Effects of Two Grass Species on the Composition of Soil Fungal Communities

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Two Grass Species on the Composition of Soil Fungal Communities Biol Fertil Soils DOI 10.1007/s00374-013-0810-x ORIGINAL PAPER Effects of two grass species on the composition of soil fungal communities B. Mouhamadou & J. Puissant & E. Personeni & M. Desclos-Theveniau & E. M. Kastl & M. Schloter & L. Zinger & J. Roy & R. A. Geremia & S. Lavorel Received: 17 January 2013 /Revised: 5 April 2013 /Accepted: 10 April 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract Many studies have shown effects of plants spe- in fungal communities coincide with differing strategies cies on fungal communities, but these are often confounded of plant root growth, with D. glomerata having greater with soil effects. Thus, the specific role of plant species in root mass, length, and area than F. paniculata. Our study, by structuring rhizospheric and soil fungal communities is dissociating soil effects from plant effects, demonstrated poorly described. Our study used microcosms in which that plant species exert a key control on soil fungi. We plants were grown under artificial conditions to bridge this suggest that such effects may be linked to inter-specific gap. Two perennial grasses dominating subalpine grass- differences in root traits and their consequences on lands, Festuca paniculata and Dactylis glomerata,were nitrogen uptake. grown at two levels of fertilization on standard soil. Fungal communities were determined by 454 pyrosequencing of the Keywords Plant species . Fungal community structure . internal transcribed spacer 1 region. Among the fungal Nitrogen fertilization . Plant growth strategy communities characterized by the primers used, original communities were associated to each plant species and also diverged between rhizosphere and bulk soils within each Introduction plant species, though there were no significant fertilization effects. Differences regarded global composition of the Soil fungi are involved in various biological processes and fungal communities and abundant molecular operational control transformation of organic matter and nutrient avail- taxonomic units (MOTUs). Both plant species and loca- ability (Falkowski et al. 2008;Singhetal.2010). The tion effects were reflected more in the abundance than network of fungal hyphae is essential for the conservation in the composition of MOTUs. The observed differences of the soil structure (Rillig and Mummey 2006). Mycorrhi- zal fungi colonize plant roots and enhance plant productivity by facilitating plant nutrient uptake (Wardle et al. 2004; Electronic supplementary material The online version of this article van der Heijden et al. 2008), as well as conferring plant (doi:10.1007/s00374-013-0810-x) contains supplementary material, which is available to authorized users. resistance or tolerance to biotic and abiotic stresses : : : : (root pathogens, heavy metals, drought) (Clark and Zeto B. Mouhamadou J. Puissant L. Zinger J. Roy 2000; Turnau and Haselwandter 2002). Pathogenic fungi R. A. Geremia (*) : S. Lavorel Laboratoire d’Ecologie Alpine, UMR 5553 UJF/CNRS, Université may nevertheless have negative effects on ecosystem Joseph Fourier, BP 53, 38041 Grenoble cedex 9, France functioning by reducing plant productivity (van der Heijden e-mail: [email protected] et al. 2008). Because of this importance of fungi for ecosystem pro- E. Personeni : M. Desclos-Theveniau INRA, UMR950 Ecophysiologie Végétale Agronomie et nutrition cesses, a number of studies have sought to identify and N, C, S, 14032 Caen cedex, France quantify the key factors that regulate the structure and : diversity of soil fungal communities. Among these, it has E. M. Kastl M. Schloter been shown that plant species identity influences the com- Research Unit for Environmental Genomics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, position and the abundance of soil fungal communities. For 85758 Oberschleissheim, Germany example, studies conducted by Costa et al. (2006) using Biol Fertil Soils molecular fingerprints have shown the effect of plant spe- structure in bulk soil and rhizosphere under different cies on fungal rhizosphere communities of strawberry and N-fertilization regimes. oilseed. Similarly, Arfi et al. (2012)demonstratedina mangrove ecosystem that the distribution of fungal commu- nities was influenced by plant host specificity. More gener- Methods ally, numerous studies have indicated the effects of plant species on soil fungal communities (Grayston et al. 1998; Experimental setup Bardgett et al. 1999; Innes et al. 2004). In general, the ability of plant species to influence soil fungal communities may be Living plant individuals were collected in summer 2009 related to their ecophysiological traits (Wardle et al. 1998) from a semi-natural grassland site in the upper Romanche or to their response to stress (Bouasria et al. 2012). Plants valley (Central French Alps, 45.041 N 6.341E, 1,650– may influence soil fungi through species-specific interac- 2,000 m a.s.l.), where D. glomerata and F. paniculata are tions (van der Heijden et al. 2008) and through their pro- among the dominants. Their roots were thoroughly washed duction of litter and root exudates (Bais et al. 2006; Millard under tap water, and the plants were clipped at 6 cm above- and Singh 2010), which vary quantitatively and qualitative- ground and 4 cm belowground. The plants were then grown ly between plant species (Gransee and Wittenmayer 2000), for 2 months in hydroponic conditions (i.e., perlite with 1/4 resulting in a unique and singular environment for soil strength Hoagland solution renewed every week). Root microorganisms (Bertin et al. 2003; Berg and Smalla washing, root clipping, and growth in hydroponic condi- 2009). The array of root-derived substances is diverse and tions were intended to reduce the carryover of fungi from includes signal molecules such as flavonoids that directly the original soil. [or indirectly] influence fungi and bacteria (Akiyama and Plants for the quantification of fungal communities were Hayashi 2006; Standing and Killham 2007; Steinkellner et grown in root boxes made of polyvinyl chloride. They al. 2007; Cesco et al. 2012). consisted of a soil compartment (29×17.5×1 cm) The degree of plant-derived effects on fungal communi- (Personeni et al. 2007). The soil compartment was filled ties, however, is strongly linked to soil organic matter con- with 1 kg of sieved (5 mm) soil, adjusted to 40 % of the tent (Zinger et al. 2011), to management (fertilization or maximal water holding capacity. We used a soil with loamy tillage), and to local climate conditions (Lekberg et al. sand texture, collected from a grassland at the Helmoltz 2007; Millard and Singh 2010; Lekberg et al. 2011; Schnoor Zentrum experimental station in Scheyern (Germany, et al. 2011). For example, Bezemer et al. (2006) demonstrat- 479 m a.s.l., 48°30′N, 11°28′E). Soil was taken in a depth ed that effects of plant species on microbial communities of 10–20 cm and is characterized by a pH value of 6.1, a significantly differed when they were grown in different soil total N content of 0.15 %, a total C content of 1.47 % (C/N types. Hence, it is very difficult to dissociate specific plant ratio 10.1), a nitrate content of 5.4 mg kg−1, and an ammo- effects from soil effects and to conclude that plant effects are nium content of 6.5 mg kg−1. The soil texture has been modulated by soil properties. characterized as 54 % sand, 32 % silt, and 14 % clay. In addition to plant species, N fertilization has also been Two plants of the same species were placed in the soil postulated as a factor that influences microbial communities compartment of each root box. Plants were grown for 4 weeks by promoting the relative abundance of bacteria over fungi, under artificial lighting (400-W high-pressure sodium lamps, as well as affecting the diversity within bacterial and fungal Philips Son-T-pia Agro) providing 450 μmol m−2 s−1 photo- functional groups (Bardgett et al. 1999; Allison et al. 2007). synthetically active radiation at plant height with a 16/8-h Nitrogen fertilization could directly modify soil microorgan- photoperiod cycle. Air temperature was kept at 20/16±2 °C isms by affecting mycorrhizal fungi and decomposers (day/night). Throughout the experiment (4 weeks), soil mois- through the repression of enzyme activity (Fog 1988; ture was kept constant by watering the boxes every 2 days. Donnison et al. 2000; Frey et al. 2004). Moreover, because Boxes were randomized each day to avoid any positional fertility alters plant traits and thereby ecosystem functioning effect. Root boxes were supplied three times with the 1/4 (Wardle et al. 1998; Lavorel et al. 2011; Pakeman 2011), Hoagland solution without N. Half of the boxes received fertilization effects on soil microorganism communities may overall 18.92 mg of NH4NO3. In total, 12 root boxes (2 plant also be mediated by plant trait effects on soil microorgan- species×2 fertilization levels×3 replicates) were used. Plants isms (De Deyn et al. 2011). were harvested after 4 weeks for measurements of root In this study, we used microcosms for plant growth morphology. and a barcoding approach based on 454 sequencing of The mycorrhizal status of the root of each plant sample the internal transcribed spacer (ITS) 1 region, to inves- was examined by microscopic observation after staining tigate the influence of two perennial grasses, Festuca with Trypan Blue (Phillips and Hayman 1970; Trouvelot paniculata and Dactylis glomerata, on fungal community et al. 1986). For the analysis of fungal community structure, Biol Fertil Soils soil sticking to roots was considered as rhizosphere soil. It positions correspond to the different tags. The PCR reac- was collected after strongly shaking the root systems. Bulk tions were carried out in 25 μl reaction mixtures containing soil was sampled in the soil zones where no root was 10 ng of fungal DNA, 4 mM of both primers, 200 mM of detected. Rhizosphere and bulk soils for fungal analysis each dNTP, 1 U of Ampli Taq Gold DNA polymerase, and were stored immediately after sampling at −80 °C; bulk 2.5 μl of PCR buffer (Applied Biosystems, Courtaboeuf, soils for the chemical analysis were kept at 4 °C.
Recommended publications
  • Bodenmikrobiologie (Version: 07/2019)
    Langzeitmonitoring von Ökosystemprozessen - Methoden-Handbuch Modul 04: Bodenmikrobiologie (Version: 07/2019) www.hohetauern.at Impressum Impressum Für den Inhalt verantwortlich: Dr. Fernando Fernández Mendoza & Prof. Mag Dr. Martin Grube Institut für Biologie, Bereich Pflanzenwissenschaften, Universität Graz, Holteigasse 6, 8010 Graz Nationalparkrat Hohe Tauern, Kirchplatz 2, 9971 Matrei i.O. Titelbild: Ein Transekt im Untersuchungsgebiet Innergschlöss (2350 m üNN) wird im Jahr 2017 beprobt. © Newesely Zitiervorschlag: Fernández Mendoza F, Grube M (2019) Langzeitmonitoring von Ökosystemprozessen im Nationalpark Hohe Tauern. Modul 04: Mikrobiologie. Methoden-Handbuch. Verlag der Österreichischen Akademie der Wissenschaften, Wien. ISBN-Online: 978-3-7001-8752-3, doi: 10.1553/GCP_LZM_NPHT_Modul04 Weblink: https://verlag.oeaw.ac.at und http://www.parcs.at/npht/mmd_fullentry.php?docu_id=38612 Inhaltsverzeichnis Zielsetzung ...................................................................................................................................................... 1 Inhalt Vorbereitungsarbeit und benötigtes Material ................................................................................................... 2 a. Materialien für die Probenahme und Probenaufbewahrung ................................................................ 2 b. Materialien und Geräte für die Laboranalyse ...................................................................................... 2 Arbeitsablauf ...................................................................................................................................................
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • The Fungi of Slapton Ley National Nature Reserve and Environs
    THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546).
    [Show full text]
  • 454 Pyrosequencing Analysis of Fungal Assemblages from Geographically Distant, Disparate Soils Reveals Spatial Patterning and a Core Mycobiome
    Diversity 2013, 5, 73-98; doi:10.3390/d5010073 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article 454 Pyrosequencing Analysis of Fungal Assemblages from Geographically Distant, Disparate Soils Reveals Spatial Patterning and a Core Mycobiome Alberto Orgiazzi 1,2, Valeria Bianciotto 2, Paola Bonfante 1,2, Stefania Daghino 1, Stefano Ghignone 2, Alexandra Lazzari 1, Erica Lumini 2, Antonietta Mello 2, Chiara Napoli 1, Silvia Perotto 1, Alfredo Vizzini 1, Simonetta Bagella 3, Claude Murat 4 and Mariangela Girlanda 1,* 1 Department of Life Science and Systems Biology, University of Turin, Torino 10125, Italy; E-Mails: [email protected] (A.O.); [email protected] (P.B.); [email protected] (S.D.); [email protected] (A.L.); [email protected] (C.N.); [email protected] (S.P.); [email protected] (A.V.) 2 Plant Protection Institute (IPP)-Turin UOS, National Research Council (CNR), Torino 10125, Italy; E-Mails: [email protected] (V.B.); [email protected] (S.G.); [email protected] (E.L.); [email protected] (A.M.) 3 Department of Scienze della Natura e del Territorio, University of Sassari, Sassari 07100, Italy; Nucleo di Ricerca sulla Desertificazione—NRD, University of Sassari, Sassari 07100, Italy; E-Mail: [email protected] 4 INRA, UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, Champenoux 54280, France; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-011-670-5968; Fax: +39-011-670-5962.
    [Show full text]
  • Coprophilous Fungal Community of Wild Rabbit in a Park of a Hospital (Chile): a Taxonomic Approach
    Boletín Micológico Vol. 21 : 1 - 17 2006 COPROPHILOUS FUNGAL COMMUNITY OF WILD RABBIT IN A PARK OF A HOSPITAL (CHILE): A TAXONOMIC APPROACH (Comunidades fúngicas coprófilas de conejos silvestres en un parque de un Hospital (Chile): un enfoque taxonómico) Eduardo Piontelli, L, Rodrigo Cruz, C & M. Alicia Toro .S.M. Universidad de Valparaíso, Escuela de Medicina Cátedra de micología, Casilla 92 V Valparaíso, Chile. e-mail <eduardo.piontelli@ uv.cl > Key words: Coprophilous microfungi,wild rabbit, hospital zone, Chile. Palabras clave: Microhongos coprófilos, conejos silvestres, zona de hospital, Chile ABSTRACT RESUMEN During year 2005-through 2006 a study on copro- Durante los años 2005-2006 se efectuó un estudio philous fungal communities present in wild rabbit dung de las comunidades fúngicas coprófilos en excementos de was carried out in the park of a regional hospital (V conejos silvestres en un parque de un hospital regional Region, Chile), 21 samples in seven months under two (V Región, Chile), colectándose 21 muestras en 7 meses seasonable periods (cold and warm) being collected. en 2 períodos estacionales (fríos y cálidos). Un total de Sixty species and 44 genera as a total were recorded in 60 especies y 44 géneros fueron detectados en el período the sampling period, 46 species in warm periods and 39 de muestreo, 46 especies en los períodos cálidos y 39 en in the cold ones. Major groups were arranged as follows: los fríos. La distribución de los grandes grupos fue: Zygomycota (11,6 %), Ascomycota (50 %), associated Zygomycota(11,6 %), Ascomycota (50 %), géneros mitos- mitosporic genera (36,8 %) and Basidiomycota (1,6 %).
    [Show full text]
  • Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes
    University of Rhode Island DigitalCommons@URI Biological Sciences Faculty Publications Biological Sciences 9-26-2018 Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Christopher E. Lane Et Al Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Sina M. Adla,* , David Bassb,c , Christopher E. Laned, Julius Lukese,f , Conrad L. Schochg, Alexey Smirnovh, Sabine Agathai, Cedric Berneyj , Matthew W. Brownk,l, Fabien Burkim,PacoCardenas n , Ivan Cepi cka o, Lyudmila Chistyakovap, Javier del Campoq, Micah Dunthornr,s , Bente Edvardsent , Yana Eglitu, Laure Guillouv, Vladimır Hamplw, Aaron A. Heissx, Mona Hoppenrathy, Timothy Y. Jamesz, Anna Karn- kowskaaa, Sergey Karpovh,ab, Eunsoo Kimx, Martin Koliskoe, Alexander Kudryavtsevh,ab, Daniel J.G. Lahrac, Enrique Laraad,ae , Line Le Gallaf , Denis H. Lynnag,ah , David G. Mannai,aj, Ramon Massanaq, Edward A.D. Mitchellad,ak , Christine Morrowal, Jong Soo Parkam , Jan W. Pawlowskian, Martha J. Powellao, Daniel J. Richterap, Sonja Rueckertaq, Lora Shadwickar, Satoshi Shimanoas, Frederick W. Spiegelar, Guifre Torruellaat , Noha Youssefau, Vasily Zlatogurskyh,av & Qianqian Zhangaw a Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, S7N 5A8, SK, Canada b Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
    [Show full text]
  • Corylomyces: a New Genus of Sordariales from Plant Debris in France
    mycological research 110 (2006) 1361–1368 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres Corylomyces: a new genus of Sordariales from plant debris in France Alberto M. STCHIGELa,*, Josep CANOa, Andrew N. MILLERb, Misericordia CALDUCHa, Josep GUARROa aUnitat de Microbiologia, Facultat de Medicina i Cie`ncies de la Salut, Universitat Rovira i Virgili, C/Sant Llorenc¸ 21, 43201 Reus, Spain bIllinois Natural History Survey, Center for Biodiversity, 1816 South Oak Street, Champaign, Illinois 61820, USA article info abstract Article history: The new genus Corylomyces, isolated from the surface of a hazelnut (Corylus avellana) in the Received 1 June 2006 French Pyrenees, is described, illustrated and compared with morphologically similar taxa. Received in revised form It is characterised by tomentose, ostiolate ascomata possessing long necks composed of 25 July 2006 erect to sinuose hairs, and one- or two-celled, opaque, lunate to reniform ascospores. Anal- Accepted 12 August 2006 yses of the SSU and LSU fragments rDNA gene sequences support its placement in the Published online 27 October 2006 Lasiosphaeriaceae (Sordariales). Corresponding Editor: ª 2006 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. David L. Hawksworth Keywords: Ascomycota Lasiosphaeriaceae Molecular phylogeny Introduction Materials and methods During a survey of ascomycetes from soil and plant debris Sampling and fungal isolation along the French Pyrenees, a rare fungus was found that was morphologically similar to members of Sordariales. It pos- Plant debris samples were collected in the ‘foreˆt communale’ sesses a combination of features that do not fit any other ge- of Saint Pe´ de Bigorre, Hautes Pyre´ne´es, France (ca 43 070N, nus in the order; it is therefore, described as a new genus.
    [Show full text]
  • Freshwater Fungi from the River Nile, Egypt
    Mycosphere 7 (5): 741–756 (2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/7/6/4 Copyright © Guizhou Academy of Agricultural Sciences Freshwater fungi from the River Nile, Egypt Abdel-Aziz FA Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt Abdel-Aziz FA 2016 – Freshwater fungi from the River Nile, Egypt. Mycosphere 7(6), 741–756, Doi 10.5943/mycosphere/7/6/4 Abstract This study represents the first published data of freshwater fungi from the River Nile in Egypt. Knowledge concerning the geographic distribution of freshwater ascomycetes and their asexual morphs in Egypt and in the Middle East is limited. Ninety-nine taxa representing 42 sexual ascomycetes, 55 asexual taxa and two basidiomycetes were identified from 959 fungal collections recorded from 400 submerged samples. Samples were randomly collected from the River Nile, in Sohag, Egypt in the winter and summer between December 2010 and August 2014. Fifty-eight taxa (22 sexual ascomycetes and 36 asexual taxa) were collected during winter, while 60 taxa (25 sexual ascomycetes, 33 asexual taxa and two basidiomycetes) were collected in summer season. Of the 99 taxa recorded, 50 are new records for Egypt, including five new genera and 30 new species., Three new genera and ten new species were described in previous articles. Fungi recorded from the two seasons were markedly different, with only 19 species common to both winter and summer collections. Asexual fungi dominated the fungal community during the two seasons. Taxonomical placements of 33 species were confirmed by molecular data based on LSU and SSU rDNA genes.
    [Show full text]
  • Molecular Systematics of the Sordariales: the Order and the Family Lasiosphaeriaceae Redefined
    Mycologia, 96(2), 2004, pp. 368±387. q 2004 by The Mycological Society of America, Lawrence, KS 66044-8897 Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae rede®ned Sabine M. Huhndorf1 other families outside the Sordariales and 22 addi- Botany Department, The Field Museum, 1400 S. Lake tional genera with differing morphologies subse- Shore Drive, Chicago, Illinois 60605-2496 quently are transferred out of the order. Two new Andrew N. Miller orders, Coniochaetales and Chaetosphaeriales, are recognized for the families Coniochaetaceae and Botany Department, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605-2496 Chaetosphaeriaceae respectively. The Boliniaceae is University of Illinois at Chicago, Department of accepted in the Boliniales, and the Nitschkiaceae is Biological Sciences, Chicago, Illinois 60607-7060 accepted in the Coronophorales. Annulatascaceae and Cephalothecaceae are placed in Sordariomyce- Fernando A. FernaÂndez tidae inc. sed., and Batistiaceae is placed in the Euas- Botany Department, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605-2496 comycetes inc. sed. Key words: Annulatascaceae, Batistiaceae, Bolini- aceae, Catabotrydaceae, Cephalothecaceae, Ceratos- Abstract: The Sordariales is a taxonomically diverse tomataceae, Chaetomiaceae, Coniochaetaceae, Hel- group that has contained from seven to 14 families minthosphaeriaceae, LSU nrDNA, Nitschkiaceae, in recent years. The largest family is the Lasiosphaer- Sordariaceae iaceae, which has contained between 33 and 53 gen- era, depending on the chosen classi®cation. To de- termine the af®nities and taxonomic placement of INTRODUCTION the Lasiosphaeriaceae and other families in the Sor- The Sordariales is one of the most taxonomically di- dariales, taxa representing every family in the Sor- verse groups within the Class Sordariomycetes (Phy- dariales and most of the genera in the Lasiosphaeri- lum Ascomycota, Subphylum Pezizomycotina, ®de aceae were targeted for phylogenetic analysis using Eriksson et al 2001).
    [Show full text]
  • An All-Taxa Biodiversity Inventory of the Huron Mountain Club
    AN ALL-TAXA BIODIVERSITY INVENTORY OF THE HURON MOUNTAIN CLUB Version: August 2016 Cite as: Woods, K.D. (Compiler). 2016. An all-taxa biodiversity inventory of the Huron Mountain Club. Version August 2016. Occasional papers of the Huron Mountain Wildlife Foundation, No. 5. [http://www.hmwf.org/species_list.php] Introduction and general compilation by: Kerry D. Woods Natural Sciences Bennington College Bennington VT 05201 Kingdom Fungi compiled by: Dana L. Richter School of Forest Resources and Environmental Science Michigan Technological University Houghton, MI 49931 DEDICATION This project is dedicated to Dr. William R. Manierre, who is responsible, directly and indirectly, for documenting a large proportion of the taxa listed here. Table of Contents INTRODUCTION 5 SOURCES 7 DOMAIN BACTERIA 11 KINGDOM MONERA 11 DOMAIN EUCARYA 13 KINGDOM EUGLENOZOA 13 KINGDOM RHODOPHYTA 13 KINGDOM DINOFLAGELLATA 14 KINGDOM XANTHOPHYTA 15 KINGDOM CHRYSOPHYTA 15 KINGDOM CHROMISTA 16 KINGDOM VIRIDAEPLANTAE 17 Phylum CHLOROPHYTA 18 Phylum BRYOPHYTA 20 Phylum MARCHANTIOPHYTA 27 Phylum ANTHOCEROTOPHYTA 29 Phylum LYCOPODIOPHYTA 30 Phylum EQUISETOPHYTA 31 Phylum POLYPODIOPHYTA 31 Phylum PINOPHYTA 32 Phylum MAGNOLIOPHYTA 32 Class Magnoliopsida 32 Class Liliopsida 44 KINGDOM FUNGI 50 Phylum DEUTEROMYCOTA 50 Phylum CHYTRIDIOMYCOTA 51 Phylum ZYGOMYCOTA 52 Phylum ASCOMYCOTA 52 Phylum BASIDIOMYCOTA 53 LICHENS 68 KINGDOM ANIMALIA 75 Phylum ANNELIDA 76 Phylum MOLLUSCA 77 Phylum ARTHROPODA 79 Class Insecta 80 Order Ephemeroptera 81 Order Odonata 83 Order Orthoptera 85 Order Coleoptera 88 Order Hymenoptera 96 Class Arachnida 110 Phylum CHORDATA 111 Class Actinopterygii 112 Class Amphibia 114 Class Reptilia 115 Class Aves 115 Class Mammalia 121 INTRODUCTION No complete species inventory exists for any area.
    [Show full text]
  • The Taxonomy of the Model Filamentous Fungus Podospora
    A peer-reviewed open-access journal MycoKeys 75: 51–69 The(2020) taxonomy of the model filamentous fungusPodospora anserina 51 doi: 10.3897/mycokeys.75.55968 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research The taxonomy of the model filamentous fungus Podospora anserina S. Lorena Ament-Velásquez1, Hanna Johannesson1, Tatiana Giraud2, Robert Debuchy3, Sven J. Saupe4, Alfons J.M. Debets5, Eric Bastiaans5, Fabienne Malagnac3, Pierre Grognet3, Leonardo Peraza-Reyes6, Pierre Gladieux7, Åsa Kruys8, Philippe Silar9, Sabine M. Huhndorf10, Andrew N. Miller11, Aaron A. Vogan1 1 Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsa- la, Sweden 2 Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91400, Orsay, France 3 Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif- sur-Yvette, France 4 IBGC, UMR 5095, CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077, Bordeaux, France 5 Laboratory of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD, Wageningen, Netherlands 6 Instituto de Fisiología Celular, Departamento de Bioquímica y Biología Estructural, Universi- dad Nacional Autónoma de México, Mexico City, Mexico 7 UMR BGPI, Université de Montpellier, INRAE, CIRAD, Institut Agro, F-34398, Montpellier, France 8 Museum of Evolution, Botany, Uppsala University, Norbyvägen 18, 752 36, Uppsala, Sweden 9 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain (LIED), F-75006, Paris, France 10 Botany Department, The Field Museum, Chicago, Illinois 60605, USA 11 Illinois Natural History Survey, University of Illinois, Champaign, IL 61820, USA Corresponding author: Aaron A. Vogan ([email protected]) Academic editor: T.
    [Show full text]