Supersymmetric Dark Matter Candidates in Light of Constraints from Collider and Astroparticle Observables Jonathan Da Silva
Total Page:16
File Type:pdf, Size:1020Kb
Supersymmetric Dark Matter candidates in light of constraints from collider and astroparticle observables Jonathan da Silva To cite this version: Jonathan da Silva. Supersymmetric Dark Matter candidates in light of constraints from collider and astroparticle observables. High Energy Physics - Phenomenology [hep-ph]. Université de Grenoble, 2013. English. NNT : 2013GRENY033. tel-00912650v2 HAL Id: tel-00912650 https://tel.archives-ouvertes.fr/tel-00912650v2 Submitted on 19 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE` Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE´ DE GRENOBLE Specialit´ e´ : Physique Theorique´ Arretˆ e´ ministeriel´ : 7 aoutˆ 2006 Present´ ee´ par Jonathan DA SILVA These` dirigee´ par Genevieve` BELANGER´ prepar´ ee´ au sein du Laboratoire d’Annecy-le-Vieux de Physique Theorique´ (LAPTh) et de l’Ecole´ Doctorale de Physique de Grenoble Supersymmetric Dark Matter candidates in light of constraints from collider and astroparticle observables These` soutenue publiquement le 3 juillet 2013, devant le jury compose´ de : Dr. Rohini GODBOLE Professeur, CHEP Bangalore, Inde, Presidente´ Dr. Farvah Nazila MAHMOUDI Maˆıtre de Conferences,´ LPC Clermont, Rapporteur Dr. Ulrich ELLWANGER Professeur, LPT Orsay, Rapporteur Dr. Celine´ BŒHM Charge´ de recherche, Durham University, Royaume-Uni, Examinatrice Dr. Anupam MAZUMDAR Professeur, Lancaster University, Royaume-Uni, Examinateur Dr. Genevieve` BELANGER´ Directeur de Recherche, LAPTh, Directeur de these` A meus av´os. Contents Acknowledgements - Remerciements vii List of Figures xi List of Tables xvii List of Abbreviations xix List of Publications xxiii Introduction 1 I Status of particle physics and cosmology ... and beyond 5 1 From the infinitely small : the Standard Model of particle physics ... 7 1.1 Buildingofthemodel: gaugesector . .. 8 1.2 Mattersector ................................. 10 1.2.1 Leptons ................................ 10 1.2.2 Quarks................................. 12 1.3 TheHiggsmechanism ............................ 13 1.4 Fullstandardpicture ............................. 16 1.5 SuccessesoftheSM.............................. 18 1.6 SMissues ................................... 19 1.6.1 Theoreticalproblems . 19 1.6.2 Experimentaldiscrepancies. 20 1.6.3 Cosmologicalconnexion . 22 2 ... To the infinitely large : the Lambda Cold Dark Matter model 23 2.1 Theoreticalframework . 24 2.1.1 Cosmological principle and its consequences . .... 24 2.1.2 Cosmologicalparameters . 26 2.2 Cosmologicalobservations . .. 27 2.2.1 Methods................................ 27 2.2.2 Success of the ΛCDMmodel..................... 27 i 2.3 DarkMatter.................................. 29 2.3.1 DMevidences............................. 30 2.3.2 Equilibrium .............................. 31 2.3.3 Freeze-out ............................... 34 2.3.4 Precisecalculation . 34 2.4 Cosmicinflation................................ 35 2.4.1 Cosmologicalpuzzles . 35 2.4.2 InflationaryUniverse . 36 2.4.3 Cosmological perturbations and constraints . ..... 37 2.5 Thermal history of the Universe in the ΛCDMmodel ........... 38 2.6 ΛCDMdrawbacks .............................. 39 2.7 Some solutions to the ΛCDMandSMissues . 40 3 Supersymmetry 43 3.1 SUSYresponsestoSMproblems . 44 3.2 Elements on the theoretical construction of exact SUSY . ........ 45 3.2.1 Super-Poincar´ealgebra . 46 3.2.2 Chiralsupermultiplet. 48 3.2.3 Gaugesupermultiplet. 49 3.3 SUSYbreaking ................................ 50 3.4 The Minimal Supersymmetric Standard Model . ... 51 3.4.1 Lagrangianatlowenergy. 51 3.4.2 Higgssector.............................. 53 3.4.3 Sfermionsector ............................ 54 3.4.4 Gauginoandhiggsinosector . 55 3.4.4.1 Gluinosandcharginos . 55 3.4.4.2 Neutralinos ......................... 55 3.5 ConstraintsonSUSY............................. 56 3.5.1 Cosmological and astroparticle constraints . ...... 57 3.5.1.1 DMDirectDetection. 57 3.5.1.2 DMIndirectDetection . 59 3.5.2 Colliderconstraints . 60 3.5.2.1 Bounds on supersymmetric particles . 60 3.5.2.2 Lowenergyobservables . 61 II Neutralino Dark Matter in the (N)MSSM 63 4 Unification with non-universal Higgs masses and the supersymmetric inflaton 65 4.1 Introduction.................................. 66 4.2 Gravity-mediationofSUSYbreaking . .. 66 4.2.1 TheNUHM2model.......................... 67 4.2.2 Benchmark points with neutralino DM in the NUHM2 . 67 ii 4.2.3 Abroaderscanoftheparameterspace . 70 4.2.3.1 A Markov Chain Monte Carlo inspired algorithm . 70 4.2.3.2 Characteristicsofthescan . 72 4.2.3.3 Results ........................... 73 4.3 Supersymmetricinflaton . 78 4.3.1 Inflaton candidates : flat directions of squarks and sleptons . 79 4.3.2 Gaussian fluctuations and tensor to scalar ratio . ..... 82 4.3.3 RenormalizationGroupEquations. 83 4.3.4 IndirectdetectionoftheinflatonatLHC . 84 4.3.4.1 Inflatonmassforbenchmarkpoints . 85 4.3.4.2 LHCpredictionsandInflatonmass . 85 4.4 Conclusions .................................. 87 5 The phenomenological MSSM confronting Indirect Detection of Dark Matter 89 5.1 Introduction.................................. 90 5.2 Anti-proton and γ-ray bounds on σDM DM W +W − ............ 91 → 5.2.1 Generic bounds on σDM DM W +W − fromp ¯ ............ 91 → 5.2.2 Generic bounds on σDM DM W +W − fromgamma-rays . 95 5.2.2.1 Continuum .........................→ 95 5.2.2.2 Internal bremsstrahlung and final state radiation . ... 95 5.2.2.3 Line(s)............................ 96 5.3 Chargino-neutralinomassdegeneracy . ..... 96 + 5.3.1 Neutralino pair annihilations into W W − ............. 96 5.3.2 Exploring the supersymmetric parameter space . .... 97 5.4 Results..................................... 99 5.4.1 BoundsontheNLSP-LSPmasssplitting . 99 5.4.2 FinalstateradiationinthepMSSM . 105 5.4.3 130GeVline ............................. 106 5.4.4 ThecaseofnoDMregeneration . 107 5.5 Conclusions .................................. 108 6 Direct SUSY searches at LHC and a singlet extension of the MSSM 111 6.1 Going beyond the minimal supersymmetric scenario . ....... 112 6.1.1 The µ-problem ............................ 112 6.1.2 MSSMlimitations........................... 112 6.1.3 TheNext-to-MSSM.......................... 113 6.2 PreviousscansontheNMSSMparameterspace . .. 114 6.3 SquarksandgluinossearchesattheLHC . .. 115 ✚ 6.3.1 Relevant NMSSM region in light of ATLAS jets + ✚ET searches . 116 6.3.2 Lightsquarkmasses . 116 6.4 HiggsbosonsignalstrengthwithlightLSP . .... 119 6.5 ThecaseofheavyLSP ............................ 122 6.6 Conclusions .................................. 123 iii III U(1) extensions of the MSSM 125 7 The UMSSM 127 7.1 Another solution to the µ-problem ...................... 128 7.2 An E6 inspiredmodel............................. 128 7.3 DescriptionoftheUMSSM. 129 7.3.1 Gaugebosons ............................. 131 7.3.2 Higgssector.............................. 133 7.3.3 Sfermions ............................... 136 7.3.4 Neutralinos .............................. 137 7.4 ConstraintsontheUMSSM . 137 7.4.1 Collider constraints on the Z′ .................... 137 7.4.2 Other constraints on Z′ physics ................... 139 8 The Right-Handed sneutrino as thermal Dark Matter in the UMSSM141 8.1 Introduction.................................. 142 8.2 Constraintsimposed ............................. 144 8.3 Relicabundanceofsneutrinos . .. 145 8.4 DirectDetection ............................... 147 8.5 Results..................................... 149 8.5.1 The case of the U(1)ψ model..................... 149 8.5.1.1 A case study with MZ2 = 1.6TeV............. 149 8.5.1.2 Exploration of U(1)ψ parameterspace . 152 8.5.2 The case of the U(1)η model..................... 154 8.5.2.1 A case study with MZ2 = 1.6TeV............. 155 8.5.2.2 Exploration of U(1)η parameterspace . 156 8.5.3 Aglobalscanoftheparameterspace . 158 8.6 Conclusions .................................. 160 9 The Higgs sector and low energy observables in the UMSSM 163 9.1 TheHiggssectorintheUMSSM. 164 9.1.1 Radiative corrections through an effective potential ........ 164 9.1.2 Higgs bosons signal strengths in the UMSSM. 166 9.2 FlavourconstraintsontheUMSSM . 169 9.2.1 B(B± τ ±ντ )............................ 169 0 → + 9.2.2 B(B µ µ−)............................ 171 s → 9.2.3 ∆Ms and ∆Md ............................ 173 0 9.2.4 B(B¯ Xsγ)............................. 175 0 → + 9.2.5 B(B¯ X µ µ−).......................... 178 → s 9.3 The anomalous magnetic moment of the muon in the UMSSM . .. 179 9.3.1 Standardprediction. 179 9.3.2 Newcontributions .......................... 181 9.4 Scanning the U(1)η parameters ....................... 184 9.5 Numericalresults ............................... 185 iv 9.6 Discussion................................... 187 Conclusion 189 Appendices 193 A Cross section sneutrinos - nucleons : gauge bosons contribution . 195 B Radiative corrections in the Higgs sector `ala Coleman-Weinberg ..... 197 C Gaugeinvariance: Goldstonesandghosts . .. 199 C.1 Gauge fixing : Goldstone of Z and Z′ ................ 199 C.2 Fadeev-Popovghosts