Standards and Tools for Model Exchange and Analysis in Systems Biology

Total Page:16

File Type:pdf, Size:1020Kb

Standards and Tools for Model Exchange and Analysis in Systems Biology Standards and Tools for Model Exchange and Analysis in Systems Biology Ralph Gauges Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Diplom-Biochemiker Ralph Gauges born in: Sigmaringen, Germany Oral-examination: 07/11/2011 Standards and Tools for Model Exchange and Analysis in Systems Biology Referees: Prof. Dr. Ursula Kummer Dr. Rebecca Wade Contents Zusammenfassung vii Summary x Abbreviations xvii 1 Introduction 1 2 Materials & Methods 19 2.1 Operating Systems . 19 2.2 Programming Languages . 20 2.3 Unit Testing . 24 2.4 Debugging & Profiling Tools . 26 2.5 Libraries & Standards . 29 3 SBML Layout & Render Extension 46 3.1 SBML & Diagrams . 46 3.2 Alternative Diagram Formats . 47 3.3 Design & History . 49 3.4 The SBML Layout Extension Specification . 51 3.5 Implementation Of The Layout Extension . 57 3.6 The SBML Render Extension . 61 3.7 Third Party Implementations . 86 3.8 The SBML Layout And Render Extension In NF-κB Modeling 87 4 Standards In COPASI 93 4.1 SBML Support In COPASI . 93 4.2 Layout And Render Information In COPASI . 112 4.3 Graphical Display Of Time Course Simulation Data . 115 4.4 Graphical Display Of Elementary Modes . 116 4.5 COPASI Language Bindings . 117 4.6 NF-κB Modeling with COPASI . 120 i ii CONTENTS 4.7 Work Contributions . 128 5 Expression Normalization 130 5.1 Normal Form Classes . 131 5.2 Expression Tree Classes . 137 5.3 Normalization Algorithm . 142 5.4 Testing . 150 5.5 Normalizing BioModels Expressions . 150 5.6 Finding Kinetic Laws For The NF-κB Model . 153 6 Discussion 157 6.1 Layout And Render Information In SBML . 157 6.2 Standards In COPASI . 160 6.3 Expression Normalization . 164 Acknowledgments 171 List of Figures 1.1 example of a simple reaction network . .6 1.2 alternative model specifications . .8 1.3 reaction display and differential equation display in COPASI . 10 1.4 electrical circuit diagram vs. SBGN diagram . 14 2.1 XML structure example . 33 2.2 Resource Description Framework example . 35 2.3 SBML Document structure . 39 2.4 Scalable Vector Graphics example . 40 2.5 SVG rendering example . 41 3.1 diagram examples . 49 3.2 SBML XML structure example . 52 3.3 model structure vs. layout structure . 53 3.4 example of role attribute usage . 54 3.5 bounding box example . 55 3.6 line segment example . 55 3.7 cubic bézier example . 55 3.8 curve definition example . 56 3.9 layout rendered with different styles . 57 3.10 SBML layout classes . 59 3.11 embedding render information in SBML documents . 63 3.12 RGB and RGBA value specification . 64 3.13 color definition example . 65 3.14 linear gradient example . 65 3.15 radial gradient example . 66 3.16 example for association by type . 67 3.17 example for association by role . 68 3.18 example for association by id . 69 3.19 render primitives . 71 3.20 render curve example . 71 iii iv LIST OF FIGURES 3.21 stroke example . 72 3.22 line ending example . 73 3.23 application of line ending example . 74 3.24 example for enableRotationalMapping attribute . 75 3.25 polygon example . 76 3.26 fill style example . 76 3.27 rectangle example . 77 3.28 rectangle with rounded corners . 77 3.29 ellipse example . 77 3.30 circle example . 78 3.31 text element example . 78 3.32 bitmap example . 79 3.33 complex style example . 80 3.34 coordinate schema . 81 3.35 relative vs. absolute coordinates . 81 3.36 transformation matrix example . 82 3.37 render extension classes . 83 3.38 render extension implementations . 85 3.39 CellDesigner diagram for NF-κB activation model . 89 3.40 display of imported CellDesigner layout information . 91 4.1 SBML data structure vs. COPASI data structure . 98 4.2 SBML test suite results . 106 4.3 SBML online test suite results . 107 4.4 simulator comparison website . 109 4.5 stochastic test suite results . 110 4.6 COPASI screen shot for MIRIAM annotation . 111 4.7 layout structure in COPASI files . 113 4.8 render classes in COPASI . 113 4.9 COPASI layout rendering . 114 4.10 time course animation . 116 4.11 graphical elementary mode display . 117 4.12 Results of elementary mode analysis of initial NF-κB model . 123 4.13 diagram of extended NF-κB model . 124 4.14 Results of elementary mode analysis of extended NF-κB model 125 4.15 time course data plot from COPASI . 126 4.16 several animation frames for a time series of the NF-κB model 127 5.1 structure of normalized expression . 132 5.2 normal form data structure classes . 133 5.3 CNormalFraction structure . 133 LIST OF FIGURES v 5.4 CNormalSum structure . 134 5.5 CNormalProduct structure . 134 5.6 CNormalItemPower structure . 135 5.7 CNormalGeneralPower structure . 135 5.8 CNormalChoice structure . 136 5.9 CNormalLogical structure . 137 5.10 CNormalChoiceLogical structure . 137 5.11 expression tree node classes . 138 5.12 expression tree example . 139 5.13 choice node example . 141 5.14 function expansion example . 143 5.15 normalization process . 144 5.16 operations on numbers . 146 5.17 example for the canceling operation . 146 5.18 conversion of CNormalGeneralPower .............. 148 5.19 result of BioModels analysis . 152 6.1 ambiguous rate law example . 166 6.2 comparison result output . 167 6.3 SBO term SBO:0000054 (screen shot) . 169 List of Tables 1.1 Definition of "Omics"-terms . .4 2.1 SWIG language support . 44 3.1 role attribute values . 54 3.2 predefined glyph types . 67 4.1 supported SBML versions . 95 4.2 language binding versions . 119 5.1 types for constant nodes . 139 5.2 functions represented by function nodes . 140 5.3 logical node types . 141 vi Zusammenfassung Die Systembiologie hat sich in den letzten Jahren zu einem wichtigen Werk- zeug der biochemischen Forschung entwickelt. Systembiologie beschäftigt sich mit der Simulation und Analyse biologischer und biochemischer Vorgänge mit Hilfe von Computern. Diese Vorgänge werden in rechnerischen Modellen beschrieben, wobei verschiedene mathematische Formalismen zum Einsatz kommen. Durch die Simulation solcher Modelle ist es meist möglich, Vorher- sagen über das Verhalten der repräsentierten Systeme zu machen und so gezielt Experimente zu planen, um diese Vorhersagen zu bestätigen. Dadurch besteht die Möglichkeit, ein besseres Verständnis über das zu untersuchende System zu erlangen bzw. existierende Hypothesen bezüglich des Systems zu überprüfen. Oft kann auch aufgrund der gezielteren Planung von Experi- menten durch den Einsatz systembiologischer Methoden kostbare Zeit im Labor eingespart werden. Für die Analyse und Simulation solcher Modelle wird geeignete Software benötigt und viele Forschungsgruppen auf der ganzen Welt sowie eine Reihe von Firmen arbeiten an der Entwicklung solcher Programme. Die meisten dieser Programme widmen sich gezielt einem bestimmten Aspekt der systembiologischen Forschung. So ermöglichen manche Programme die Simulation von Modellen, während andere Programme Forscher bei der Erstellung der mathematischen Repräsentation unterstützen und wieder andere Programme sich auf die Visualisierung der verschiedenen Analyseergebnisse spezialisieren. Da es vermutlich kein Programm gibt, welches sämtliche Arbeitsschritte unterstützt, die zur Erstellung, Simulation und umfassenden Analyse dieser Modelle nötig sind, sind Systembiologen bei ihrer Arbeit oft auf eine ganze Reihe von Programmen angewiesen. Um sinnvoll mit dieser Vielzahl an Pro- grammen arbeiten zu können ist es notwendig, dass die einzelnen Programme den Austausch von Daten und insbesondere Modellen unterstützen. Dies war zu Beginn dieser Arbeit keinesfalls selbstverständlich, sondern eher die Aus- vii viii ZUSAMMENFASSUNG nahme als die Regel. Erst die Entwicklung bestimmter Standards auf dem Gebiet der System- biologie änderte die Situation grundlegend. Mit Hilfe dieser Standards ist es nun möglich, Daten und Modelle einmal zu erstellen, um sie anschließend in verschiedenen Programmen zu simulieren, zu analysieren oder zur Visuali- sierung zu verwenden. Ein grosser Teil dieser Arbeit beschäftigt sich dementsprechend auch mit der Entwicklung, der Erweiterung und der Implementierung solcher Stan- dards in Form verschiedener Computerprogramme. Ein solches Programm, welches Forscher bei der Erstellung und Analyse von Modellen biochemi- scher Reaktionsnetzwerke unterstützt, ist das von unserer Gruppe mitent- wickelte Programm COPASI. Teile dieser Arbeit beschreiben somit auch die Implementierung einiger wichtiger Standards im Rahmen der Entwick- lung von COPASI. Besonders die von mir entwickelte Erweiterung der Sys- tem Biology Markup Language (SBML) um die Möglichkeit grafische Dar- stellungen von Modellen zusammen mit der mathematischen Beschreibung abzuspeichern bzw. auszutauschen nimmt hierbei eine zentrale Rolle ein. Die vorliegende Arbeit beschreibt sowohl die Entwicklung dieser grafischen Erweiterung als auch die Implementierung des zugrundeliegenden SBML Formats sowie der Erweiterung in Form verschiedener Werkzeuge für die systembiologische Forschung. Eine weitere wichtige Rolle spielt die Ver- wendung der grafischen Erweiterung zur Visualisierung von Simulations- und Analyseergebnissen und die Erstellung entsprechender Visualisierungswerk- zeuge in COPASI. Der dritte Teil dieser Arbeit beschäftigt sich ferner mit der Analyse mathematischer Ausdrücke wie sie oft im Zusammenhang mit Modellen bio- chemischer Reaktionsnetzwerke verwendet werden. Die beschriebene Ana- lysemethode dient dazu, mathematische Ausdrücke umzuformen (normali- sieren),.
Recommended publications
  • Web-Link Name Reference DRSC Flockhart I, Booker M, Kiger A, Et Al.: Flyrnai: the Drosophila Rnai Screening Center Database
    web-link Name Reference http://flyrnai.org/cgi-bin/RNAi_screens.pl DRSC Flockhart I, Booker M, Kiger A, et al.: FlyRNAi: the Drosophila RNAi screening center database. Nucleic Acids Res. 34(Database issue):D489-94 (2006) http://flybase.bio.indiana.edu/ FlyBase Grumbling G, Strelets V.: FlyBase: anatomical data, images and queries. Nucleic Acids Res. 34(Database issue):D484-8 (2006) http://rnai.org/ RNAiDB Gunsalus KC, Yueh WC, MacMenamin P, et al.: RNAiDB and PhenoBlast: web tools for genome-wide phenotypic mapping projects. Nucleic Acids Res. 32(Database issue):D406-10 (2004) http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIMOMIM Hamosh A, Scott AF, Amberger JS, et al.: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33(Database issue):D514-7 (2005) http://www.phenomicdb.de/ PhenomicDB Kahraman A, Avramov A, Nashev LG, et al.: PhenomicDB: a multi-species genotype/phenotype database for comparative phenomics. Bioinformatics 21(3):418-20 (2005) http://www.worm.mpi-cbg.de/phenobank2/cgi-bin/MenuPage.pyPhenoBank http://www.informatics.jax.org/ MGI - Mouse Genome Informatics Eppig JT, Bult CJ, Kadin JA, et al.: The Mouse Genome Database (MGD): from genes to mice--a community resource for mouse biology. Nucleic Acids Res. 33(Database issue):D471-5 (2005) http://flight.licr.org/ FLIGHT Sims D, Bursteinas B, Gao Q, et al.: FLIGHT: database and tools for the integration and cross-correlation of large-scale RNAi phenotypic datasets. Nucleic Acids Res. 34(Database issue):D479-83 (2006) http://www.wormbase.org/ WormBase Schwarz EM, Antoshechkin I, Bastiani C, et al.: WormBase: better software, richer content.
    [Show full text]
  • Mendel® SBML Editor User Guide Table of Contents
    Mendel® SBML Editor User Guide Table of Contents Introduction. 1 Mendel® SBML Editor overview . 1 Mendel® SBML Editor features . 1 Getting started . 2 Installation notes . 2 Basic tutorial: Describing Reaction Network of Dimerization . 3 Tasks . 13 Navigating the workbench . 13 Basics. 14 Open existing SBML Model . 14 New SBML Model. 15 Save SBML Model . 15 Save SBML Model graph as image. 15 Adding and configuring Nodes . 15 Adding a Species, Reaction or Compartment . 16 Configuring a Species, Reaction or Compartment. 16 Adding and configuring Relations . 17 Adding a Reactant, Modifier or Product . 17 Configuring a Reactant, Modifier or Product . 18 Adding and configuring Kinetic Laws . 18 Adding and configuring Function Definitions . 19 Adding and configuring Unit Definitions. 19 Adding and configuring Parameters . 20 Adding and configuring Rules, Initial Assignments and Constraints . 20 Adding and configuring Events . 21 Adding Notes . 22 Deleting elements. 22 Reference . 24 Graphical User Interface overview . 24 Menu Bar . 24 File Menu Actions . 24 Edit Menu Actions . 25 Diagram Menu Actions. 26 Window Menu Actions. 27 Help Menu Actions . 27 Toolbar . 28 Model outline tab . 29 Graphical overview tab . 30 Graphical Editor tab . 31 Properties tab . 32 Nodes . 32 Species . 32 Reactions . 33 Compartment . 33 Relations . 34 Kinetic Laws . 34 Function Definitions . 34 Unit Definitions . 35 Parameters . 35 Initial Assignments . 35 Rules . 36 Algebraic Rules . ..
    [Show full text]
  • A Bayesian Inference Transcription Factor Activity Model for the Analysis of Single-Cell Transcriptomes
    Downloaded from genome.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press Method A Bayesian inference transcription factor activity model for the analysis of single-cell transcriptomes Shang Gao,1,2,3 Yang Dai,1 and Jalees Rehman1,2,3,4 1Department of Bioengineering, 2Department of Medicine, Division of Cardiology, 3Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA; 4University of Illinois Cancer Center, Chicago, Illinois 60612, USA Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful experimental approach to study cellular heterogeneity. One of the challenges in scRNA-seq data analysis is integrating different types of biological data to consistently recognize discrete biological functions and regulatory mechanisms of cells, such as transcription factor activities and gene regulatory networks in distinct cell populations. We have developed an approach to infer transcription factor activities from scRNA-seq data that leverages existing biological data on transcription factor binding sites. The Bayesian inference tran- scription factor activity model (BITFAM) integrates ChIP-seq transcription factor binding information into scRNA-seq data analysis. We show that the inferred transcription factor activities for key cell types identify regulatory transcription factors that are known to mechanistically control cell function and cell fate. The BITFAM approach not only identifies bio- logically meaningful transcription factor activities,
    [Show full text]
  • Data Management in Systems Biology I
    Data management in systems biology I – Overview and bibliography Gerhard Mayer, University of Stuttgart, Institute of Biochemical Engineering (IBVT), Allmandring 31, D-70569 Stuttgart Abstract Large systems biology projects can encompass several workgroups often located in different countries. An overview about existing data standards in systems biology and the management, storage, exchange and integration of the generated data in large distributed research projects is given, the pros and cons of the different approaches are illustrated from a practical point of view, the existing software – open source as well as commercial - and the relevant literature is extensively overviewed, so that the reader should be enabled to decide which data management approach is the best suited for his special needs. An emphasis is laid on the use of workflow systems and of TAB-based formats. The data in this format can be viewed and edited easily using spreadsheet programs which are familiar to the working experimental biologists. The use of workflows for the standardized access to data in either own or publicly available databanks and the standardization of operation procedures is presented. The use of ontologies and semantic web technologies for data management will be discussed in a further paper. Keywords: MIBBI; data standards; data management; data integration; databases; TAB-based formats; workflows; Open Data INTRODUCTION the foundation of a new journal about biological The large amount of data produced by biological databases [24], the foundation of the ISB research projects grows at a fast rate. The 2009 (International Society for Biocuration) and special edition of the annual Nucleic Acids Research conferences like DILS (Data Integration in the Life database issue mentions 1170 databases [1]; alone Sciences) [25].
    [Show full text]
  • Tellurium: a Python Based Modeling and Reproducibility Platform for Systems Biology
    bioRxiv preprint doi: https://doi.org/10.1101/054601; this version posted June 2, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Tellurium: A Python Based Modeling and Reproducibility Platform for Systems Biology Kiri Choi ([email protected]),∗†‡ J. Kyle Medley ([email protected]),†‡ Caroline Cannistra ([email protected]),‡ Matthias K¨onig([email protected]),§ Lucian Smith ([email protected]),‡ Kaylene Stocking ([email protected]),‡ and Herbert M. Sauro ([email protected])‡ ‡Department of Bioengineering, University of Washington, Seattle, WA 98195, USA Address: Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195-5061, USA; Tel: (+1) 206 685 2119 §Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany Address : Humboldt-University Berlin, Institute for Theoretical Biology Invalidenstraße 43, 10115 Berlin, Germany; Tel: (+49) 30 20938450 keyword: systems biology, reproducibility, exchangeability, simulations, software tools May 20, 2016 ∗To whom correspondence should be addressed †These authors contributed equally to this work 1 bioRxiv preprint doi: https://doi.org/10.1101/054601; this version posted June 2, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract In this article, we present Tellurium, a powerful Python-based integrated environment de- signed for model building, analysis, simulation and reproducibility in systems and synthetic biology.
    [Show full text]
  • COPASI Documentation VERSION 4.3 (BUILD 25) 1 / 113
    COPASI Documentation VERSION 4.3 (BUILD 25) 1 / 113 COPASI Documentation Version 4.3 (Build 25) COPASI Development Team on April 3, 2008 COPASI Documentation VERSION 4.3 (BUILD 25) 2 / 113 COPASI Documentation VERSION 4.3 (BUILD 25) 3 / 113 Contents 1 Model Creation 8 1.1 Introduction . 8 1.2 Commandline Version and Commandline Options . 8 1.3 COPASI GUI Elements . 9 1.4 General Model Settings . 10 1.5 Compartments . 12 1.6 Species . 16 1.7 Reactions . 20 1.8 Global Quantities . 22 1.9 Parameter View . 24 1.10 User Defined Functions . 25 1.11 Sliders . 29 1.12 Tutorial Wizard . 32 2 Output 33 2.1 Predefined Reports . 33 2.2 Output Assistant . 33 2.3 Manual Definition . 34 2.3.1 Reports . 34 2.3.2 Plots . 37 3 Simple Tasks 40 3.1 Steady-State Analysis . 40 3.2 Stoichiometric State Analysis . 41 3.2.1 Elementary Flux Modes . 41 3.2.2 Mass Conservations . 42 3.3 Time Course Simulation . 43 3.3.1 Working with Plots . 45 3.4 Metabolic Control Analysis (MCA) . 46 3.5 Lyapunov Exponents . 47 COPASI Documentation VERSION 4.3 (BUILD 25) 4 / 113 4 Complex Tasks 49 4.1 Parameter Scan . 49 4.2 Optimization . 55 4.3 Parameter Estimation . 57 4.3.1 Experimental Data . 58 4.3.2 Result . 60 4.4 Sensitivity Analysis . 61 5 Importing and Exporting 62 5.1 Importing and Exporting SBML files . 62 5.2 Exporting C Source files . 63 5.3 Exporting Berkeley Madonna files . 65 5.4 Exporting XPPAUT files .
    [Show full text]
  • A Modular Mathematical Model of Exercise-Induced Changes In
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.446385; this version posted May 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 A modular mathematical model of 2 exercise-induced changes in metabolism, 3 signaling, and gene expression in human 4 skeletal muscle 5 6 Akberdin I.R.1,2,3,4, Kiselev I.N.1,4,5, Pintus S.S.1,4,5, Sharipov, R.N.1,3,4,5, Vertyshev A.Yu.6, 7 Vinogradova O.L.7, Popov D.V.7, Kolpakov F.A.1,4,5 8 9 1 BIOSOFT.RU, LLC, Novosibirsk, Russian Federation, [email protected] 10 2 Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia 11 3 Novosibirsk State University, Novosibirsk, Russia 12 4 Sirius University of Science and Technology, Sochi, Russia 13 5 Federal Research Center for Information and Computational Technologies, Novosibirsk, Russia5 14 6 CJSC "Sites-Tsentr", Moscow, Russia 15 7 Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia 16 17 Abstract 18 Skeletal muscle is the principal contributor to exercise-induced changes in human 19 metabolism. Strikingly, although it has been demonstrated that a lot of 20 metabolites accumulating in blood and human skeletal muscle during an exercise 21 activate different signaling pathways and induce expression of many genes in 22 working muscle fibres, the system understanding of signaling-metabolic 23 pathways interrelations with downstream genetic regulation in the skeletal 24 muscle is still elusive.
    [Show full text]
  • CYCLONET—An Integrated Database on Cell Cycle Regulation And
    D550–D556 Nucleic Acids Research, 2007, Vol. 35, Database issue doi:10.1093/nar/gkl912 CYCLONET—an integrated database on cell cycle regulation and carcinogenesis Fedor Kolpakov1,2, Vladimir Poroikov3, Ruslan Sharipov1,2,4,*, Yury Kondrakhin1,2, Alexey Zakharov3, Alexey Lagunin3, Luciano Milanesi5 and Alexander Kel6 1Institute of Systems Biology, 15, Detskiy proezd, Novosibirsk 630090, Russia, 2Design Technological Institute of Digital Techniques, Siberian Branch of Russian Academy of Sciences, 6, Institutskaya, Novosibirsk 630090, Russia, 3Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, 10, 4 Pogodinskaya Street, Moscow 119121, Russia, Institute of Cytology and Genetics, Siberian Branch of Downloaded from Russian Academy of Sciences, 10, Lavrentyev Avenue, Novosibirsk 630090, Russia, 5CNR-Institute of Biomedical Technologies, 93, Via Fratelli Cervi, Segrate (MI) 20090, Italy and 6BIOBASE GmbH, 33, Halchtersche Strasse, Wolfenbuettel 38304, Germany Received August 16, 2006; Revised October 12, 2006; Accepted October 13, 2006 http://nar.oxfordjournals.org/ ABSTRACT INTRODUCTION Computational modelling of mammalian cell cycle The main goal of the Cyclonet database is to integrate information from genomics, proteomics, chemoinformatics regulation is a challenging task, which requires at McGill University Libraries on December 28, 2012 comprehensive knowledge on many interrelated and systems biology on mammalian cell cycle regulation in processes in the cell. We have developed a web- normal and pathological states.
    [Show full text]
  • View
    Boyarskikh et al. BMC Medical Genomics 2018, 11(Suppl 1):12 DOI 10.1186/s12920-018-0330-5 RESEARCH Open Access Computational master-regulator search reveals mTOR and PI3K pathways responsible for low sensitivity of NCI-H292 and A427 lung cancer cell lines to cytotoxic action of p53 activator Nutlin-3 Ulyana Boyarskikh1, Sergey Pintus2, Nikita Mandrik2, Daria Stelmashenko2, Ilya Kiselev2, Ivan Evshin2, Ruslan Sharipov2, Philip Stegmaier3, Fedor Kolpakov2, Maxim Filipenko1 and Alexander Kel1,2,3* From Belyaev Conference Novosibirsk, Russia. 07-10 August 2017 Abstract Background: Small molecule Nutlin-3 reactivates p53 in cancer cells by interacting with the complex between p53 and its repressor Mdm-2 and causing an increase in cancer cell apoptosis. Therefore, Nutlin-3 has potent anticancer properties. Clinical and experimental studies of Nutlin-3 showed that some cancer cells may lose sensitivity to this compound. Here we analyze possible mechanisms for insensitivity of cancer cells to Nutlin-3. Methods: We applied upstream analysis approach implemented in geneXplain platform (genexplain.com) using TRANSFAC® database of transcription factors and their binding sites in genome and using TRANSPATH® database of signal transduction network with associated software such as Match™ and Composite Module Analyst (CMA). Results: Using genome-wide gene expression profiling we compared several lung cancer cell lines and showed that expression programs executed in Nutlin-3 insensitive cell lines significantly differ from that of Nutlin-3 sensitive cell lines. Using artificial intelligence approach embed in CMA software, we identified a set of transcription factors cooperatively binding to the promoters of genes up-regulated in the Nutlin-3 insensitive cell lines.
    [Show full text]
  • Comprehensive Modeling Platform for Photosynthetic Organisms
    MASARYK UNIVERSITY FACULTY OF INFORMATICS COMPREHENSIVE MODELING PLATFORM FOR PHOTOSYNTHETIC ORGANISMS THESIS MATEJ KLEMENT 2012 Contents 1 Introduction4 1.1 Objectives..................................5 2 State of the art6 2.1 Data Exchange formats..........................8 2.1.1 SBML................................8 2.1.2 CellML................................9 2.1.3 BioPAX................................9 2.1.4 PSI-MI................................ 10 2.1.5 SBGN................................ 10 2.1.6 Format of Matlab.......................... 11 2.1.7 Format Octave........................... 11 2.2 Data Exchange and modeling tools................... 11 2.2.1 Biomodels.net........................... 12 2.2.2 CellML.org.............................. 13 2.2.3 Copasi................................ 13 2.2.4 Vcell................................. 13 2.2.5 E-cell................................. 14 2.2.6 ProMot................................ 14 2.2.7 PaxTools............................... 15 2.2.8 Matlab................................ 15 2.2.9 Octave................................ 16 2.2.10Scilab................................ 16 2.2.11BioUML............................... 16 2.3 Annotation ontology............................ 17 2.3.1 Gene Ontology........................... 17 2.3.2 KEGG................................ 17 2.3.3 SBO................................. 17 2.4 Photosynthesis modeling......................... 17 3 Aims 18 3.1 Theoretical aims.............................. 18 3.2 Practical aims..............................
    [Show full text]
  • Synthetic Animal: Trends in Animal Breeding and Genetics
    Open Access Insights in Biology and Medicine Review Article Synthetic Animal: Trends in Animal Breeding and Genetics ISSN 1 2 2639-6769 Abolfazl Bahrami * and Ali Najafi 1Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran 2Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran *Address for Correspondence: A Bahrami, Abstract Department of Animal Science, Tehran University, Karaj, I.R. Iran, Tel/Fax: +98 9199300065; Email: Synthetic biology is an interdisciplinary branch of biology and engineering. The subject [email protected] combines various disciplines from within these domains, such as biotechnology, evolutionary Submitted: 31 December 2018 biology, molecular biology, systems biology, biophysics, computer engineering, and genetic Approved: 10 January 2019 engineering. Synthetic biology aims to understand whole biological systems working as a unit, Published: 11 January 2019 rather than investigating their individual components and design new genome. Signifi cant advances have been made using systems biology and synthetic biology approaches, especially in the fi eld Copyright: © 2018 Bahrami A, et al. This is of bacterial and eukaryotic cells. Similarly, progress is being made with ‘synthetic approaches’ in an open access article distributed under the genetics and animal sciences, providing exciting opportunities to modulate, genome design and Creative Commons Attribution License, which permits unrestricted use, distribution, and fi nally synthesis animal for favorite traits. reproduction in any medium, provided the original work is properly cited Keywords: Synthetic biology; Systems biology; Introduction Synthetic approaches; Genetic engineering Animal breeding In 1859, Charles Darwin published his book ‘On the origin of species’, based on the indings that he collected during his voyage on ‘the Beagle’ [1].
    [Show full text]
  • COPASI Documentation I
    COPASI Documentation i COPASI Documentation Version 4.6 (Build 32) COPASI Development Team on August 3, 2010 COPASI Documentation 2 / 131 COPASI Documentation 3 / 131 Contents 1 Model Creation 1 1.1 Introduction . 1 1.2 Commandline Version and Commandline Options . 1 1.3 COPASI GUI Elements . 3 1.4 General Model Settings . 3 1.5 Compartments . 5 1.6 Species . 10 1.7 Reactions . 13 1.8 Global Quantities . 15 1.9 Events . 17 1.9.1 Trigger . 17 1.9.2 Assignment . 17 1.9.3 Delay . 18 1.10 Annotating Models and Model Elements . 19 1.11 Parameter View . 20 1.12 User Defined Functions . 21 1.12.1 Standard Operators . 23 1.12.2 Miscellaneaous Functions . 23 1.12.3 Trigonometric Functions . 24 1.12.4 Random Distribuitions . 24 1.12.5 Logical Operators . 24 1.12.6 Conditional Statement . 25 1.12.7 Parenthesis . 25 1.12.8 Built-in Constants . 25 1.13 Sliders . 26 1.14 Tutorial Wizard . 28 2 Output 30 2.1 Predefined Reports . 30 2.2 Output Assistant . 30 2.3 Manual Definition . 31 2.3.1 Reports . 31 2.3.2 Plots . 34 COPASI Documentation 4 / 131 3 Tasks 37 3.1 Steady-State Analysis . 37 3.2 Stoichiometric State Analysis . 38 3.2.1 Elementary Flux Modes . 38 3.2.2 Mass Conservations . 39 3.3 Time Course Simulation . 40 3.3.1 Working with Plots . 42 3.4 Metabolic Control Analysis (MCA) . 43 3.5 Lyapunov Exponents . 44 3.6 Time Scale Separation . 45 3.7 Parameter Scan .
    [Show full text]