, IMF, OECD, Euro- stat, UN, and World Bank (2020, ISBN:978-1-51354-298-0) for bilateral price indexes. Depends R (>= 3.5) Imports stats, utils License MIT + file LICENSE Encoding UTF-8 URL https://github.com/marberts/gpindex LazyData true Collate 'helper_functions.R' 'means.R' 'weights.R' 'price_indexes.R' 'operators.R' 'utilities.R' NeedsCompilation no Author Steve Martin [aut, cre, cph] Maintainer Steve Martin <[email protected]> Repository CRAN Date/Publication 2021-08-04 06:10:06 UTC R topics documented: gpindex-package . .2 contributions . .3 generalized_mean . .8 lehmer_mean . 12 logarithmic_means . 15 nested_mean . 18 offset_prices . 20 1 2 gpindex-package operators . 22 outliers . 23 price_data . 25 price_index . 26 transform_weights . 33 Index 37 gpindex-package Generalized Price and Quantity Indexes Description A small package for calculating lots of different price indexes, and by extension quantity indexes. Provides tools to build and work with any type of bilateral generalized-mean index (of which most price indexes are), along with a few important indexes that don’t belong to the generalized-mean family. Implements and extends many of the methods in Balk (2008, ISBN:978-1-107-40496-0) and ILO, IMF, OECD, Eurostat, UN, and World Bank (2020, ISBN:978-1-51354-298-0) for bilateral price indexes.
    [Show full text]
  • New Formulas for Semi-Primes. Testing, Counting and Identification
    New Formulas for Semi-Primes. Testing, Counting and Identification of the nth and next Semi-Primes Issam Kaddouraa, Samih Abdul-Nabib, Khadija Al-Akhrassa aDepartment of Mathematics, school of arts and sciences bDepartment of computers and communications engineering, Lebanese International University, Beirut, Lebanon Abstract In this paper we give a new semiprimality test and we construct a new formula for π(2)(N), the function that counts the number of semiprimes not exceeding a given number N. We also present new formulas to identify the nth semiprime and the next semiprime to a given number. The new formulas are based on the knowledge of the primes less than or equal to the cube roots 3 of N : P , P ....P 3 √N. 1 2 π( √N) ≤ Keywords: prime, semiprime, nth semiprime, next semiprime 1. Introduction Securing data remains a concern for every individual and every organiza- tion on the globe. In telecommunication, cryptography is one of the studies that permits the secure transfer of information [1] over the Internet. Prime numbers have special properties that make them of fundamental importance in cryptography. The core of the Internet security is based on protocols, such arXiv:1608.05405v1 [math.NT] 17 Aug 2016 as SSL and TSL [2] released in 1994 and persist as the basis for securing dif- ferent aspects of today’s Internet [3]. The Rivest-Shamir-Adleman encryption method [4], released in 1978, uses asymmetric keys for exchanging data. A secret key Sk and a public key Pk are generated by the recipient with the following property: A message enciphered Email addresses: [email protected] (Issam Kaddoura), [email protected] (Samih Abdul-Nabi) 1 by Pk can only be deciphered by Sk and vice versa.
    [Show full text]
  • Inequalities Among Complementary Means of Heron Mean and Classical Means
    Advances and Applications in Mathematical Sciences Volume 20, Issue 7, May 2021, Pages 1249-1258 © 2021 Mili Publications INEQUALITIES AMONG COMPLEMENTARY MEANS OF HERON MEAN AND CLASSICAL MEANS AMBIKA M. HEJIB, K. M. NAGARAJA, R. SAMPATHKUMAR and B. S. VENKATARAMANA Department of Mathematics R N S Institute of Technology Uttarahalli-Kengeri Main Road R Rnagar post, Bengaluru-98, Karnataka, India E-mail: [email protected] [email protected] Department of Mathematics J.S.S. Academy of Technical Education Uttarahalli-Kengeri Main Road Bengaluru-60, Karnataka, India E-mail: [email protected] Department of Mathematics K S Institute of Technology Kannakapura Main Road Bengaluru - 560 109, Karnataka, India E-mail: [email protected] Abstract In this paper, the complementary means of arithmetic, geometric, harmonic and contra harmonic with respect to Heron mean are defined and verified them as means. Further, inequalities among them and classical means are established. I. Introduction In Pythagorean school ten Greek means are defined based on proportion, the following are the familiar means in literature and are given as follows: 2010 Mathematics Subject Classification: Primary 26D10, secondary 26D15. Keywords: Complementary mean, Heron mean, Classical means. Received September 7, 2020; Accepted February 18, 2021 1250 HEJIB, NAGARAJA, SAMPATHKUMAR and VENKATARAMANA u v For two real numbers u and v which are positive, Au , v 1 1 ; 1 1 1 1 2 2 2 2u1v1 u1 v1 Gu1, v1 u1v1 ; Hu1, v1 and Cu1, v1 . These are u1 v1 u1 v1 called Arithmetic, Geometric, Harmonic and Contra harmonic mean respectively. The Hand book of Means and their Inequalities, by Bullen [1], gave the tremendous work on Mathematical means and the corresponding inequalities involving huge number of means.
    [Show full text]
  • Digital Image Processing Chapter 5: Image Restoration Concept of Image Restoration
    Digital Image Processing Chapter 5: Image Restoration Concept of Image Restoration Image restoration is to restore a degraded image back to the original image while image enhancement is to manipulate the image so that it is suitable for a specific application. Degradation model: g(x, y) = f (x, y) ∗h(x, y) +η(x, y) where h(x,y) is a system that causes image distortion and η(x,y) is noise. (Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2nd Edition. Concept of Image Restoration g(x, y) = f (x, y) ∗h(x, y) +η(x, y) We can perform the same operations in the frequency domain, where convolution is replaced by multiplication, and addition remains as addition, because of the linearity of the Fourier transform. G(u,v) = F(u,v)H(u,v) + N(u,v) If we knew the values of H and N we could recover F by writing the above equation as N(u,v) F(u,v) = G(u,v) − H(u,v) However, as we shall see, this approach may not be practical. Even though we may have some statistical information about the noise, we will not know the value of n(x,y) or N(u,v) for all, or even any, values. A s we ll, di vidi ng b y H(i, j) will cause diff ulti es if there are values which are close to, or equal to, zero. Noise WdfiibddiihiilWe may define noise to be any degradation in the image signal, caused by external disturbance.
    [Show full text]
  • Some New Results on Odd Perfect Numbers
    Pacific Journal of Mathematics SOME NEW RESULTS ON ODD PERFECT NUMBERS G. G. DANDAPAT,JOHN L. HUNSUCKER AND CARL POMERANCE Vol. 57, No. 2 February 1975 PACIFIC JOURNAL OF MATHEMATICS Vol. 57, No. 2, 1975 SOME NEW RESULTS ON ODD PERFECT NUMBERS G. G. DANDAPAT, J. L. HUNSUCKER AND CARL POMERANCE If ra is a multiply perfect number (σ(m) = tm for some integer ί), we ask if there is a prime p with m = pan, (pa, n) = 1, σ(n) = pα, and σ(pa) = tn. We prove that the only multiply perfect numbers with this property are the even perfect numbers and 672. Hence we settle a problem raised by Suryanarayana who asked if odd perfect numbers neces- sarily had such a prime factor. The methods of the proof allow us also to say something about odd solutions to the equation σ(σ(n)) ~ 2n. 1* Introduction* In this paper we answer a question on odd perfect numbers posed by Suryanarayana [17]. It is known that if m is an odd perfect number, then m = pak2 where p is a prime, p Jf k, and p = a z= 1 (mod 4). Suryanarayana asked if it necessarily followed that (1) σ(k2) = pa , σ(pa) = 2k2 . Here, σ is the sum of the divisors function. We answer this question in the negative by showing that no odd perfect number satisfies (1). We actually consider a more general question. If m is multiply perfect (σ(m) = tm for some integer t), we say m has property S if there is a prime p with m = pan, (pa, n) = 1, and the equations (2) σ(n) = pa , σ(pa) = tn hold.
    [Show full text]
  • On Types of Elliptic Pseudoprimes
    journal of Groups, Complexity, Cryptology Volume 13, Issue 1, 2021, pp. 1:1–1:33 Submitted Jan. 07, 2019 https://gcc.episciences.org/ Published Feb. 09, 2021 ON TYPES OF ELLIPTIC PSEUDOPRIMES LILJANA BABINKOSTOVA, A. HERNANDEZ-ESPIET,´ AND H. Y. KIM Boise State University e-mail address: [email protected] Rutgers University e-mail address: [email protected] University of Wisconsin-Madison e-mail address: [email protected] Abstract. We generalize Silverman's [31] notions of elliptic pseudoprimes and elliptic Carmichael numbers to analogues of Euler-Jacobi and strong pseudoprimes. We inspect the relationships among Euler elliptic Carmichael numbers, strong elliptic Carmichael numbers, products of anomalous primes and elliptic Korselt numbers of Type I, the former two of which we introduce and the latter two of which were introduced by Mazur [21] and Silverman [31] respectively. In particular, we expand upon the work of Babinkostova et al. [3] on the density of certain elliptic Korselt numbers of Type I which are products of anomalous primes, proving a conjecture stated in [3]. 1. Introduction The problem of efficiently distinguishing the prime numbers from the composite numbers has been a fundamental problem for a long time. One of the first primality tests in modern number theory came from Fermat Little Theorem: if p is a prime number and a is an integer not divisible by p, then ap−1 ≡ 1 (mod p). The original notion of a pseudoprime (sometimes called a Fermat pseudoprime) involves counterexamples to the converse of this theorem. A pseudoprime to the base a is a composite number N such aN−1 ≡ 1 mod N.
    [Show full text]
  • EEM 463 Introduction to Image Processing Week 5: Filtering in the Frequency Domain
    EEM 463 Introduction to Image Processing Week 5: Image Restoration and Reconstruction Fall 2013 Instructor: Hatice Çınar Akakın, Ph.D. [email protected] Anadolu University 12.11.2013 Image Restoration • Image restoration: recover an image that has been degraded by using a prior knowledge of the degradation phenomenon. • Model the degradation and applying the inverse process in order to recover the original image. • The principal goal of restoration techniques is to improve an image in some predefined sense. • Although there are areas of overlap, image enhancement is largely a subjective process, while restoration is for the most part an objective process. 12.11.2013 A Model of the Image Degradation/Restoration Process • The degraded image in the spatial domain: 푔 푥, 푦 = ℎ 푥, 푦 ∗ 푓 푥, 푦 + 휂 푥, 푦 • Frequency domain representation 퐺 푢, 푣 = 퐻 푢, 푣 퐹 푢, 푣 + 푁(푢, 푣) 12.11.2013 Noise Models • The principal sources of noise in digital images arise during image acquisition and/or transmission • Light levels and sensor temperature during acquisition • Lightning or other atmospheric disturbance in wireless network during transmission • White noise: Fourier spectrum this noise is constant • carryover from the physical proporties of White light, which contains nearly all frequencies in the visible spectrum in equal proportions. • With the exception of spatially periodic noise, we assume • Noise is independent of spatial coordinates • Noise is uncorrelated with respect to the image itself 12.11.2013 Gaussian Noise • The pdf of a Gaussian random variable, z, is given by 1 2 푝 푧 = 푒−(푧−푧) /2휎2 2휋휎 where z represents intensity, 푧 is the mean (average) value of z , and σ is its standard deviation.
    [Show full text]
  • Computer Vision & Digital Image Processing Outline
    Computer Vision & Digital Image Processing Image Restoration and Reconstruction II Electrical & Computer Engineering Dr. D. J. Jackson Lecture 12-1 Outline • Periodic noise • Estimation of noise parameters • Restoration in the presence of noise only –spatial filtering Electrical & Computer Engineering Dr. D. J. Jackson Lecture 12-2 Periodic noise • Periodic noise typically arises from interference during image acquisition • Spatially dependent noise type • Can be effectively reduced via frequency domain filtering Electrical & Computer Engineering Dr. D. J. Jackson Lecture 12-3 Sample periodic images and their spectra 50 50 100 100 150 150 200 200 250 250 50 100 150 200 250 50 100 150 200 250 50 50 100 100 150 150 200 200 250 250 50 100 150 200 250 50 100 150 200 250 Electrical & Computer Engineering Dr. D. J. Jackson Lecture 12-4 Sample periodic images and their spectra 50 50 100 100 150 150 200 200 250 250 50 100 150 200 250 50 100 150 200 250 122 124 126 128 130 132 134 136 105 110 115 120 125 130 135 140 145 150 Electrical & Computer Engineering Dr. D. J. Jackson Lecture 12-5 Estimation of noise parameters • Noise parameters can often be estimated by observing the Fourier spectrum of the image – Periodic noise tends to produce frequency spikes • Parameters of noise PDFs may be known (partially) from sensor specification – Can still estimate them for a particular imaging setup – One method • Capture a set of “flat” images from a known setup (i.e. a uniform gray surface under uniform illumination) • Study characteristics of resulting image(s) to develop an indicator of system noise Electrical & Computer Engineering Dr.
    [Show full text]
  • On Distribution of Semiprime Numbers
    ISSN 1066-369X, Russian Mathematics (Iz. VUZ), 2014, Vol. 58, No. 8, pp. 43–48. c Allerton Press, Inc., 2014. Original Russian Text c Sh.T. Ishmukhametov, F.F. Sharifullina, 2014, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, No. 8, pp. 53–59. On Distribution of Semiprime Numbers Sh. T. Ishmukhametov* and F. F. Sharifullina** Kazan (Volga Region) Federal University, ul. Kremlyovskaya 18, Kazan, 420008 Russia Received January 31, 2013 Abstract—A semiprime is a natural number which is the product of two (possibly equal) prime numbers. Let y be a natural number and g(y) be the probability for a number y to be semiprime. In this paper we derive an asymptotic formula to count g(y) for large y and evaluate its correctness for different y. We also introduce strongly semiprimes, i.e., numbers each of which is a product of two primes of large dimension, and investigate distribution of strongly semiprimes. DOI: 10.3103/S1066369X14080052 Keywords: semiprime integer, strongly semiprime, distribution of semiprimes, factorization of integers, the RSA ciphering method. By smoothness of a natural number n we mean possibility of its representation as a product of a large number of prime factors. A B-smooth number is a number all prime divisors of which are bounded from above by B. The concept of smoothness plays an important role in number theory and cryptography. Possibility of using the concept in cryptography is based on the fact that the procedure of decom- position of an integer into prime divisors (factorization) is a laborious computational process requiring significant calculating resources [1, 2].
    [Show full text]
  • Cracking RSA with Various Factoring Algorithms Brian Holt
    Cracking RSA with Various Factoring Algorithms Brian Holt 1 Abstract For centuries, factoring products of large prime numbers has been recognized as a computationally difficult task by mathematicians. The modern encryption scheme RSA (short for Rivest, Shamir, and Adleman) uses products of large primes for secure communication protocols. In this paper, we analyze and compare four factorization algorithms which use elementary number theory to assess the safety of various RSA moduli. 2 Introduction The origins of prime factorization can be traced back to around 300 B.C. when Euclid's theorem and the unique factorization theorem were proved in his work El- ements [3]. For nearly two millenia, the simple trial division algorithm was used to factor numbers into primes. More efficient means were studied by mathemeticians during the seventeenth and eighteenth centuries. In the 1640s, Pierre de Fermat devised what is known as Fermat's factorization method. Over one century later, Leonhard Euler improved upon Fermat's factorization method for numbers that take specific forms. Around this time, Adrien-Marie Legendre and Carl Gauss also con- tributed crucial ideas used in modern factorization schemes [3]. Prime factorization's potential for secure communication was not recognized until the twentieth century. However, economist William Jevons antipicated the "one-way" or ”difficult-to-reverse" property of products of large primes in 1874. This crucial con- cept is the basis of modern public key cryptography. Decrypting information without access to the private key must be computationally complex to prevent malicious at- tacks. In his book The Principles of Science: A Treatise on Logic and Scientific Method, Jevons challenged the reader to factor a ten digit semiprime (now called Jevon's Number)[4].
    [Show full text]
  • Which Polynomials Represent Infinitely Many Primes?
    Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 14, Number 1 (2018), pp. 161-180 © Research India Publications http://www.ripublication.com/gjpam.htm Which polynomials represent infinitely many primes? Feng Sui Liu Department of Mathematics, NanChang University, NanChang, China. Abstract In this paper a new arithmetical model has been found by extending both basic operations + and × into finite sets of natural numbers. In this model we invent a recursive algorithm on sets of natural numbers to reformulate Eratosthene’s sieve. By this algorithm we obtain a recursive sequence of sets, which converges to the set of all natural numbers x such that x2 + 1 is prime. The corresponding cardinal sequence is strictly increasing. Test that the cardinal function is continuous with respect to an order topology, we immediately prove that there are infinitely many natural numbers x such that x2 + 1 is prime. Based on the reasoning paradigm above we further prove a general result: if an integer valued polynomial of degree k represents at least k +1 positive primes, then this polynomial represents infinitely many primes. AMS subject classification: Primary 11N32; Secondary 11N35, 11U09,11Y16, 11B37. Keywords: primes in polynomial, twin primes, arithmetical model, recursive sieve method, limit of sequence of sets, Ross-Littwood paradox, parity problem. 1. Introduction Whether an integer valued polynomial represents infinitely many primes or not, this is an intriguing question. Except some obvious exceptions one conjectured that the answer is yes. Example 1.1. Bouniakowsky [2], Schinzel [35], Bateman and Horn [1]. In this paper a recursive algorithm or sieve method adds some exotic structures to the sets of natural numbers, which allow us to answer the question: which polynomials represent infinitely many primes? 2 Feng Sui Liu In 1837, G.L.
    [Show full text]
  • Variations on Euclid's Formula for Perfect Numbers
    1 2 Journal of Integer Sequences, Vol. 13 (2010), 3 Article 10.3.1 47 6 23 11 Variations on Euclid’s Formula for Perfect Numbers Farideh Firoozbakht Faculty of Mathematics & Computer Science University of Isfahan Khansar Iran [email protected] Maximilian F. Hasler Laboratoire CEREGMIA Univ. Antilles-Guyane Schoelcher Martinique [email protected] Abstract We study several families of solutions to equations of the form σ(n)= An + B(n), where B is a function that may depend on properties of n. 1 Introduction We recall that perfect numbers (sequence A000396 of Sloane’s Encyclopedia [8]) are defined as solutions to the equation σ(x) = 2 x, where σ(x) denotes the sum of all positive divisors of x, including 1 and x itself. Euclid showed around 300 BCE [2, Proposition IX.36] that q−1 q all numbers of the form x = 2 Mq, where Mq = 2 1 is prime (A000668), are perfect numbers. − While it is still not known whether there exist any odd perfect numbers, Euler [3] proved a converse of Euclid’s proposition, showing that there are no other even perfect numbers (cf. A000043, A006516). (As a side note, this can also be stated by saying that the even perfect 1 numbers are exactly the triangular numbers (A000217(n) = n(n + 1)/2) whose indices are Mersenne primes A000668.) One possible generalization of perfect numbers is the multiply or k–fold perfect numbers (A007691, A007539) such that σ(x) = k x [1, 7, 9, 10]. Here we consider some modified equations, where a second term is added on the right hand side.
    [Show full text]