Research Strategies to Improve Honeybee Health in Europe Robin F.A

Total Page:16

File Type:pdf, Size:1020Kb

Research Strategies to Improve Honeybee Health in Europe Robin F.A Research strategies to improve honeybee health in Europe Robin F.A. Moritz, Joachim de Miranda, Ingemar Fries, Yves Le Conte, Peter Neumann, Robert J. Paxton To cite this version: Robin F.A. Moritz, Joachim de Miranda, Ingemar Fries, Yves Le Conte, Peter Neumann, et al.. Research strategies to improve honeybee health in Europe. Apidologie, Springer Verlag, 2010, 41 (3), pp.227-242. 10.1051/apido/2010010. hal-00892092 HAL Id: hal-00892092 https://hal.archives-ouvertes.fr/hal-00892092 Submitted on 1 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Apidologie 41 (2010) 227–242 Available online at: c INRA/DIB-AGIB/EDP Sciences, 2010 www.apidologie.org DOI: 10.1051/apido/2010010 Review article Research strategies to improve honeybee health in Europe* Robin F.A. Moritz1, Joachim de Miranda2, Ingemar Fries2,YvesLe Conte3, Peter Neumann4, Robert J. Paxton5 1 Institut für Biologie, Martin-Luther Universität Halle-Wittenberg, Hoher Weg 4, 06099 Halle a.d. Salle, Germany 2 Department of Ecology, Sveriges Lantsbruks Universitet Uppsala, Sweden 3 UAPV Abeilles et Environnement, Institut National de la Recherche Agronomique, Avignon, France 4 Swiss Bee Research Centre, Agroscope Liebefeld-Posieux, Switzerland 5 School of Biological Sciences, Queens University, Belfast, UK Received 5 October 2009 – Revised 26 January 2010 – Accepted 28 January 2010 Abstract – Understanding the fundaments of colony losses and improving the status of colony health will require cross-cutting research initiatives including honeybee pathology, chemistry, genetics and apicultural extension. The 7th framework of the European Union requested research to empirically and experimen- tally fill knowledge gaps on honeybee pests and diseases, including ’Colony Collapse Disorder’ and the impact of parasites, pathogens and pesticides on honeybee mortality. The interactions among these drivers of colony loss will be studied in different European regions, using experimental model systems including selected parasites (e.g. Nosema and Varroa mites), viruses (Deformed Wing Virus, Black Queen Cell Virus, Israeli Acute Paralysis Virus) and model pesticides (thiacloprid, τ-fluvalinate). Transcriptome analyses will be used to explore host-pathogen-pesticide interactions and identify novel genes for disease resistance. Spe- cial attention will be given to sublethal and chronic exposure to pesticides and will screen how apicultural practices affect colony health. Novel diagnostic screening methods and sustainable concepts for disease pre- vention will be developed resulting in new treatments and selection tools for resistant stock. Research ini- tiatives will be linked to various national and international ongoing European, North- and South-American colony health monitoring and research programs, to ensure a global transfer of results to apicultural practice in the world community of beekeepers. Apis mellifera / pathology / diagnosis / disease resistance 1. INTRODUCTION products. More importantly from a strictly economic perspective, honeybees are key pol- 1.1. The value of honeybees linators native to Europe and are crucial for and the costs of colony losses many agricultural crops and the conservation of natural plant biodiversity. Indeed, honey- The management of honeybees, Apis mel- bees are the most economically valued pol- lifera, is deeply rooted in human society, and linators and it is estimated that ∼35% of apiculture provides full or additional fam- human food consumption depends directly ily income. There is a considerable market or indirectly on insect mediated pollination for bee products that are used as food and (Delaplane and Mayer, 2000), a vital ecosys- as additives for pharmaceutical and medical tem service contributing to human health and Corresponding author: R. Moritz, well-being. Although the direct value of the honey produced by the bee industry in the EU [email protected] e * Manuscript editor: Marla Spivak is about 140 Mio, the total added value to Article published by EDP Sciences 228 R.F.A. Moritz et al. 2020 Varroa in Europe crops due to pollination services has recently ) e been estimated at 14.2 billion in 2005 for the 1515 million then 15 members of the EU. Worldwide, the ( total economic value of pollination by honey- 1010 bee colonies amounted to e153 billion in 2005 55 (Gallai et al., 2008), while the value of bee pol- number of colonies 00 lination to biodiversity is simply inestimable; 196111 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1011121314151617181920212223242526272829303132333435363738394041424344454647 10111213141516171819202122232425262728293031323334353637383940414243444546471970 1980 1990 2000 it is life itself. In light of the constant decline of year wild non-honeybee pollinators, the importance Figure 1. The annual number of hives reported to of beekeepers and managed bees is greater to- the FAO in western European countries (the former day than ever. 15 EU member states, black circles) and the former Unfortunately, beekeeping is a declining Warsaw Pact countries in Europe (including the for- industry and the past decades have seen a in- mer USSR, open circles). The dramatic decline in crease in colony losses in managed honey- Europe coincides with the political system changes bee colonies (Potts et al., 2010) and an over- in the in eastern Europe, whereas the introduction all decrease of beekeeping activities in Europe of Varroa destructor had no perceptible impact on (van Engelsdorp and Meixner, 2009). In addi- the number of hives reported (data from FAOSTAT, tion and independent of the managed bee pop- 2009). ulations, wild or feral honey bee colonies are also in decline (Kraus and Page, 1995; Moritz et al., 2007;Jafféetal.,2009) most likely due where the lack of state support forced beekeep- to intensification of land-use, pesticide poison- ers to not replace dead colonies, and instead ing, diseases and many parasites (in particu- abandon their apiaries altogether. Moderate lar the ubiquitous ectoparasitic mite Varroa de- and predictable losses can be accommodated structor). and planned for. However, extensive and un- The marked colony losses in Europe at the controllable losses make beekeeping as a pro- continental scale are unlikely to have been fession, with heavy investment in material and driven by pests, pathogens and pesticides. For equipment, an enterprise at permanent risk of example, the losses due to the appearance of bankruptcy (van Engelsdorp et al., 2007). This Varroa destructor in the 1970s and 80s were financial uncertainty also limits recruitment of largely compensated by beekeepers replacing a new generation of beekeepers, especially to their lost colonies with new ones, resulting in the professional ranks. a constant rise in the number of managed hon- Periodic, extensive honeybee colony losses eybee colonies (Fig. 1). The most dramatic are not just a recent phenomenon. For ex- decline in managed colonies in Europe oc- ample, Ireland suffered “The great mortal- curred in the 1990’s coinciding with the so- ity of bees” in 950, and nationwide bee ciocultural changes in eastern Europe whereas losses occurred again in 992 and 1443 colony numbers remained stable in western (Flemming, 1871). Similar repeated honey- Europe. With the lack of state support in the bee mortalities have been recorded in other former socialistic countries many beekeepers countries throughout history. From the late in eastern Europe abandoned their operations 19th century onwards there are references to causing a reduction in colony numbers by such extensive colony losses (Underwood and about 50%. One of the principal reasons for van Engelsdorp, 2007), including the famous the decline in managed honeybee colonies, and “Isle of Wight disease” of the early 1900’s in of beekeepers, is extensive and unpredictable England (Rennie et al., 1921; Bailey and Ball, colony death. While this can be discouraging 1991), the disappearing disease in the 1960– enough for small-scale hobbyist beekeepers to 1970’s in the USA (Wilson and Menapace, drive them to abandon the hobby, for (semi)- 1979), Varroa destructor and the “Bee Para- professional operators this is a crucial limita- sitic Mite Syndrome” of the 1980’s–1990’s (de tion to business planning and expansion. This Jong et al., 1982;BallandAllen,1988; Hung has become most obvious in Eastern Europe et al., 1995) and the mysterious bee losses in Research strategies to improve honeybee health in Europe 229 France in the late 1990’s (Faucon et al., 2002). cessful at the colony level in the short term, The most recent addition to this list is the has not eradicated the pathogen at the popu- Colony Collapse Disorder (CCD) in the USA lation level, particularly if the pathogen has that began in 2006–2007 (van Engelsdorp a high transmission rate and a high infectiv- et al., 2007). In Europe similar phenomena ity. As illustrated by present apicultural real- have not been observed in the past decades ity, any chemotherapy of honeybee colonies and large number colony deaths are mostly immediately leads
Recommended publications
  • Nosema Disease
    Nosema Disease Literature review and three year survey of beekeepers Part 2 by Michael Hornitzky March 2008 RIRDC Publication No 08/006 RIRDC Project No DAN-228A © 2008 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 595 5 ISSN 1440-6845 Nosema Disease: Literature review and three year survey of beekeepers - Part 2 Publication No. 08/006 Project No. DAN-228A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. However, wide dissemination is encouraged.
    [Show full text]
  • Prevalence of Nosema Species in a Feral Honey Bee Population: a 20-Year Survey Juliana Rangel, Kristen Baum, William L
    Prevalence of Nosema species in a feral honey bee population: a 20-year survey Juliana Rangel, Kristen Baum, William L. Rubink, Robert N. Coulson, J. Spencer Johnston, Brenna E. Traver To cite this version: Juliana Rangel, Kristen Baum, William L. Rubink, Robert N. Coulson, J. Spencer Johnston, et al.. Prevalence of Nosema species in a feral honey bee population: a 20-year survey. Apidologie, Springer Verlag, 2016, 47 (4), pp.561-571. 10.1007/s13592-015-0401-y. hal-01532328 HAL Id: hal-01532328 https://hal.archives-ouvertes.fr/hal-01532328 Submitted on 2 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2016) 47:561–571 Original article * INRA, DIB and Springer-Verlag France, 2015 DOI: 10.1007/s13592-015-0401-y Prevalence of Nosema species in a feral honey bee population: a 20-year survey 1 2 3 4 Juliana RANGEL , Kristen BAUM , William L. RUBINK , Robert N. COULSON , 1 5 J. Spencer JOHNSTON , Brenna E. TRAVER 1Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843-2475, USA 2Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA 3P.O.
    [Show full text]
  • Nosema Disease Information for Identification & Control in New York
    NYS$ Nosema Disease BEEKEEPER! TECH!TEAM! information for identification & control in New York What is Nosema? Nosema is one of the most prevalent infections in honey bees in New York. It is caused by two species of fungal gut parasites, Nosema apis and Nosema ceranae. Both parasites can kill colonies that are unable to clear the infection. Bees become infected when they ingest Nosema spores. The disease is spread fecal-orally, through food sharing, grooming, sexual transmission, and by cleaning contaminated cells. Once spores are consumed, they travel to the intestine where they become infectious. Nosema ceranae is by far the most prevalent species of Nosema found in New York State. Many institutions in the US and Canada recognize the treatment threshold as 1 million spores/bee, yet this threshold is not well established for Nosema ceranae. Beekeepers who wish to treat their colonies should use this current threshold until further research can determine a more reliable one. What are the symptoms? Symptoms include reduced honey production, slow spring build up, dwindling adult population, and reduced brood production. Other than these general effects, colonies infected with Nosema are often asymptomatic. Dysentery is not a reliable symptom, as it does not occur with Nosema ceranae. In colonies that die from the disease, most adults die far from the hive. Inside the hive, there may be a few dead bees on the bottom board and only some young bees and the queen remaining. Dwindling and reduced brood production (left) are symptoms. Dysentery (right) is not a reliable symptom. Preventing Nosema • Manage strong colonies that are not stressed from other causes, and ensure good nutrition • Replace the 2 oldest frames in each hive body with foundation every year to reduce spore accumulation • Decontaminate equipment from infected colonies before reusing.
    [Show full text]
  • INTEGRATED PEST MANAGEMENT May 15Th, 2011
    INTEGRATED PEST MANAGEMENT May 15 th , 2011 Disease & Pest Identification CAPA Honey Bee Diseases and Pests Publication. OBA Beekeeping Manual Tech-Transfer Website - http://techtransfer.ontariobee.com American Foulbrood (AFB) A bacteria affecting brood ( Bacillus larvae ) Found on every continent Spores remain viable indefinitely on beekeeping equipment Larvae are susceptible up to 3 days after hatching Spores germinate in the midgut, then penetrate to body cavity Spread by robbing and drifting bees and through transfer of hive equipment AFB Combs of infected colonies have a mottled appearance Cell cappings containing diseased larvae appear moist and darkened Larval and pupal colour changes to creamy brown, then dark brown Unpleasant odour in advanced stages Death in the pupal stage results in the formation of the pupal tongue Diseased brood eventually dries out to form characteristic brittle scales adhering tightly to the cell wall Monitoring - visual exam every time hive is opened AFB AFB Diagnosis Ropiness test Use twig or matchstick to ‘stir’ larvae 2 cm ‘rope’ will be attached to stick Microscopic examination Spores resemble slender rods in chains European Foulbrood (EFB) A bacteria affecting brood Not as widespread as AFB Larvae are infected by nurse bees EFB Twisted larvae Slight ropiness Monitoring - visual exam Chalkbrood A fungus affecting brood Patchy brood White/black “mummies” in cells, at hive entrance, on bottom board Monitoring - visual exam Sacbrood A virus affecting brood Patchy brood, punctured cells Larvae are like
    [Show full text]
  • How Natural Infection by Nosema Ceranae Causes Honeybee Colony Collapse
    Environmental Microbiology (2008) doi:10.1111/j.1462-2920.2008.01687.x How natural infection by Nosema ceranae causes honeybee colony collapse Mariano Higes,1 Raquel Martín-Hernández,1 infected one can also become infected, and that N. Cristina Botías,1 Encarna Garrido Bailón,1 ceranae infection can be controlled with a specific Amelia V. González-Porto,2 Laura Barrios,3 antibiotic, fumagillin. Moreover, the administration M. Jesús del Nozal,4 José L. Bernal,4 of 120 mg of fumagillin has proven to eliminate the Juan J. Jiménez,4 Pilar García Palencia5 and infection, but it cannot avoid reinfection after Aránzazu Meana6* 6 months. We provide Koch’s postulates between N. 1Bee Pathology laboratory, Centro Apícola Regional, ceranae infection and a syndrome with a long incuba- JCCM, 19180 Marchamalo, Spain. tion period involving continuous death of adult bees, 2Hive Products laboratory, Centro Apícola Regional, non-stop brood rearing by the bees and colony loss in JCCM, 19180 Marchamalo, Spain. winter or early spring despite the presence of suffi- 3Statistics Department, CTI, Consejo Superior cient remaining pollen and honey. Investigaciones Científicas, 28006 Madrid, Spain. 4Analytical Chemistry Department, Facultad de Ciencias, Introduction Universidad de Valladolid, 47005 Valladolid, Spain. 5Animal Medicine and Surgery Department, Facultad de As a bee colony can be considered as a complex living Veterinaria, Universidad Complutense de Madrid, system of individuals that functions as a whole, disease 28040 Madrid, Spain. pathology of an individual bee is different to the pathology 6Animal Health Department, Facultad de Veterinaria, at the colony level. Indeed, a particular pathogen can be Universidad Complutense de Madrid, 28040 Madrid, lethal to bees but the colony may be able to compensate Spain.
    [Show full text]
  • Colony Collapse Disorder Progress Report
    Colony Collapse Disorder Progress Report CCD Steering Committee June 2009 CCD Steering Committee Members Federal: Kevin Hackett USDA Agricultural Research Service (co-chair) Rick Meyer USDA Cooperative State Research, Education, and Mary Purcell-Miramontes and Extension Service (co-chair) Robyn Rose USDA Animal and Plant Health Inspection Service Doug Holy USDA Natural Resources Conservation Service Evan Skowronski Department of Defense Tom Steeger Environmental Protection Agency Land Grant University: Bruce McPheron Pennsylvania State University Sonny Ramaswamy Purdue University This report has been cleared by all USDA agencies involved, and EPA. DoD considers this a USDA publication, to which DoD has contributed technical input. 2 Content Executive Summary 4 Introduction 6 Topic I: Survey and (Sample) Data Collection 7 Topic II: Analysis of Existing Samples 7 Topic III: Research to Identify Factors Affecting Honey Bee Health, Including Attempts to Recreate CCD Symptomology 8 Topic IV: Mitigative and Preventive Measures 9 Appendix: Specific Accomplishments by Action Plan Component 11 Topic I: Survey and Data Collection 11 Topic II: Analysis of Existing Samples 14 Topic III: Research to Identify Factors Affecting Honey Bee Health, Including Attempts to Recreate CCD Symptomology 21 Topic IV: Mitigative and Preventive Measures 29 3 Executive Summary Mandated by the 2008 Farm Bill [Section 7204 (h) (4)], this first annual report on Honey Bee Colony Collapse Disorder (CCD) represents the work of a large number of scientists from 8 Federal agencies, 2 state departments of agriculture, 22 universities, and several private research efforts. In response to the unexplained losses of U.S. honey bee colonies now known as colony collapse disorder (CCD), USDA’s Agricultural Research Service (ARS) and Cooperative State Research, Education, and Extension Service (CSREES) led a collaborative effort to define an approach to CCD, resulting in the CCD Action Plan in July 2007.
    [Show full text]
  • Genetic Detection and Quantification of Nosema Apis and N. Ceranae In
    Journal of Invertebrate Pathology 103 (2010) 53–58 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee A. Lelania Bourgeois *, Thomas E. Rinderer, Lorraine D. Beaman, Robert G. Danka USDA-ARS Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820, United States article info abstract Article history: The incidence of nosemosis has increased in recent years due to an emerging infestation of Nosema cer- Received 15 April 2009 anae in managed honey bee populations in much of the world. A real-time PCR assay was developed to Accepted 15 October 2009 facilitate detection and quantification of both Nosema apis and N. ceranae in both single bee and pooled Available online 20 October 2009 samples. The assay is a multiplexed reaction in which both species are detected and quantified in a single reaction. The assay is highly sensitive and can detect single copies of the target sequence. Real-time PCR Keywords: results were calibrated to spore counts generated by standard microscopy procedures. The assay was Nosema ceranae used to assess bees from commercial apiaries sampled in November 2008 and March 2009. Bees from Nosema apis each colony were pooled. A large amount of variation among colonies was evident, signifying the need Real-time PCR Genetic detection to examine large numbers of colonies. Due to sampling constraints, a subset of colonies (from five apiar- ies) was sampled in both seasons. In November, N. apis levels were 1212 ± 148 spores/bee and N.
    [Show full text]
  • Effects of Synthetic Acaricides and Nosema Ceranae
    veterinary sciences Article Effects of Synthetic Acaricides and Nosema ceranae (Microsporidia: Nosematidae) on Molecules Associated with Chemical Communication and Recognition in Honey Bees Martín Pablo Porrini 1,* , Paula Melisa Garrido 1, María Laura Umpiérrez 2, Leonardo Pablo Porrini 1 , Antonella Cuniolo 1, Belén Davyt 2, Andrés González 2, Martín Javier Eguaras 1 and Carmen Rossini 2 1 Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata 7600, Argentina; [email protected] (P.M.G.); [email protected] (L.P.P.); [email protected] (A.C.); [email protected] (M.J.E.) 2 Laboratorio de Ecología Química, Facultad de Química, Universidad de la República Uruguay, Montevideo 11800, Uruguay; [email protected] (M.L.U.); [email protected] (B.D.); [email protected] (A.G.); [email protected] (C.R.) * Correspondence: [email protected]; Tel./Fax: +54-223-4752426 (ext. 223) Received: 6 October 2020; Accepted: 3 December 2020; Published: 8 December 2020 Abstract: Acaricides and the gut parasite Nosema ceranae are commonly present in most productive hives. Those stressors could be affecting key semiochemicals, which act as homeostasis regulators in Apis mellifera colonies, such as cuticular hydrocarbons (CHC) involved in social recognition and ethyl oleate (EO) which plays a role as primer pheromone in honey bees. Here we test the effect of amitraz, coumaphos, tau-fluvalinate and flumethrin, commonly applied to treat varroosis, on honey bee survival time, rate of food consumption, CHC profiles and EO production on N.
    [Show full text]
  • Honeybee Colony Collapse Disorder by a Skagit County Master Gardener May 9, 2008
    Honeybee Colony Collapse Disorder By a Skagit County Master Gardener May 9, 2008 Colony Collapse Disorder threatens U.S. honeybee hives, damaging beekeepers and the agriculture industry. Colony Collapse Disorder (CCD) is a sudden disappearance of all bees in a hive. It is characterized not by piles of dead bees, as in most hive misfortunes, but by an empty hive. The queen, who is not affected by the disease ravishing her workers, can be found wandering about the hive alone or with a few attendants, which are younger bees. The older bees, who are responsible for foraging and hive defense, are absent. In most CCD-stricken hives, honey stores appear plentiful, ruling out starvation as the cause for decline. Disappearing hives, however, is not a new phenomenon. This particular syndrome has been noted anecdotally, but infrequently from the late 19th century. However, in recent years this beekeepers’ worst nightmare has become widespread, virulent and devastating. It is ruining not only beehives and beekeepers’ livelihoods, but also the livelihood of agriculture and food security. Rest assured, scientists are working on this one. Laboratories at many universities across the United States, including our own Washington State University, research apiaries in Pullman and here in Mount Vernon. Haagen-Dazs is even offering a $250,000 research grant for universities in Pennsylvania and California to probe the causes of CCD. As far as we know, honeybee cultivation originated in Egypt, where ancient beekeeping is demonstrated in hieroglyphics. In the scientific names that grew from this starting point lies the story of what living things are and how they came to be.
    [Show full text]
  • Integrated Hive Management for Colorado Beekeepers Dr
    Integrated Hive Management for Colorado Beekeepers Dr. Arathi Seshadri and Thia Walker Strategies for Identifying and Mitigating Pests and Diseases Affecting Colorado’s Honey Bees BIOAGRICULTURAL SCIENCES & PEST MANAGEMENT DEPARTMENT 2nd Edition Integrated Hive Management for Colorado Beekeepers: Strategies for Identifying and Mitigating Pests and Diseases Affecting Colorado Honeybees. 2nd Edition*, December 2019. *1st edition originally published July 2014 Contact Information: Dr. Arathi Seshadri Thia Walker Research Entomologist Colorado State University Extension [email protected] Specialist-Pesticide Safety Education Invasive Species & Pollinator Health [email protected] Research Unit Colorado Environmental Pesticide USDA/ARS/WRRC Education Program (CEPEP) https://cepep.agsci.colostate.edu/ Acknowledgments: • With special thanks to Debra Newman for her assistance with layout and Rob Snyder of Bee Informed Partnership for his photos and recommendations. • The following individuals are gratefully acknowledged for their reviewing this publication and for their valuable suggestions: Al Summers, ichibanenterprises.org (Contributing Editor, 1st Edition) Peg Perreault, EPA Region 8 • Front and Back Cover Photo Credit: Lisa Mason, CSU Extension All other photo credits are listed individually. This 2nd edition of the publication was developed under Assistance Agreement No. E-96843601-0 awarded by the U.S. Environmental Protection Agency, Region 8. It has not been formally reviewed by EPA. The views expressed are solely those of the authors and EPA does not endorse any products or commercial services mentioned. This guide is for educational purposes only. Mention of a specific product is only for illustrative purposes and should not be interpreted as an endorsement, nor should failure to mention a product be considered a criticism.
    [Show full text]
  • Agriculture Science
    AGRICULTURAL SCIENCE FOR YEAR 12 Page | 1 The Ministry of Education owns the copyright to this text book, Agricultural Science for Schools may reproduce this in part or in full for classroom purposes only. Acknowledgement of the Technology and Employment Skills Training Section of the Ministry of Education copyright must be included in any reproduction. Any other use of this book must be referred to the Permanent Secretary for Education through the Director Technology and Employment Skills Training. Issued free to schools by the Ministry of Education Trial version 2017 Year 12, which is based on the Year 12 Agricultural Science Syllabus, 2017. © Ministry of Education, Fiji, 2017 Published by Technology and Employment Skills Training Section Ministry of Education Level 1, Harbour Front Building Rodwell Road Private Mail Bag Suva Fiji Phone 3306077 Email: www.education.gov.fj : [email protected] AGRICULTURAL SCIENCE FOR YEAR 12 Page | 2 PREFACE Welcome to Agriculture for Year 12. This book was designed to complement lessons prepared by teachers for the learning and teaching of the Year 12 Agricultural Science Syllabus implemented in 2017. Teachers are encouraged to use other resource materials to reinforce lesson content. Ministry of Education Suva 20th October 2016 ACKNOWLEDGEMENT This text book has been produced by Seforosa Savena, the Senior Education Officer, Agriculture Education, for the Technology and Employment Skills Training Section of the Ministry of Education. Appreciation is extended to: 1. the following teachers who participated in the research of various strands: (i) Mr. Cabemaiwai Turagasau of Ratu Sir Lala Sukuna Memorial School, (ii) Mrs. Salote Matameli of Assemblies of God High School, (iii) Mrs.
    [Show full text]
  • Integrated Hive Management for Colorado Beekeepers
    Integrated Hive Management for Colorado Beekeepers Whitney Cranshaw, Colorado State University, Bugwood.org Strategies for Identifying and Mitigating Pests and Diseases Affecting Colorado’s Honey Bees Editors: Thia Walker CSU Extension Specialist - Pesticide Safety Education Manager, CSU Colorado Environmental Pesticide Education Program Dr. Whitney Cranshaw CSU Extension Specialist - Entomology Genevieve E. Berry CSU - Colorado Environmental Pesticide Education Program Research Associate Contributing Editor: Al Summers Ichiban Apiculture & Honey Co. [email protected] Acknowledgments: With special thanks to Rob Snyder of Bee Informed Partnership for his photos and recommendations. Other photo credits are listed individually. The following individuals are gratefully acknowledged for reviewing this publication and for their valuable suggestions: Peg Perreault, EPA Region 8 Arathi Seshadri, Assistant Professor, Colorado State University Beth Conrey, Colorado State Beekeepers Association Paul Darrah, Colorado Beekeeper This publication was developed under Assistant Agreement No. PE 96825201-0 awarded by the U.S. Environmental Protection Agency. It has not been formally reviewed by EPA. The views expressed are solely those of Colorado State University Extension - Colorado Environmental Pesticide Education Program and EPA does not endorse any products or commercial services mentioned. For more information contact: Thia Walker Extension Specialist - Pesticide Safety Education 1177 Campus Fort Collins, CO 80523 (970) 491-6027 [email protected] http://www.cepep.colostate.edu/ Extension programs are available to all without discrimination. Trade or brand names mentioned are used only for the purpose of information; CSU Extension does not guarantee nor warrant the standard of the product, nor does it imply approval of the product to the exclusion of others which also may be available, nor does it intend discrimination or criticism of products or providers that are mentioned or not mentioned.
    [Show full text]