Speciation, Pattern Recognition and the Maximization of Pollination: General Questions and Answers Given by the Reproductive Biology of the Orchid Genus Ophrys

Total Page:16

File Type:pdf, Size:1020Kb

Speciation, Pattern Recognition and the Maximization of Pollination: General Questions and Answers Given by the Reproductive Biology of the Orchid Genus Ophrys Journal of Comparative Physiology A (2019) 205:285–300 https://doi.org/10.1007/s00359-019-01350-4 REVIEW Speciation, pattern recognition and the maximization of pollination: general questions and answers given by the reproductive biology of the orchid genus Ophrys Hannes F. Paulus1 Received: 21 March 2019 / Revised: 17 May 2019 / Accepted: 18 May 2019 / Published online: 28 May 2019 © The Author(s) 2019 Abstract Pollination syndromes evolved under the reciprocal selection of pollinators and plants (coevolution). Here, the two main methods are reviewed which are applied to prove such selection. (i) The indirect method is a cross-lineage approach using phylogenetical trees to understand the phylogeny. Thus, features of single origin can be distinguished from those with multiple origins. Nearly all pollination modes originate in multiple evolutionary ways. (ii) The most frequent pollinators cause the strongest selection because they are responsible for the plant’s most successful reproduction. The European sexually decep- tive orchid genus Ophrys provides an example of a more direct way to prove selection because the attraction of a pollinator is species specifc. Most members of the genus have remarkably variable fowers. The variability of the signals given of by the fowers enables the deceived pollinator males to learn individual fower patterns. They thus avoid already visited Ophrys fowers, interpreting them as females rejecting them. As the males will not return to these individually recognizable fowers, the pollinators´ learning behavior causes cross-pollination and prevents the orchid’s self-pollination. Keywords Selection · Reproductive success · Ophrys · Learning behavior Introduction consideration have a look in Chittka and Thomson (2001) or Waser and Ollerton (2006). Most advances in pollination biology have resulted from These approaches refect the two historic starting points interdisciplinary research combining ecological and evolu- for the discipline. One approach emphasized detailed obser- tionary perspectives. Several approaches have been essen- vation of foral mechanisms and the natural history of the tial for understanding the functional ecology of foral traits, ecological relationships between plants and pollinators. It the dynamics of pollen transport, competition for pollinator originated with pioneering work by Sprengel (1793) and services, and patterns of specialization and generalization in Müller (1873). An interesting second approach focuses on plant–pollinator interactions. Understanding plant–pollinator evolutionary processes that might afect and be afected by interactions requires and invites a variety of viewpoints and pollination. Pollinators act as selection factors attracted by conceptual approaches, ranging from descriptions of animal signals emitted by the fower to increase its reproductive behavior and their contributions to pollination success to fo- success above that of other individuals of the same species. ral evolution. Many of the results of evolutionary approaches Some plants operate with signals similar to sexual traits in in pollination biology are summarized in some very informa- a pollinator´s courtship behavior to attract it and to thereby tive textbooks (Harder and Barrett 2006; Willmer 2011) or guarantee fertilization. The specifc patterns of pollinator the many special articles in Patiny (2011); for a more special visitation infuence important aspects of the pollinator´s mating system and minimize self-pollination of the plant. A special case in this respect is the sexual deception by some orchid genera like that by the European Ophrys spe- * Hannes F. Paulus cies (Pouyanne 1917; Kullenberg 1961, 1973; Paulus 2006, [email protected] 2007; Schiestl 2011). 1 Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstr.14, 1090 Vienna, Austria Vol.:(0123456789)1 3 286 Journal of Comparative Physiology A (2019) 205:285–300 General questions Evolution of fower signals Research in pollination biology has been at the forefront of The rapid expansion of insect pollination was due to the theory testing and model building. In evolutionary biology, emergence of “clever” attractants, such as fower shape pollination systems have provided some of the best tests of connected with colored displays and many diferent scents. theories of evolution by natural selection and the adaptive The fower colors were selected by the pollinators, co- nature of foral traits (Levin 1985; Campbell 1985; Camp- evolving with their visual system (Schiestl and Johnson bell et al. 1996; Schemske and Bradshaw 1999). One of the 2013). There must have been strong competition between main questions in this respect is whether pollinators act as the early fowers for insects and later also other pollina- selective partners triggering most of the fower evolution. tors. As a consequence, the signals evolved in many dif- There are two diferent ways to fnd answers: (i) one mainly ferent directions. The motivation of the fower visitors had comes from reconstructions of phylogeny and evolution- to be rewarded with food. In most cases, this is protein- ary processes (e.g. DeWitt Smith 2010), (ii) the other relies rich pollen and nectar, providing simple sugars such as on measurements of reproductive success as a function of fructose, saccharose and glucose. These are ideal energy pollinator behavior (e.g. Paulus 1988, Gervasi and Schiestl suppliers which can be directly transferred into muscle 2017). The origin of pollination modes in specifc plants activity during fight. Bees (Apoidea) evolved shortly after can possibly be explained using the results of phylogenetical the fowering plants and diversifed into higher lineages trees. These can help to understand how often and in which contemporaneously with the radiations evolving within ways a particular pollination syndrome evolved. A quantita- the angiosperms. Major bee lineages (i.e., families) were tive measure of selective pressures mainly needs long-term presumably established by the late Cretaceous (Cardinal observations in the feld or even better experimental work. and Danforth 2013; Cappellari et al. 2013; Plant and Pau- lus 2016; Sann et al. 2018). Bees visit fowers not only to Flowers and their specifc pollination modes feed themselves. Instead, they are specialised in collecting and storing pollen and nectar, as food for their larvae. This Most of the angiosperm fowers require help in transport- signifcantly increased the frequency of fower visits. Bees ing their pollen to the stigma of another fower of the same evolved to be very efcient pollinators and most of the species. They borrow it from diferent animals (zoogamy: angiosperm species today are pollinated by one or several pollination by animals; entomogamy: pollination by insects). of the many hundreds of diferent bee species. As a con- Exceptions are species pollinated by wind (anemogamy) sequence of the competition for pollinators, the rich diver- (most gymnosperms, secondarily some groups of angio- sity of today’s fower types has evolved which also trig- sperms) or obligate selfers (autogamy). In Europe, most gered multiple evolutions of new pollinator animals. This pollinators are insects. Many of them are very selective process of reciprocal selection is accompanied by many regarding the fowers visited. reciprocal adaptations (Gilbert and Raven 1975; Paulus Whereas most angiosperms have hermaphroditic fow- 1978; Janzen 1980). The result is a remarkable diversity ers, gymnosperms primarily have separate male and female in butterfies, bees, fower visiting birds or bats, which fowers. They use the wind for pollination. To ensure fertili- would have never evolved without their fowers. Because zation, male fowers have to produce enormous amounts of of the development of more and more specialised pollina- pollen grains. As pollen contains a lot of nitrogen, a strongly tion methods, signals had to become more diferentiated. limited resource, its production is a costly process. Pollina- As bees, like most insects, are able to see colors, even UV, tion by insects evolved during the early Mesozoic era, possi- fowers developed many diferent color patterns and indeed bly frst by some of the pollen-eating beetles which had been UV patterns which we as human beings are unable to see well established since the Perm period. As some beetles fed (Dyer et al. 2012). Many of these UV patterns together on the seeds of gymnosperms, some of these developed with yellow markings are interpreted as imitation of the sheets protecting their seeds, which became a crucial char- stamina or the two-lobed anther because they mainly occur acteristic of the later angiosperms. Pollen feeding alone was on fowers with hidden androecium. Therefore, these spots not enough to ensure pollination as these beetles visited only are replacement signals instead of the normally visible the male fowers. Female fowers were not attractive, as nec- stamens (Osche 1979, 1983; Paulus 1988; Lunau 1990, tar evolved much later. The solution was to evolve bisexual 2000; Lunau et al. 2017). Importantly, when interpreting fowers, the next special characteristic of most angiosperms. the color of a particular fower we always have to ask for the visual system of the pollinator. The same applies to all the other sensory modalities. Olfactory fower signals in most cases help the pollinator to fnd fowers at larger 1 3 Journal of Comparative Physiology A (2019) 205:285–300 287 distances. Another feld of research comes from fndings
Recommended publications
  • “Dynamic Speciation Processes in the Mediterranean Orchid Genus Ophrys L
    “DYNAMIC SPECIATION PROCESSES IN THE MEDITERRANEAN ORCHID GENUS OPHRYS L. (ORCHIDACEAE)” Tesi di Dottorato in Biologia Avanzata, XXIV ciclo (Indirizzo Sistematica Molecolare) Universitá degli Studi di Napoli Federico II Facoltá di Scienze Matematiche, Fisiche e Naturali Dipartimento di Biologia Strutturale e Funzionale 1st supervisor: Prof. Salvatore Cozzolino 2nd supervisor: Prof. Serena Aceto PhD student: Dott. Hendrik Breitkopf 1 Cover picture: Pseudo-copulation of a Colletes cunicularius male on a flower of Ophrys exaltata ssp. archipelagi (Marina di Lesina, Italy. H. Breitkopf, 2011). 2 TABLE OF CONTENTS GENERAL INTRODUCTION CHAPTER 1: MULTI-LOCUS NUCLEAR GENE PHYLOGENY OF THE SEXUALLY DECEPTIVE ORCHID GENUS OPHRYS L. (ORCHIDACEAE) CHAPTER 2: ANALYSIS OF VARIATION AND SPECIATION IN THE OPHRYS SPHEGODES SPECIES COMPLEX CHAPTER 3: FLORAL ISOLATION IS THE MAIN REPRODUCTIVE BARRIER AMONG CLOSELY RELATED SEXUALLY DECEPTIVE ORCHIDS CHAPTER 4: SPECIATION BY DISTURBANCE: A POPULATION STUDY OF CENTRAL ITALIAN OPHRYS SPHEGODES LINEAGES CONTRIBUTION OF CO-AUTHORS ACKNOWLEDGEMENTS 3 GENERAL INTRODUCTION ORCHIDS With more than 22.000 accepted species in 880 genera (Pridgeon et al. 1999), the family of the Orchidaceae is the largest family of angiosperm plants. Recently discovered fossils document their existence for at least 15 Ma. The last common ancestor of all orchids has been estimated to exist about 80 Ma ago (Ramirez et al. 2007, Gustafsson et al. 2010). Orchids are cosmopolitan, distributed on all continents and a great variety of habitats, ranging from deserts and swamps to arctic regions. Two large groups can be distinguished: Epiphytic and epilithic orchids attach themselves with aerial roots to trees or stones, mostly halfway between the ground and the upper canopy where they absorb water through the velamen of their roots.
    [Show full text]
  • SPG2: Biodiversity Conservation (July 2006) 1 1.0 an OVERVIEW
    Kent and Medway Structure Plan 2006 mapping out the future Supplementary Planning Guidance SPG2 Biodiversity Conservation July 2006 Strategy and Planning Division/ Environment and Waste Division Environment and Regeneration Directorate Kent County Council Tel: 01622 221609 Email: [email protected] Kent and Medway Structure Plan 2006 Supplementary Planning Guidance (SPG2): Biodiversity Conservation Preface i. The purpose of Supplementary Planning Guidance (SPG) is to supplement the policies and proposals of development plans. It elaborates policies so that they can be better understood and effectively applied. SPG should be clearly cross-referenced to the relevant plan policy or policies which it supplements and should be the subject of consultation during its preparation. In these circumstances SPG may be taken into account as a material consideration in planning decisions. ii. A number of elements of SPG have been produced to supplement certain policies in the Kent and Medway Structure Plan. This SPG supplements the following policies: • Policy EN6: International and National Wildlife Designations • Policy EN7: County and Local Wildlife Designations • Policy EN8: Protecting, Conserving and Enhancing Biodiversity • Policy EN9: Trees, Woodland and Hedgerows iii. This SPG has been prepared by Kent County Council working in partnership with a range of stakeholders drawn from Kent local authorities and other relevant agencies. iv. A draft of this SPG was subject to public consultation alongside public consultation on the deposit draft of the Kent and Medway Structure Plan in late 2003. It has been subsequently revised and updated prior to its adoption. A separate report provides a statement of the consultation undertaken, the representations received and the response to these representations.
    [Show full text]
  • Sex Pheromone Mimicry in the Early Spider Orchid (Ophrys Sphegodes): Patterns of Hydrocarbons As the Key Mechanism for Pollination by Sexual Deception
    J Comp Physiol A (2000) 186: 567±574 Ó Springer-Verlag 2000 ORIGINAL PAPER F. P. Schiestl á M. Ayasse á H. F. Paulus á C. LoÈ fstedt B. S. Hansson á F. Ibarra á W. Francke Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): patterns of hydrocarbons as the key mechanism for pollination by sexual deception Accepted: 30 March 2000 Abstract We investigated the female-produced sex bees' sex pheromone as well as the pseudocopulation- pheromone of the solitary bee Andrena nigroaenea and behavior releasing orchid-odor bouquet. compared it with ¯oral scent of the sexually deceptive orchid Ophrys sphegodes which is pollinated by Andrena Key words Andrena nigroaenea á Sex pheromone á nigroaenea males. We identi®ed physiologically and be- Chemical mimicry á Orchid pollination á haviorally active compounds by gas chromatography Wax compounds with electroantennographic detection, gas chromatog- raphy-mass spectrometry, and behavioral tests in the ®eld. Dummies scented with cuticle extracts of virgin Introduction females or of O. sphegodes labellum extracts elicited signi®cantly more male reactions than odorless dum- Nearly all species of the Mediterranean orchid genus mies. Therefore, copulation behavior eliciting semio- Ophrys are pollinated by means of sexual deception chemicals are located on the surface of the females' (Pouyanne 1917; Kullenberg 1961; Paulus and Gack cuticle and the surface of the ¯owers. Within bee and 1990). Their ¯owers mimic females of the pollinator orchid samples, n-alkanes and n-alkenes, aldehydes, species, usually solitary bees and wasps, of which only the esters, all-trans-farnesol and all-trans-farnesyl hexano- males are attracted and try to copulate with the ¯ower ate triggered electroantennographic responses in male labellum (Fig.
    [Show full text]
  • Greece (Orchids)
    Orchids Among the Thorns, or BY SPIRO KASOMENAKIS/PHOTOGRAPHS, UNLESS OTHERWISE CREDITED, BY THE AUTHOR A group of Orchis italica in typical phrygana habitat. The insert is a closeup of a single infl orescence. Orchids of Crete and Attica GREECE, A SMALL country on the southeast end of Europe, is well known for its spring fl ora, especially to orchid lovers, as it harbors about 227 species of orchids, of which 74 are endemic. Granted, for the general public that fl ocks to Greece and its islands for the wonderful beaches, orchids may not be the fi rst thing that comes to mind, but the devoti on these plants (especially the genus Ophrys) seem to inspire, in both botanical and hobbyist circles, is worth a closer look. Our trip was organized by the Orchid Conservati on Alliance (OCA), a nonprofi t conservati on organizati on that regularly takes members on orchid-related trips. We concentrated on western Crete, beginning our odyssey at Chania, and later moving our base to the seaside village of Plakias, with a few days at the end of the trip on the mainland to see some archaeological sites and more orchids! Crete is a microcosm in itself, being a large and self-sufficient island on the southernmost part of Greece. The landscape is dominated by the snow- capped White Mountains, visible from the city of Chania. Bound by the Aegean Sea on its northern shores, and the Libyan Sea on its southern, its flora shows the influences of both east and west, north and south! Fifteen of the 70 or so species of orchids on the island are found nowhere else.
    [Show full text]
  • A Brief Study on the Scoliidae in Iran (Insecta: Hymenoptera)
    792 _____________Mun. Ent. Zool. Vol. 5, No. 2, June 2010__________ A BRIEF STUDY ON THE SCOLIIDAE IN IRAN (INSECTA: HYMENOPTERA) Majid Fallahzadeh* and Nazila Saghaei** * Department of Entomology, Islamic Azad University, Jahrom Branch, Fars, IRAN. E-mail: [email protected]; [email protected] ** Department of Plant Protection, Islamic Azad University, Marvdasht Branch, Fars, IRAN. [Fallahzadeh, M. & Saghaei, N. 2010. A brief study on the Scoliidae (Insecta: Hymenoptera) in Iran. Munis Entomology & Zoology, 5 (2): 792-795] ABSTRACT: The present paper mentions 9 species and subspecies belonging to 4 genera of the family Scoliidae (Insecta: Hymenoptera). They were collected from different parts of Fars province in the south of Iran. Of these, Dasyscolia ciliata ciliata (Fabricius, 1787) is new to the fauna of Iran and Near East. Additionally 4 species were recorded for the first time from Fars province. Synonyms and distributional data for each species are included. KEY WORDS: Distribution, Fars, Fauna, Hymenoptera, Iran, Scoliidae. The family Scoliidae belongs to the superfamily Vespoidea and contains approximately about 560 valid species, 220 subspecies distributed among 43 valid genera, 28 subgenera and 2 subfamilies (Osten, 2005b). They are solitary insect; both male and female are winged. They tend to be black, often marked with yellow or orange, and their wing tips are distinctively corrugated. The larvae are ectoparasitoids of the grubs of Scarabaeidae (Esmaili & Rastegar, 1954; Osten, 2000; Osten et al., 2003). The faunistic and taxonomic papers treated the family in Iran have been conducted by Tkalcu (1987), Esmaili & Rastegar (1954), Chahartaghi Abineh (2002). The Scoliid fauna of West Palaearctic was monographed by Osten (2000), who also provided geographic distribution and keys, for all taxa.
    [Show full text]
  • Download Kent Biodiversity Action Plan
    The Kent Biodiversity Action Plan A framework for the future of Kent’s wildlife Produced by Kent Biodiversity Action Plan Steering Group © Kent Biodiversity Action Plan Steering Group, 1997 c/o Kent County Council Invicta House, County Hall, Maidstone, Kent ME14 1XX. Tel: (01622) 221537 CONTENTS 1. BIODIVERSITY AND THE DEVELOPMENT OF THE KENT PLAN 1 1.1 Conserving Biodiversity 1 1.2 Why have a Kent Biodiversity Action Plan? 1 1.3 What is a Biodiversity Action Plan? 1.4 The approach taken to produce the Kent Plan 2 1.5 The Objectives of the Kent BAP 2 1.6 Rationale for selection of habitat groupings and individual species for plans 3 2. LINKS WITH OTHER INITIATIVES 7 2.1 Local Authorities and Local Agenda 21 7 2.2 English Nature's 'Natural Areas Strategy' 9 3. IMPLEMENTATION 10 3.1 The Role of Lead Agencies and Responsible Bodies 10 3.2 The Annual Reporting Process 11 3.3 Partnerships 11 3.4 Identifying Areas for Action 11 3.5 Methodology for Measuring Relative Biodiversity 11 3.6 Action Areas 13 3.7 Taking Action Locally 13 3.8 Summary 14 4. GENERIC ACTIONS 15 2.1 Policy 15 2.2 Land Management 16 2.3 Advice/Publicity 16 2.4 Monitoring and Research 16 5. HABITAT ACTION PLANS 17 3.1 Habitat Action Plan Framework 18 3.2 Habitat Action Plans 19 Woodland & Scrub 20 Wood-pasture & Historic Parkland 24 Old Orchards 27 Hedgerows 29 Lowland Farmland 32 Urban Habitats 35 Acid Grassland 38 Neutral & Marshy Grassland 40 Chalk Grassland 43 Heathland & Mire 46 Grazing Marsh 49 Reedbeds 52 Rivers & Streams 55 Standing Water (Ponds, ditches & dykes, saline lagoons, lakes & reservoirs) 58 Intertidal Mud & Sand 62 Saltmarsh 65 Sand Dunes 67 Vegetated Shingle 69 Maritime Cliffs 72 Marine Habitats 74 6.
    [Show full text]
  • Flora Montiberica 74 (VII-2019) ISSN 1138-5952 – Eissn 1988-799X
    FLORA MONTIBERICA Publicación periódica especializada en trabajos sobre la flora del Sistema Ibérico Vol. 74 Valencia, VII-2019 FLORA MONTIBERICA Publicación independiente sobre temas relacionados con la flora y la vegetación (plantas vasculares) de la Península Ibérica, especialmente de la Cordillera Ibérica y tierras vecinas. Fundada en diciembre de 1995, se publican tres volúmenes al año con una periodicidad cuatrimestral. Editor y redactor general: Gonzalo Mateo Sanz. Jardín Botánico. Universidad de Valencia. C/ Quart, 80. E-46008 Valencia. C.e.: [email protected] Redactor adjunto: Javier Fabado Alós (Jardín Botánico, Universidad de Valencia) Redactor página web y editor adjunto: José Luis Benito Alonso (Jolube Consultor Botánico y Editor, Jaca. www.jolube.es). Edición en Internet: www.floramontiberica.org, donde están las normas de publicación. Flora Montiberica.org es la primera revista de botánica en español que ofrece de forma gratuita todos sus contenidos a través de la red. Consejo editorial: Antoni Aguilella Palasí (Universidad de Valencia) Juan A. Alejandre Sáenz (Herbarium Alejandre, Vitoria) Vicente J. Arán Redó (Consejo Superior de Investigaciones Científicas, Madrid) Manuel Benito Crespo Villalba (Universidad de Alicante) Fermín del Egido Mazuelas (Universidad de León) José María de Jaime Lorén (Universidad Cardenal Herrera−CEU, Moncada) Emilio Laguna Lumbreras (Departamento de Medio Ambiente. Gobierno de la Comunidad Valenciana) M. Felisa Puche Pinazo (Universidad de Valencia) Editan: Flora Montiberica (Valencia) y Jolube Consultor Botánico y Editor (Jaca) ISSN papel: 1138–5952 — ISSN edición internet: 1988–799X Depósito Legal: V-5097-1995 Impreso en España por Quares Los contenidos de Flora Montiberica están indexados en: Desde 2014 los contenidos de Flora Montiberica están indexados en base de datos de resúmenes Scopus de la editorial Elsevier.
    [Show full text]
  • Polinizadores ···---··· Teacher’S & Environmental Educator’S Guide
    SOS Polinizadores ···---··· Teacher’s & environmental educator’s guide •1• General catalogue of official publications: http://publicacionesoficiales.boe.es Editorial CSIC: http://editorial.csic.es (email: [email protected]) Authors: Laura Jiménez, Clara Vignolo y Raquel Alsedo Text revision: Felipe Castilla English translation: Carlos Mota Layout & artwork: Pelopantón © CSIC Non-commercial publication e-NIPO: 694-18-006-2 This publication is included in the publishing programme of the former Ministry of Econ- omy, Industry and Competitiveness and published by the Ministry of Science, Innovation and Universities (in pursuance of the ministry restructuring set forth in Royal Decree 355/2018, of 6th June). The pictures contained herein shall be used for teaching purposes only. Dear teacher or environmental education: Thank you for reading these few lines, it means you are interested in pollinators. Our objective is that you are eager to pique this same curiosity among your students after reading them. SOS Polinizadores (SOS Pollinators) is a project aimed at promoting knowledge and study of pollinating insects in their ecosystems among both teachers and students, as well as their effect and impact on our lives and the threats faced by them. To that end, we propose a series of activities integrated in the school curriculum of primary and secondary education, respectively. They can also be implemented by professionals of environmental education in the context of non-formal education. Its methodological basis relies on enquiry-based learning, scientific thinking constituting the backbone thereof. By following this way of working, the students learn to look to nature, to ask themselves and to design ways to answer them, by reasoning and arguing the outcome thereof.
    [Show full text]
  • Dottorato Di Ricerca
    Università degli Studi di Cagliari DOTTORATO DI RICERCA IN SCIENZE E TECNOLOGIE DELLA TERRA E DELL'AMBIENTE Ciclo XXXI Patterns of reproductive isolation in Sardinian orchids of the subtribe Orchidinae Settore scientifico disciplinare di afferenza Botanica ambientale e applicata, BIO/03 Presentata da: Dott. Michele Lussu Coordinatore Dottorato Prof. Aldo Muntoni Tutor Dott.ssa Michela Marignani Co-tutor Prof.ssa Annalena Cogoni Dott. Pierluigi Cortis Esame finale anno accademico 2018 – 2019 Tesi discussa nella sessione d’esame Febbraio –Aprile 2019 2 Table of contents Chapter 1 Abstract Riassunto………………………………………………………………………………………….. 4 Preface ………………………………………………………………………………………………………. 6 Chapter 2 Introduction …………………………………………………………………………………………………. 8 Aim of the study…………………………………………………………………………………………….. 14 Chapter 3 What we didn‘t know, we know and why is important working on island's orchids. A synopsis of Sardinian studies……………………………………………………………………………………………………….. 17 Chapter 4 Ophrys annae and Ophrys chestermanii: an impossible love between two orchid sister species…………. 111 Chapter 5 Does size really matter? A comparative study on floral traits in two different orchid's pollination strategies……………………………………………………………………………………………………. 133 Chapter 6 General conclusions………………………………………………………………………………………... 156 3 Chapter 1 Abstract Orchids are globally well known for their highly specialized mechanisms of pollination as a result of their complex biology. Based on natural selection, mutation and genetic drift, speciation occurs simultaneously in organisms linking them in complexes webs called ecosystems. Clarify what a species is, it is the first step to understand the biology of orchids and start protection actions especially in a fast changing world due to human impact such as habitats fragmentation and climate changes. I use the biological species concept (BSC) to investigate the presence and eventually the strength of mechanisms that limit the gene flow between close related taxa.
    [Show full text]
  • Paul Harcourt Davies
    JOURNAL of the HARDY ORCHID SOCIETY Vol. 9 No. 2 (64) April 2012 What’s in a Face Paul Harcourt Davies Sooner or later any ardent orchid lover will sit on a hillside where there are swarms of Ophrys and be able to marvel at what a genetic rag-bag can go past under the guise of a single supposed ‘species’. The images that accompany this piece include varieties and hybrids of Ophrys fuciflora and Ophrys apifera. The O. apifera pic - tures are from various sites in ‘Europe’ in the widest sense. Some of those of O. fuci - flora are from a wonderful hillside in the French Jura where there were countless spikes and little else except the occasional Himantoglossum hircinum. Some are orchids that grow ‘just down the road’ from where I live in Umbria. It is my attempt to reveal the extraordinary diversity within single ‘species’ and maybe make people wonder a little about ‘names’ given to species and the putative parentage of what is so unusual that it seems to be a ‘hybrid’ − or is it? After about four decades of serious study, wandering over hillsides throughout the Mediterranean and Central Europe, I am circumspect about what I see. Yet, I read articles from so-called (and self-appointed) orchid experts (in English, French, Italian and German) who state confidently there are clearly genes of this or that Ophrys species present. Really: what is the evidence, how do you know what con - trols which bit of a labellum pattern or shape? Have those authors watched the same orchid populations over many years or even tried to hybridise artificially under lab conditions to see the result? Conjecture is one thing, but in the world of European orchids seemingly anyone can make claims and, without ‘peer review’, the claims pass into the literature.
    [Show full text]
  • Functional Significance of Labellum Pattern Variation in a Sexually Deceptive Orchid (Ophrys Heldreichii): Evidence of Individual Signature Learning Effects
    RESEARCH ARTICLE Functional Significance of Labellum Pattern Variation in a Sexually Deceptive Orchid (Ophrys heldreichii): Evidence of Individual Signature Learning Effects Kerstin Stejskal1*, Martin Streinzer2,3, Adrian Dyer4,5, Hannes F. Paulus1, Johannes Spaethe2 1 Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, Austria, 2 Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Wuerzburg, Würzburg, Germany, 3 current address: Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Vienna, Austria, 4 Department of Physiology, Monash University, Clayton, Australia, 5 School of Media and Communication, RMIT University, Melbourne, Australia * [email protected] OPEN ACCESS Abstract Citation: Stejskal K, Streinzer M, Dyer A, Paulus HF, Spaethe J (2015) Functional Significance of Labellum Mimicking female insects to attract male pollinators is an important strategy in sexually Pattern Variation in a Sexually Deceptive Orchid (Ophrys heldreichii): Evidence of Individual Signature deceptive orchids of the genus Ophrys, and some species possess flowers with conspicu- Learning Effects. PLoS ONE 10(11): e0142971. ous labellum patterns. The function of the variation of the patterns remains unresolved, with doi:10.1371/journal.pone.0142971 suggestions that these enhance pollinator communication. We investigated the possible Editor: Renee M. Borges, Indian Institute of Science, function of the labellum pattern in Ophrys heldreichii, an orchid species in which the con- INDIA spicuous and complex labellum pattern contrasts with a dark background. The orchid is pol- Received: April 23, 2015 linated exclusively by males of the solitary bee, Eucera berlandi. Comparisons of labellum Accepted: October 29, 2015 patterns revealed that patterns within inflorescences are more similar than those of other conspecific plants.
    [Show full text]
  • Development of New Sustainable Sahlep Production Methods Using Ophrys Sphegodes Subsp
    J. Agr. Sci. Tech. (2019) Vol. 21(6): 1547-1555 Development of New Sustainable Sahlep Production Methods Using Ophrys sphegodes subsp. mammosa (Desf.) Soo ex E. Nelson O. Caliskan1*, D. Kurt1, and C. Cirak1 ABSTRACT Tubers of the tuberous orchids have been collected for centuries, and used for medicinal purposes as well as in beverage and ice-cream industry. These orchids (Sahlep orchids) cannot be propagated vegetatively as they generally do not yield more than one tuber in a year. Seeds do not have microscopic endosperms; they have quite small chance of germination and successful establishment. These orchids are not cultivated and are usually collected from natural populations. Therefore, they are under threat of extinction and thus are placed under protection worldwide with national and international treaties. In this study, specimens of the threatened orchid taxa Ophrys sphegodes subsp. mammosa (Desf.) Soo ex E. Nelson orchid, were stimulated to grow tuber twice in a single vegetation period. Plants’ ability to develop new tubers was tested and a new propagation method was proposed for the first time worldwide. Plants harvested at the beginning, middle, and end of flowering period were re-planted. It was observed that the plants harvested at early flowering were able to develop new tubers when they were re-planted in their original places. At the end of their annual life cycle, the number of tubers that were produced by the plants harvested at the three subsequent harvest periods were 2.21, 2.10, and 1.04. Quality of the tubers of the 2nd harvest was also tested in this study to use them as propagation material for the subsequent season, and positive outcomes were achieved.
    [Show full text]