The Theory of Filtrations of Subalgebras, Standardness and Independence

Total Page:16

File Type:pdf, Size:1020Kb

The Theory of Filtrations of Subalgebras, Standardness and Independence The theory of filtrations of subalgebras, standardness and independence Anatoly M. Vershik∗ 24.01.2017 In memory of my friend Kolya K. (1933{2014) \Independence is the best quality, the best word in all languages." J. Brodsky. From a personal letter. Abstract The survey is devoted to the combinatorial and metric theory of fil- trations, i. e., decreasing sequences of σ-algebras in measure spaces or decreasing sequences of subalgebras of certain algebras. One of the key notions, that of standardness, plays the role of a generalization of the no- tion of the independence of a sequence of random variables. We discuss the possibility of obtaining a classification of filtrations, their invariants, and various links to problems in algebra, dynamics, and combinatorics. Bibliography: 101 titles. Contents 1 Introduction 3 1.1 A simple example and a difficult question . .3 1.2 Three languages of measure theory . .5 1.3 Where do filtrations appear? . .6 1.4 Finite and infinite in classification problems; standardness as a generalization of independence . .9 arXiv:1705.06619v1 [math.DS] 18 May 2017 1.5 A summary of the paper . 12 2 The definition of filtrations in measure spaces 13 2.1 Measure theory: a Lebesgue space, basic facts . 13 2.2 Measurable partitions, filtrations . 14 2.3 Classification of measurable partitions . 16 ∗St. Petersburg Department of Steklov Mathematical Institute; St. Petersburg State Uni- versity Institute for Information Transmission Problems. E-mail: [email protected]. Par- tially supported by the Russian Science Foundation (grant No. 14-11-00581). 1 2.4 Classification of finite filtrations . 17 2.5 Filtrations we consider and how one can define them . 20 2.6 The equivalence relation associated with a filtration, cocycles and associated measures . 23 3 Tail filtrations in graded graphs and Markov chains 25 3.1 Path spaces of graded graphs (Bratteli diagrams) and Markov compacta . 25 3.2 Trees of paths . 26 3.3 An equipment of a multigraph and cotransition probabilities . 27 3.4 The Markov compactum of paths . 28 3.5 A cocycle of an equipped graph . 30 3.6 Examples of graded graphs and Markov compacta . 31 4 The Markov realization of locally finite filtrations 33 4.1 The theorem on a Markov realization . 33 4.2 Remarks on Markov models . 35 5 Standardness, criteria, finite isomorphism 37 5.1 The minimal model of a filtration . 37 5.2 Minimality of graphs, standardness, and the general standardness criterion . 40 5.3 The combinatorial standardness criterion . 42 5.4 The standardness criterion for an arbitrary filtration . 45 5.5 The martingale form of the standardness criterion and interme- diate conditions . 47 5.6 The spaces of filtrations, Markov compacta, and graded multigraphs 49 6 Nonstandardness: examples and a sketch of a general theory 51 6.1 Graphs of random walks over orbits of groups, graphs of words . 52 6.2 Walks over orbits of a free group . 54 6.3 Walks over orbits of free Abelian groups . 57 6.4 Lacunarity . 58 6.5 Scaled and secondary entropy . 59 6.6 A project of classification of nonstandard filtrations . 60 7 Projective limits of simplices, invariant measures, and the ab- solute of a graph 63 7.1 Projective limits of simplices, extreme points . 63 7.2 The fundamental problem: description of the absolute . 68 7.3 Several examples. Relation to the theory of locally finite filtrations 69 8 Historical commentary 71 9 Acknowledgements 74 2 1 Introduction This survey deals with an area in which measure theory is intertwined with combinatorics and asymptotic analysis; its applications to dynamics, algebra, and other problems will be partly touched upon in this paper, as well as in subsequent publications. The survey contains a lot of new problems from the dynamic theory of graphs and representation theory of groups and algebras. 1.1 A simple example and a difficult question We begin with an elementary example that illustrates the notion of filtration and problems of combinatorial measure theory. Consider the space of all one-sided sequences of zeros and ones: 1 X = fxngn=1 ; xn = 0 _ 1; n = 1; 2;:::; i. e., the infinite product of the two-point space. We will regard X as a dyadic (Cantor-like) compactum in the weak topology, and also as a Borel space. In X we introduce the \tail" equivalence relation and the tail filtration of σ- 0 subalgebras of sets. Namely, two sequences fxkg, fxkg are 0 { n-equivalent if xk+n = xk+n for all k > 0; and { equivalent with respect to the tail equivalence relation if they are n- equivalent for some n. Denote by An, n = 0; 1; 2;::: , the σ-algebra of Borel subsets in X that along with every point x contain all points n-equivalent to x. In other words, An, n = 0; 1; 2;::: , is the σ-subalgebra of Borel sets determined by conditions on the coordinates with indices ≥ n. The decreasing sequence A0 ⊃ A1 ⊃ A2 ⊃ · · · is called the tail Borel filtration of the space X regarded as an infinite direct product, 1 Y X = [0; 1]: n=1 If we endow the space X with an arbitrary Borel measure µ, then the same sequence of σ-subalgebras, which are now understood as σ-subalgebras of classes of sets coinciding mod 0 (with respect to the given measure µ), provides an example of a filtration in a standard measure space. For instance, take µ to be the Bernoulli measure equal to the infinite prod- uct of the measures θ = (1=2; 1=2); the resulting filtration is called the dyadic Bernoulli filtration. By the famous Kolmogorov's zero{one (\all-or-none") law, T the intersection An is the trivial σ-algebra N, which contains only two classes n of sets, of measure either zero or one. 3 For every positive integer n, the space (X; µ) can be represented as a direct product of measure spaces: n Y (X; µ) = f(0; 1); θg × (Xn; µn); 1 1 Y where (Xn; µn) = f(0; 1); θg. n+1 Now we are going to state the main problem. Assume that we have a dyadic compactum X0 with a Borel probability measure µ0 satisfying Kolmogorov's zero{one law, and for every positive integer n there is an isomorphism of measure spaces n 0 0 Y 0 0 (X ; µ ) ' f(0; 1); θg × (Xn; µn); 1 0 0 where (Xn; µn) are some measure spaces. Can we claim that there exists an isomorphism T of measure spaces, T (X0; µ0) = 0 0 (X; µ), for which T (Xn; µ ) = (Xn; µ) for all n? In the language to be described below, this is the question of whether a finitely Bernoulli dyadic ergodic filtration is unique up to isomorphism. It is similar to the following question from the theory of infinite tensor prod- ucts of C∗-algebras and perhaps looks even more natural. Consider a C∗-algebra A and assume that there is a decreasing sequence ∗ An ⊂ A of C -subalgebras of A whose intersection is the space of constants, T An = fConstg, such that for all n n ⊗n A ' M2(C) ⊗ An (here ' means an isomorphism of C∗-algebras). Is it true that there exists an isomorphism 1 Y⊗ A ' M2(C) 1 1 Y ⊗ that sends An to the subalgebra M2(C) ⊂ A for all n? n+1 These problems were raised by the author about fifty years ago. In the origi- nal terms, the first of them looked as follows: is it true that every filtration such that its finite segments are isomorphic to finite segments of a Bernoulli filtration and the intersection of all its σ-algebras is trivial is isomorphic to a Bernoulli filtration? The problem originated from ergodic theory, as we will discuss below. In [60], both questions were answered in the negative; moreover, it turned out that there is a continuum of measure spaces (respectively, C∗-algebras) with dyadic structures that are finitely isomorphic but pairwise nonisomorphic glob- ally. This discovery launched an important field, which, however, still has not 4 gained sufficient attention: the asymptotic theory of filtrations. For this survey, we have selected the most important facts, both known for a long time and new, and, most importantly, new problems in this area. The theory of filtrations has applications to measure theory, random processes, and dynamical systems, as well as to representation theory of groups and algebras. The main problem concerns the complexity of the asymptotic behavior at infinity of monotone se- quences of algebras and a possible classification of such sequences. The second question, about tensor products of C∗-algebras, will be considered in another paper; here we have mentioned it to emphasize the parallelism between prob- lems from very different areas of mathematics. Both these problems belong to asymptotic algebraic analysis. Conceptually new ideas, as compared with the previous research on filtra- tions, appeared in connection with the theory of graded graphs (Bratteli dia- grams); this is one of the central topics of this survey. Apparently, this connec- tion has not been noticed earlier, though the tail filtration is a most important object in the theory of AF-algebras. From the standpoint of the theory of graded graphs, filtrations were considered in the author's recent paper [81]; here, on the contrary, we focus on the measure-theoretic aspect of the problem and use notions and techniques related to graphs. 1.2 Three languages of measure theory Let us return to the measure-theoretic statement of the first problem. If we consider the algebra L1(X; µ) of all classes of measurable bounded functions on the space (X; µ) coinciding mod 0, we obtain a filtration of subalgebras: 1 L (X; µ) ≡ A0 ⊃ A1 ⊃ A2 ⊃ · · · ; 1 where An is the subalgebra in L (X; µ) consisting of all functions that depend on coordinates with indices ≥ n (n = 0; 1; 2;::: ).
Recommended publications
  • Notes on Elementary Martingale Theory 1 Conditional Expectations
    . Notes on Elementary Martingale Theory by John B. Walsh 1 Conditional Expectations 1.1 Motivation Probability is a measure of ignorance. When new information decreases that ignorance, it changes our probabilities. Suppose we roll a pair of dice, but don't look immediately at the outcome. The result is there for anyone to see, but if we haven't yet looked, as far as we are concerned, the probability that a two (\snake eyes") is showing is the same as it was before we rolled the dice, 1/36. Now suppose that we happen to see that one of the two dice shows a one, but we do not see the second. We reason that we have rolled a two if|and only if|the unseen die is a one. This has probability 1/6. The extra information has changed the probability that our roll is a two from 1/36 to 1/6. It has given us a new probability, which we call a conditional probability. In general, if A and B are events, we say the conditional probability that B occurs given that A occurs is the conditional probability of B given A. This is given by the well-known formula P A B (1) P B A = f \ g; f j g P A f g providing P A > 0. (Just to keep ourselves out of trouble if we need to apply this to a set f g of probability zero, we make the convention that P B A = 0 if P A = 0.) Conditional probabilities are familiar, but that doesn't stop themf fromj g giving risef tog many of the most puzzling paradoxes in probability.
    [Show full text]
  • An Application of Probability Theory in Finance: the Black-Scholes Formula
    AN APPLICATION OF PROBABILITY THEORY IN FINANCE: THE BLACK-SCHOLES FORMULA EFFY FANG Abstract. In this paper, we start from the building blocks of probability the- ory, including σ-field and measurable functions, and then proceed to a formal introduction of probability theory. Later, we introduce stochastic processes, martingales and Wiener processes in particular. Lastly, we present an appli- cation - the Black-Scholes Formula, a model used to price options in financial markets. Contents 1. The Building Blocks 1 2. Probability 4 3. Martingales 7 4. Wiener Processes 8 5. The Black-Scholes Formula 9 References 14 1. The Building Blocks Consider the set Ω of all possible outcomes of a random process. When the set is small, for example, the outcomes of tossing a coin, we can analyze case by case. However, when the set gets larger, we would need to study the collections of subsets of Ω that may be taken as a suitable set of events. We define such a collection as a σ-field. Definition 1.1. A σ-field on a set Ω is a collection F of subsets of Ω which obeys the following rules or axioms: (a) Ω 2 F (b) if A 2 F, then Ac 2 F 1 S1 (c) if fAngn=1 is a sequence in F, then n=1 An 2 F The pair (Ω; F) is called a measurable space. Proposition 1.2. Let (Ω; F) be a measurable space. Then (1) ; 2 F k SK (2) if fAngn=1 is a finite sequence of F-measurable sets, then n=1 An 2 F 1 T1 (3) if fAngn=1 is a sequence of F-measurable sets, then n=1 An 2 F Date: August 28,2015.
    [Show full text]
  • Mathematical Finance an Introduction in Discrete Time
    Jan Kallsen Mathematical Finance An introduction in discrete time CAU zu Kiel, WS 13/14, February 10, 2014 Contents 0 Some notions from stochastics 4 0.1 Basics . .4 0.1.1 Probability spaces . .4 0.1.2 Random variables . .5 0.1.3 Conditional probabilities and expectations . .6 0.2 Absolute continuity and equivalence . .7 0.3 Conditional expectation . .8 0.3.1 σ-fields . .8 0.3.2 Conditional expectation relative to a σ-field . 10 1 Discrete stochastic calculus 16 1.1 Stochastic processes . 16 1.2 Martingales . 18 1.3 Stochastic integral . 20 1.4 Intuitive summary of some notions from this chapter . 27 2 Modelling financial markets 36 2.1 Assets and trading strategies . 36 2.2 Arbitrage . 39 2.3 Dividend payments . 41 2.4 Concrete models . 43 3 Derivative pricing and hedging 48 3.1 Contingent claims . 49 3.2 Liquidly traded derivatives . 50 3.3 Individual perspective . 54 3.4 Examples . 56 3.4.1 Forward contract . 56 3.4.2 Futures contract . 57 3.4.3 European call and put options in the binomial model . 57 3.4.4 European call and put options in the standard model . 61 3.5 American options . 63 2 CONTENTS 3 4 Incomplete markets 70 4.1 Martingale modelling . 70 4.2 Variance-optimal hedging . 72 5 Portfolio optimization 73 5.1 Maximizing expected utility of terminal wealth . 73 6 Elements of continuous-time finance 80 6.1 Continuous-time theory . 80 6.2 Black-Scholes model . 84 Chapter 0 Some notions from stochastics 0.1 Basics 0.1.1 Probability spaces This course requires a decent background in stochastics which cannot be provided here.
    [Show full text]
  • 4 Martingales in Discrete-Time
    4 Martingales in Discrete-Time Suppose that (Ω, F, P) is a probability space. Definition 4.1. A sequence F = {Fn, n = 0, 1,...} is called a filtration if each Fn is a sub-σ-algebra of F, and Fn ⊆ Fn+1 for n = 0, 1, 2,.... In other words, a filtration is an increasing sequence of sub-σ-algebras of F. For nota- tional convenience, we define ∞ ! [ F∞ = σ Fn n=1 and note that F∞ ⊆ F. Definition 4.2. If F = {Fn, n = 0, 1,...} is a filtration, and X = {Xn, n = 0, 1,...} is a discrete-time stochastic process, then X is said to be adapted to F if Xn is Fn-measurable for each n. Note that by definition every process {Xn, n = 0, 1,...} is adapted to its natural filtration {Fn, n = 0, 1,...} where Fn = σ(X0,...,Xn). The intuition behind the idea of a filtration is as follows. At time n, all of the information about ω ∈ Ω that is known to us at time n is contained in Fn. As n increases, our knowledge of ω also increases (or, if you prefer, does not decrease) and this is captured in the fact that the filtration consists of an increasing sequence of sub-σ-algebras. Definition 4.3. A discrete-time stochastic process X = {Xn, n = 0, 1,...} is called a martingale (with respect to the filtration F = {Fn, n = 0, 1,...}) if for each n = 0, 1, 2,..., (a) X is adapted to F; that is, Xn is Fn-measurable, 1 (b) Xn is in L ; that is, E|Xn| < ∞, and (c) E(Xn+1|Fn) = Xn a.s.
    [Show full text]
  • The Entropy Function for Non Polynomial Problems and Its Applications for Turing Machines
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2020 doi:10.20944/preprints202001.0360.v1 The entropy function for non polynomial problems and its applications for turing machines. Matheus Santana Harvard Extension School [email protected] Abstract We present a general process for the halting problem, valid regardless of the time and space computational complexity of the decision problem. It can be interpreted as the maximization of entropy for the utility function of a given Shannon-Kolmogorov-Bernoulli process. Applications to non-polynomials prob- lems are given. The new interpretation of information rate proposed in this work is a method that models the solution space boundaries of any decision problem (and non polynomial problems in general) as a communication channel by means of Information Theory. We described a sort method that order objects using the intrinsic information content distribution for the elements of a constrained solution space - modeled as messages transmitted through any communication systems. The limits of the search space are defined by the Kolmogorov-Chaitin complexity of the sequences encoded as Shannon-Bernoulli strings. We conclude with a discussion about the implications for general decision problems in Turing machines. Keywords: Computational Complexity, Information Theory, Machine Learning, Computational Statistics, Kolmogorov-Chaitin Complexity; Kelly criterion 1. Introduction Consider a Shanon-Bernoulli process P defined as a sequence of independent binary random variables X1, X2, X3 . Xn. For each element the value can be Preprint submitted to Journal of Information and Computation January 29, 2020 © 2020 by the author(s). Distributed under a Creative Commons CC BY license.
    [Show full text]
  • A Structural Approach to Solving the 6Th Hilbert Problem Udc 519.21
    Teor Imovr.taMatem.Statist. Theor. Probability and Math. Statist. Vip. 71, 2004 No. 71, 2005, Pages 165–179 S 0094-9000(05)00656-3 Article electronically published on December 30, 2005 A STRUCTURAL APPROACH TO SOLVING THE 6TH HILBERT PROBLEM UDC 519.21 YU. I. PETUNIN AND D. A. KLYUSHIN Abstract. The paper deals with an approach to solving the 6th Hilbert problem based on interpreting the field of random events as a partially ordered set endowed with a natural order of random events obtained by formalization and modification of the frequency definition of probability. It is shown that the field of events forms an atomic generated, complete, and completely distributive Boolean algebra. The probability distribution of the field of events generated by random variables is studied. It is proved that the probability distribution generated by random variables is not a measure but only a finitely additive function of events in the case of continuous random variables (both rational- and real-valued). Introduction In 1900 in his lecture [1] David Hilbert formulated the problem of axiomatization of probability theory. Here is the corresponding quote from his lecture: “The investigations on the foundations of geometry suggest the problem: To treat in the same manner, by means of axioms, those physical sciences in which mathematics plays an important part; in the first rank are the theory of probabilities and mechanics. As to the axioms of the theory of probabilities, it seems to me desirable that their logical investigation should be accompanied by a rigorous and satisfactory development of the method of mean values in mathematical physics, and in particular in the kinetic theory of gases.” As is well known [2], there is no generally accepted solution of this problem so far.
    [Show full text]
  • MTH 664 Lectures 24 - 27
    MTH 664 0 MTH 664 Lectures 24 - 27 Yevgeniy Kovchegov Oregon State University MTH 664 1 Topics: • Martingales. • Filtration. Stopping times. • Probability harmonic functions. • Optional Stopping Theorem. • Martingale Convergence Theorem. MTH 664 2 Conditional expectation. Consider a probability space (Ω, F,P ) and a random variable X ∈ F. Let G ⊆ F be a smaller σ-algebra. Definition. Conditional expectation E[X|G] is a unique func- tion from Ω to R satisfying: 1. E[X|G] is G-measurable 2. R E[X|G] dP (ω) = R X dP (ω) for all A ∈ G A A The existence and uniqueness of E[X|G] comes from the Radon-Nikodym theorem. Lemma. If X ∈ G, Y (ω) ∈ L1(Ω,P ), and X(ω) · Y (ω) ∈ L1(Ω,P ), then E[X · Y |G] = X · E[Y |G] MTH 664 3 Conditional expectation. Consider a probability space (Ω, F,P ) and a random variable X ∈ F. Lemma. If G ⊆ F, then EE[X|G] = E[X] Let G1 ⊆ G2 ⊆ F be smaller sub-σ-algebras. Lemma. E E[X|G2] | G1 = E[X|G1] Proof. For any A ∈ G1 ⊆ G2, Z Z E E[X|G2] | G1 (ω) dP (ω) = E[X|G2](ω) dP (ω) A A Z Z = X(ω) dP (ω) = E[X|G1](ω) dP (ω) A A MTH 664 4 Filtration. Definition. Consider an arbitrary linear ordered set T :A sequence of sub-σ-algebras {Ft}t∈T of F is said to be a filtration if Fs ⊆ Ft a.s. ∀s < t ∈ T Example. Consider a sequence of random variables X1,X2,..
    [Show full text]
  • An Enlargement of Filtration Formula with Applications to Multiple Non
    Finance and Stochastics manuscript No. (will be inserted by the editor) An enlargement of filtration formula with applications to multiple non-ordered default times Monique Jeanblanc · Libo Li · Shiqi Song Received: date / Accepted: date Abstract In this work, for a reference filtration F, we develop a method for computing the semimartingale decomposition of F-martingales in a specific type of enlargement of F. As an application, we study the progressive en- largement of F with a sequence of non-ordered default times and we show how to deduce results concerning the first-to-default, k-th-to-default, k-out-of- n-to-default or the all-to-default events. In particular, using this method, we compute explicitly the semimartingale decomposition of F-martingales under the absolute continuity condition of Jacod. Keywords Enlargement of filtration · Non-ordered default times · Reduced form credit risk modeling · Semimartingale decomposition JEL classification G14 Mathematics Subject Classification (2010) 60G07 · 91G40 This research benefited from the support of the Chaire Risque de Cr´edit(F´ed´erationBan- caire Fran¸caise)and Labex ANR 11-LABX-0019. Monique Jeanblanc Univ Evry, LaMME, UMR CNRS 8071, Universit´eParis Saclay, 23 boulevard de France, 91037 Evry. E-mail: [email protected] Libo Li ( ) School of Mathematics and Statistics, University of New South Wales, NSW, Australia. E-mail: [email protected] Shiqi Song Univ Evry, LaMME, UMR CNRS 8071, Universit´eParis Saclay, 23 boulevard de France, 91037 Evry. E-mail: [email protected] 2 M. Jeanblanc, L. Li and S. Song 1 Introduction This paper is motivated by the needs to model multiple non-ordered default times in credit risk and to perform explicit computations in the pricing of credit instruments.
    [Show full text]
  • The Comparison Isomorphisms Ccris
    The Comparison Isomorphisms Ccris Fabrizio Andreatta July 9, 2009 Contents 1 Introduction 2 2 The crystalline conjecture with coe±cients 3 3 The complex case. The strategy in the p-adic setting 4 4 The p-adic case; Faltings's topology 5 5 Sheaves of periods 7 i 6 The computation of R v¤Bcris 13 7 The proof of the comparison isomorphism 16 1 1 Introduction Let p > 0 denote a prime integer and let k be a perfect ¯eld of characteristic p. Put OK := W (k) and let K be its fraction ¯eld. Denote by K a ¯xed algebraic closure of K and set GK := Gal(K=K). We write Bcris for the crystalline period ring de¯ned by J.-M. Fontaine in [Fo]. Recall that Bcris is a topological ring, endowed with a continuous action of GK , an ² exhaustive decreasing ¯ltration Fil Bcris and a Frobenius operator '. Following the paper [AI2], these notes aim at presenting a new proof of the so called crys- talline conjecture formulated by J.-M. Fontaine in [Fo]. Let X be a smooth proper scheme, geometrically irreducible, of relative dimension d over OK : Conjecture 1.1 ([Fo]). For every i ¸ 0 there is a canonical and functorial isomorphism com- muting with all the additional structures (namely, ¯ltrations, GK {actions and Frobenii) i et » i H (XK ; Qp) ­Qp Bcris = Hcris(Xk=OK ) ­OK Bcris: i » It follows from a classical theorem for crystalline cohomology, see [BO], that Hcris(Xk=OK ) = i HdR(X=OK ). The latter denotes the hypercohomology of the de Rham complex 0 ¡! OX ¡! ­1 ¡! ­2 ¡! ¢ ¢ ¢ ­d ¡! 0.
    [Show full text]
  • E1-Degeneration of the Irregular Hodge Filtration (With an Appendix by Morihiko Saito)
    E1-DEGENERATION OF THE IRREGULAR HODGE FILTRATION (WITH AN APPENDIX BY MORIHIKO SAITO) HÉLÈNE ESNAULT, CLAUDE SABBAH, AND JENG-DAW YU Abstract. For a regular function f on a smooth complex quasi-projective va- riety, J.-D. Yu introduced in [Yu14] a filtration (the irregular Hodge filtration) on the de Rham complex with twisted differential d+df, extending a definition of Deligne in the case of curves. In this article, we show the degeneration at E1 of the spectral sequence attached to the irregular Hodge filtration, by using the method of [Sab10]. We also make explicit the relation with a complex introduced by M. Kontsevich and give details on his proof of the correspond- ing E1-degeneration, by reduction to characteristic p, when the pole divisor of the function is reduced with normal crossings. In Appendix E, M. Saito gives a different proof of the latter statement with a possibly non reduced normal crossing pole divisor. Contents Introduction 2 1. The irregular Hodge filtration in the normal crossing case 3 1.1. Setup and notation 3 1.2. The irregular Hodge filtration 5 1.3. The Kontsevich complex 6 1.4. Comparison of the filtered twisted meromorphic de Rham complex and the filtered Kontsevich complex 7 1.5. Relation between Theorem 1.2.2 for α = 0 and Theorem 1.3.2 9 1.6. Deligne’s filtration: the D-module approach 11 1.7. Comparison of Yu’s filtration and Deligne’s filtration on the twisted de Rham complex 16 2. Preliminaries to a generalization of Deligne’s filtration 18 2.1.
    [Show full text]
  • LECTURES 3 and 4: MARTINGALES 1. Introduction in an Arbitrage–Free
    LECTURES 3 AND 4: MARTINGALES 1. Introduction In an arbitrage–free market, the share price of any traded asset at time t = 0 is the expected value, under an equilibrium measure, of its discounted price at market termination t = T . We shall see that the discounted share price at any time t ≤ T may also be computed by an expectation; however, this expectation is a conditional expectation, given the information about the market scenario that is revealed up to time t. Thus, the discounted share price process, as a (random) function of time, has the property that its value at any time t is the conditional expectation of the value at a future time given information available at t.A stochastic process with this property is called a martingale. The theory of martingales (initiated by Joseph Doob, following earlier work of Paul Levy´ ) is one of the central themes of modern probability. In discrete-time finance, the importance of martingales stems largely from the Optional Stopping Formula, which (a) places fundamental constraints on (discounted) share price processes, and (b) provides a computational tool of considerable utility. 2. Filtrations of Probability Spaces Filtrations. In a multiperiod market, information about the market scenario is revealed in stages. Some events may be completely determined by the end of the first trading period, others by the end of the second, and others not until the termination of all trading. This suggests the following classification of events: for each t ≤ T , (1) Ft = {all events determined in the first t trading periods}. The finite sequence (Ft)0≤t≤T is a filtration of the space Ω of market scenarios.
    [Show full text]
  • The Ergodic Theorem
    The Ergodic Theorem 1 Introduction Ergodic theory is a branch of mathematics which uses measure theory to study the long term be- haviour of dynamic systems. The central object of consideration is known as a measure-preserving system, a type of dynamic system where the evolution of the system preserves a measure. Definition 1: Let (X; M; µ) be a finite measure space and let T map X to itself. We say that T is a measure-preserving transformation if for every A 2 M, we have µ(A) = µ(T −1(A)). The quadruple (X; M; µ, T ) is called a measure-preserving system (m.p.s.). Measure-preserving systems arise in a variety of contexts, such as probability theory, informa- tion theory, and of course in the study of dynamical systems. However, ergodic theory originated from statistical mechanics. In this setting, T represents the evolution of the system through time. Given a measurable function f : X ! R, the series of values f(x); f(T x); f(T 2x)::: are the values of a physical observable at certain time intervals. Of importance in statistical mechanics is the long-term average of these observables: N−1 1 X f (x) = f(T kx) N N k=0 The Ergodic Theorem (also known as the Pointwise or Birkhoff Ergodic Theorem) is central to the study of averages such as fN in the limit as N ! 1. In this paper we aim to prove the theorem, and then discuss a few of its applications. Before we can state the theorem, we need another definition.
    [Show full text]