Nuclear Astrophysics
Total Page:16
File Type:pdf, Size:1020Kb
Nuclear Astrophysics à Nuclear physics plays a special role in astronomy Nuclear structure: the DNA of chemical evolu;on (Woosley) Nuclear structure The composi;on of the solar system ) 6 Abundance (Si = 10 Element number (Z) The DNA of the cosmos Dillmann et al. 2003 Basic ques;ons in Nuclear Astrophysics: 1. What is the origin of the elements E0102 (SMC) - origin of elements in our solar composi;on SNR 0103-72.6 - Understanding composi;onal fingerprints of astrophysical events - Understanding composi;onal effects in stars, supernovae, neutron stars 2. How do stars and stellar explosions generate energy - Understand photon, neutrino emission - Understand how stars explode Supernova Ar;st’s view 3. What is the nature of neutron stars Neutron Star Ar;st’s view JINA a NSF Physics Fron;ers Center – www.jinaweb.org • Idenfy and address the crical open quesons and needs of the field • Form an intellectual center for the field • Overcome boundaries between astrophysics and nuclear physics and between theory and experiment • Aract and educate young people Nuclear Physics Experiments Astronomical Observations Astrophysical Models Associated: Nuclear Theory ANL, ASU, Princeton Core instuons: UCSB, UCSC, WMU • Notre Dame LANL, Victoria (Canada), • MSU EMMI (Germany), • U. of Chicago INPP Ohio, Minnesota Munich Cluster (Germany), http://www.jinaweb.org MoCA Monash (Australia) X-ray burst (RXTE) Supernova (Chandra,HST,..) 4U1728-34 331 Mass known 330 Half-life known nothing known 329 p process Frequency (Hz) 328 s-process E0102-72.3 327 10 15 20 Time (s) r process Nova (Chandra) νp-process V382 Vel Ne EC Metal poor halo star (Keck, HST) CS22892-052 1 solar r abundance observed 0 10 20 30 Wavelength ( ) Α abundance -1 n-Star (Chandra) KS 1731-260 -2 stellar burning 40 50 60 70 80 90 Z protonsBig Bang Crust and finally: processes neutrons ν-process Cosmic Rays Based on National Academy of Science Report [Committee for the Physics of the Universe (CPU)] QuesHon 3 How were the elements from iron to uranium made ? à “Old problems” Sll unsolved !!! Summary of the 2012 Nuclear Astrophysics Town Mee;ng October 9-10, 2012 at the Wes;n, Detroit Metro Airport Organized by the Sponsors: Joint Ins;tute for Nuclear Astrophysics • JINA • Naonal Superconduc;ng Cyclotron Lab Local Organizers: at Michigan State University • Hendrik Schatz • European Physical Journal • Sheila Balliet-Miles • Linna Leslie • Zach Meisel • Fernando Montes • Artemis Spyrou • Chris Wrede Disclaimer: - Opinions of community, not of JINA - Preliminary and incomplete; working groups not finished, personal impressions Town Mee;ng Twier Feed Follow: @NucAstroTown12 • 150 Par;cipants from Nuclear Physics, Astrophysics, and Astronomy • 22 Plenary Talks, 13 2h working groups Goals: Generate a white paper with vision of the field in light of NP2010, ASTRO2010, .. (previous nuclear astrophysics white paper from 1999) Stars SNO+ Accelerator FaciliHes MulH-messenger GAIA Observaons DIANA KEPLER à Neutrinos à Luminosity à How do stars mix, rotate, and LENA, HIgS, StAna generate magne;c fields? LANSCE, FRANZ, nTOF à Seismology àWhich stars go supernova? FRIB, CARIBU Samples of stars Structure before it explodes? àWhat are the elements stars make? Stardust As a func;on of metallicity? Theory: à A new process? i-process • 3D Modeling • Nuclear cross sec;on à What is the sun’s metallicity? extrapolaon Big Theme: • Validaon Woodward Pre-solar grains Core Collapse Supernovae MulH-messenger ObservaHons Accelerator FaciliHes LIGO à Grav. Waves FRIB àNeutrinos à What is the supernova mechanism? CARIBU, TRIUMF à What is the ν and grav. wave signal? RIBF, FAIR à What are the sites of the r-processes? NOVA The LEPP process? SuperK, HALO, SNO+, … à Which stars go supernova? GRB? Astro Theory: - Full 3D models à Elements in Stars Giant Magellan - Realis;c progenitors SDSS/APOGEE Telescope Nuclear Theory AEGIS - ν-oscillaons LAMOST Hammer, understand & implement Janka, Mueller GAIA - EOS GALAH VLT, HST, Subaru, … - r-process nuclei HST, VLT, Subaru, PTF Novae and Ia Supernovae Accelerator FaciliHes à What are the progenitors of type Ia? FRIB à What phenomena occur on accre;ng white dwarfs? Novae, type Ia, … ? MulH-messenger à Nucleosynthesis contribu;on? Observaons à White dwarf masses of Novae? (LSST) NUSTAR TRIUMF For weak rates also FAIR/RIBF RCNP, TU Tandem LENA, StAna, ATLAS, … à SNIa radioac;vity Astro Theory: ASTRO-H - Use nucleosynthesis Pakmor et al. as probe of igni;on LSST and progenitors - Realis;c progenitors GMT, JWST - Mul;-D models PTF IRTF, VLT, Gemini, Subaru Nuclear Theory à New types of explosions à SN Ia composi;on (also IR !) - Electron capture rates Neutron stars MulH-messenger Accelerator FaciliHes Observaons à What are the proper;es of cold dense maer? What is its maximum density? FRIB à How can we determine Radii, M&R, crust proper;es from observaons? LIGO à What powers superbursts? à Origin of burst oscillaons? LOFT à Are NS Mergers GRBs? r-process site? TRIUMF EOS: FRIB,RIBF,FAIR NICER X-rays à thermal Astro Theory: à radii - Realis;c NS mergers ASTROSAT - 2D/3D X-ray bursts RXTE, XMM, Chandra, Swiq, ASTROSAT - X-ray burst templates INTEGRAL, MINBAR archive For parameter range Green Bank - Crust models Nuclear Theory - Crust nuclear physics Radio - EOS constraints ASTROSAT Square Km Array à pulsars, masses (symmetry energy) Big Bang, First Stars, and Chemical Evolu;on High z Observaons Nuclear physics: à What is the chemical evolu;on of JWST For reliable predicHons of Li, F, Ti, 15N, O-Na, r-process ? nucleosynthesis yields of: à What are the first stars like? - First stars, other stars à How did dwarf galaxies evolve? - Ia Supernovae à 6 Big Bang: Is there primordial Li? - Core collapse Supernovae search for signatures beyond SBB - Low mass stars - Neurton star mergers Near field Observaons Astro Theory: SDSS/APOGEE Giant Magellan - Nucleosynthesis of AEGIS Telescope first stars LAMOST - Beer GCE models GAIA - Nucleosynthesis grids GALAH - Chemistry/Opaci;es Turk, Abel, O’Shea VLT, HST, Subaru, … at high density Summary Observatories: Accelerators: Key point: mul messenger Unique capabiliHes of FRIB Op;cal: Giant Magellan Telescope, • In many presentaons, very broad spectrograph impact UV spectroscopy capability • FRIB + SECAR only real chance X-ray Next Gen.: LOFT, … for a major step in measurements γ-ray: NUSTAR, next γ-ray telescope? of reac;on rates on unstable nuclei Radio: GBT, Square Kilometer Array MulH beam: GW: LIGO – GW networks [Underground] stable beams (DIANA), γ-beams, IR: IRTF neutron beams, ν-beams ν-detectors Compung/Theory: Centers: Need for centers (JINA) MulH-D is path forward across field - Connect subfields – data exchange - People to adapt codes so they - Enable mul;-messenger, mul;-beam can run at forefront of compu;ng mul;-disciplinary approaches - Open source needed for the future - Make nuclear theory progress - Voice for the field applicable to astrophysics .