Sorted by City, State ,Zip, Last Name, First Name

Total Page:16

File Type:pdf, Size:1020Kb

Sorted by City, State ,Zip, Last Name, First Name Sorted by City, State ,Zip, Last name, First name,. CITY STATE ZIP LAST NAME FIRSTNAME SCHOOL HALL CHU Alex McCutcheon Hall KASAT Rashmi Purdue Village LAL Shashwat Computer Information Cary Technology Quadrangle LLOYD Kassie Windsor Halls MCCALMENT Abram Hillenbrand Hall RAJKOVIC Greg Hilltop Apartments Washington 20010 YOHANNES Mathewos Management Cary DC Quadrangle Alexander City AL 35010 HENDERSON Thomas Civil Engineering Cary Quadrangle Buenos Aires ARGENTINA 1428 FERRERES Alvaro Industrial Engineering Tarkington Hall Anaheim CA 92808 GILLESPIE John Computer Graphics Hilltop Technology Apartments Escondido CA 92025 DUNBAR Timothy Mechanical Engineering Cary Quadrangle Irvine CA 92612 KARIMI Koohzad Neurobiology Purdue Village Murrieta CA 92562 MURRAY Casscia LA/Interior Design Windsor Halls Santa Monica CA 90402 WINTHROP Jameson Management McCutcheon Hall Arvada CO 80005 WONNACOTT Sara Aeronautics and Windsor Astronautics Halls Colorado CO 80919 SPARKS Timothy Krannert Hawkins Springs Hall Bogota COLOMBIA SALAZAR Daniel Civil Engineering Cary Quadrangle Tres Rios COSTA ESQUIVEL Carlos CFS Purdue RICA Village Ergates, 2643 CYPRUS LYMBOURIS Nicolas Industrial Engineering Hilltop Nicosia Apartments Nicosia CYPRUS PAPASTYLIANOU Stella Statistics Hilltop Apartments West Sussex ENGLAND CLOTHIER Emma Sociology & Hawkins BNi6 2Pl Anthropology Hall Miami FL 33152 HOLST Kristine Management Windsor Halls Sunrise FL 33351 LONDONO Alejandro Agricultural Economics McCutcheon Hall Acworth GA 30102 SMITH Adam Engineering Tarkington Hall Dunwoody GA 30338 MCCORMICK Mark Liberal Arts/Sociology Meredith Hall Macon GA 31204 KILLEN Haynes Computer Technology Hawkins Hall Marietta GA 30064 FINLAY William Aviation Technology Hilltop Apartments Wehrheim GERMANY 61273 JAMES Davin Aviation Technology Harrison Hall Saint Marc HAITI FAN Chi-hsiang Management Hawkins Hall Pearl City HI 96782 IMAI Lara Pharmacy Purdue Village Hong Kong HONG CHEN Jonathan Electrical & Computer Cary KONG Engineering Quadrangle Meridian ID 83642 CONROY Meredith Pharmacy D Hawkins Hall Arlington IL 60004 KOLOMETZ Michelle Environmental Health Meredith Heights Science Hall Bloomingdale IL 60108 JANSKY Megan Law & Society Owen Hall Burr Ridge IL 60527 PERRY Jessica Chemical Engineering Shreve Hall Chicago IL 60610 GOLDMAN Evgeny General Health Science Wiley Hall Chicago IL 60656 HOLOWATYJ Michael Pharmacy Young Hall Chicago IL 60649 WILLIAMS Calais Animal Science Harrison Hall Flossmoor IL 60422 LI Angela Psychology Hawkins Hall Frankfort IL 60423 FUERST Brian Management Harrison Hall Frankfort IL 60423 PIZZA Nicholas OLS Cary Quadrangle Geneva IL 60134 YOUNG Kyle Building Construction Hillenbrand Management Hall Libertyville IL 60048 KRUCKMAN Mallory Pharmacy Windsor Halls Libertyville IL 60048 SCHULZ Jeff Industrial Engineering Harrison Hall Maroa IL 61756 STOUTENBOROUGH Travis Liberal Arts Young Hall Mokena IL 60448 ECHTERNACH Keith Civil Engineering Owen Hall Morengo IL 60125 DAVIS Brandon Biomedical Engineering Earhart Hall Morton Grove IL 60053 ALUMKAL Preeth Health Sciences Harrison Hall Naperville IL 60565 DALTON Derek Aeronautics and Young Hall Astronautics New Baden IL 2265 ACKER Kyle SLHS Hillenbrand Hall Orland Park IL 60462 MOHSINALLY Tasneem Honors Physics Harrison Hall Plainfield IL 60544 GABRELESKI Dominic Electrical and Chemical Tarkington Engineering Tech. Hall Prospect IL 60070 KORMANN Katelyn Communications & Hillenbrand Heights Psychology Hall Riverside IL 60546 VACEK Lindsey Liberal Arts/French & Owen Hall Italian Robinson IL 62454 INBODEN Daniel Pharmacy Shreve Hall South Holland IL 60473 OKORAFOR Emeka Indisciplinary Earhart Hall Engineering Vernon Hills IL 60061 BUSH Marc Science Cary Quadrangle Vernon Hills IL 60061 NAQVI Sabeen Management Shreve Hall Wheaton IL 60187 LEWANDOWSKI Lauren Elementary Education Earhart Hall Woodridge IL 60517 BURBEY Jason Engineering/Material Earhart Hall Science Worden IL 62097 MERCER Richelle Political Science Hawkins Hall Yorkville IL 60560 MORTL William Physics Hawkins Hall Avilla IN 46710 EARNHART Nicholas Mechanical Engineering Tarkington Hall Bedford IN 47421 PURDY Troy Medical Technology McCutcheon Hall Boswell IN 47921 GARRIOTT Katy CFS Hawkins Hall Bremen IN 46506 KLINGE Jamie CDFS Shreve Hall Brownsburg IN 46112 BERRYMAN Laura Chemical Engineering Earhart Hall Carmel IN 46033 HANOVER Lisa Pharmacy D Windsor Halls Carmel IN 46032 MORAN Sarah Pharmacy Shreve Hall Carmel IN 46033 SATKOSKI Chris Mechanical Engineering Harrison Hall Carmel IN 46032 SCOTT Katherine Psychology Windsor Halls Carmel IN 46033 STADLER David Visual & Performing Arts Shreve Hall Carmel IN 46032 WEBB Benjamin CFS Tarkington Hall Charlestown IN 47111 LENTZ JR. Timothy Building Construction Tarkington Management Hall Chesterton IN 46304 KESHAVARZ Arash Hilltop Apartments Columbus IN 47201 WILLMORE Matthew OLS Shreve Hall Corydon IN 47112 SCHMELZ Andrew Pharmacy Harrison Hall Crawfordsville IN 47933 CARRIER Megan Agricultural Economics Windsor Halls Danville IN 46122 CROSSLIN Whitney Communication Harrison Hall Delphi IN 46923 REPLOGLE Julie Elementary Education McCutcheon Hall Hall DeMotte IN 46310 HALL Melissa Psychology & Hillenbrand Anthropology Hall Dillsboro IN 47018 PETERSON Rose Chemical Engineering Hilltop Apartments Dyer IN 46311 KAMBER Paul Science Cary Quadrangle East Chicago IN 46312 QUIROZ Anabel CFS Hilltop Apartments Elkhart IN 46517 GINGERICH Nathan Mathematics Cary Quadrangle Elwood IN 46036 BALL Sarah Anthropology Windsor Halls Evansville IN 47711 GOEDDE Brian Statistics Wiley Hall Fishers IN 46038 ARNETT Chase Management Cary Quadrangle Fort Branch IN 47648 PERKINS John OLS Wiley Hall Fort Wayne IN 46808 KAY Kevin Mechanical Electrical Cary Technology Quadrangle Fort Wayne IN 46835 NELSON Andrew Computer & Information Owen Hall Technology Fort Wayne IN 46805 PEREZ Amber CFS Shreve Hall Fort Wayne IN 46804 SALLAZ Lindsey CFS Harrison Hall Fort Wayne IN 46825 WOOD Michelle Chemical Engineering Earhart Hall Frankfort IN 46041 GUM Amy Electrical & Computer Earhart Hall Engineering Gary IN 46409 GOLSTON Jermel Pharmacy Young Hall Gary IN 46408 JONES Darren OLS Wiley Hall Gary IN 46409 WILLIS Ellissa Education Shreve Hall Georgetown IN 47122 SHEWMAKER Kathleen Chemical Engineering Owen Hall Goshen IN 46528 WHIRLEDGE Robert Interdisciplinary Earhart Hall Engineering Granger IN 46530 FAILING Brian Electrical Engineering Cary Quadrangle Granger IN 46530 HAWES Ashleigh Speech, Language and Hillenbrand Hearing Sciences Hall Granger IN 46530 LYMAN Gregory Computer Science Tarkington Hall Granger IN 46530 POPOVICH Ericka Forestry and Natural Owen Hall Resources Granger IN 46530 RAMACHANDRAN Annuradha Psychology Hilltop Apartments Greencastle IN 46135 EDWARDS Daniel CFS/HTM Shreve Hall Greencastle IN 46135 SNELLENBARGER Katie Pharmacy D Hillenbrand Hall Greendale IN 47025 MCDONALD Anna Health and Kinesiology Earhart Hall Greenfield IN 46140 PENDLUM Jonathon Electrical Engineering Shreve Hall Greenville IN 47124 EBERLE Krista Industrial Design Owen Hall Greenwood IN 46143 VANFOSSEN Bryce Management Tarkington Hall Guilford IN 47022 FRIEDL Robert Aviation Technology Cary Quadrangle Guilford IN 47022 HOUCHENS Joshua Management Cary Quadrangle Hammond IN 46323 GREGORCZYK Regina Nursing Harrison Hall Hammond IN 46323 HOLGUIN Elyse Foreign Language & Meredith Literature Hall Hammond IN 46323 SMITH Jamaal Pharmacy McCutcheon Hall Hall Haubstadt IN 47639 ADLER Jacob Biochemistry Meredith Hall Hebron IN 46341 TOBEY Natalle Social Studies Education Harrison Hall Hoagland IN 46745 PENROD Michelle Biological Sciences Windsor Halls Hobart IN 46342 LYNCH Bridget Speech, Language and Meredith Hearing Sciences Hall Huntington IN 46750 GARD Ryan Occupational Health Hilltop Sciences Apartments Huntington IN 46750 LANDRUM Ryan Computer Science Hilltop Apartments Indianapolis IN 46229 BLACKFIELD David Computer Technology Wiley Hall Indianapolis IN 46256 DAVIS Kara Pharmacy D Hilltop Apartments Indianapolis IN 46278 HORINE Ryan Industrial Management Shreve Hall Indianapolis IN 46205 LEONARDS Brett LA/Theatre Hillenbrand Hall Indianapolis IN 46224 MCLAURINE Brenda Pharmacy Harrison Hall Indianapolis IN 46240 SMILEY Ryan Industial Technology Hilltop Apartments Indianapolis IN 46259 TYRA Adam Civil Engineering Harrison Hall Indianapolis IN 46221 WILSON Amber Education McCutcheon Hall Jeffersonville IN 47130 AMOS Katherine Accounting Hillenbrand Hall Kokomo IN 46902 DYER Joseph Pharmacy Hillenbrand Hall Hall Kokomo IN 46902 TAYLOR Alexander Building Construction Cary Management Quadrangle Lafayette IN 47901 CARROLL Matthew Civil Engineering Meredith Hall Lafayette IN 47905 LEWIS Justin Political Science Harrison Hall Lafayette IN 47909 OSTRYE James Material Science Young Hall Engineering Lapel IN 46051 ALDRICH Rebecca CDFS Meredith Hall LaPorte IN 46350 DOWNEY Kelly Education McCutcheon Hall Loogootee IN 47553 BAULT Curt Electrical & Computer Tarkington Engineering Hall Martinsville IN 46151 FLATT Nathan Mechanical Engineering Cary Quadrangle Merom IN 47861 RETSECK Elizabeth Biological Sciences Earhart Hall Michigan City IN 46360 CARR Sarah Elementary Education Hillenbrand Hall Michigan City IN 46360 ELLIS Brayan Computer Graphics Cary Technology Quadrangle Misawaka IN 46544 SMITH Jeff Management Hawkins Hall Munster IN 46321 RATAJACK Elliot Aviation Technology Cary Quadrangle Munster IN 46321 SELIGMAN Sami Liberal Arts/Sociology Owen Hall New Albany IN 47150 SHIREMAN MegAnne Management Harrison Hall Newburgh IN 47630 BROWN Margaret Business Math McCutcheon
Recommended publications
  • Mars Reconnaissance Orbiter's High Resolution Imaging Science
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E05S02, doi:10.1029/2005JE002605, 2007 Click Here for Full Article Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE) Alfred S. McEwen,1 Eric M. Eliason,1 James W. Bergstrom,2 Nathan T. Bridges,3 Candice J. Hansen,3 W. Alan Delamere,4 John A. Grant,5 Virginia C. Gulick,6 Kenneth E. Herkenhoff,7 Laszlo Keszthelyi,7 Randolph L. Kirk,7 Michael T. Mellon,8 Steven W. Squyres,9 Nicolas Thomas,10 and Catherine M. Weitz,11 Received 9 October 2005; revised 22 May 2006; accepted 5 June 2006; published 17 May 2007. [1] The HiRISE camera features a 0.5 m diameter primary mirror, 12 m effective focal length, and a focal plane system that can acquire images containing up to 28 Gb (gigabits) of data in as little as 6 seconds. HiRISE will provide detailed images (0.25 to 1.3 m/pixel) covering 1% of the Martian surface during the 2-year Primary Science Phase (PSP) beginning November 2006. Most images will include color data covering 20% of the potential field of view. A top priority is to acquire 1000 stereo pairs and apply precision geometric corrections to enable topographic measurements to better than 25 cm vertical precision. We expect to return more than 12 Tb of HiRISE data during the 2-year PSP, and use pixel binning, conversion from 14 to 8 bit values, and a lossless compression system to increase coverage. HiRISE images are acquired via 14 CCD detectors, each with 2 output channels, and with multiple choices for pixel binning and number of Time Delay and Integration lines.
    [Show full text]
  • I 19.91:I-857-G 1979 Vegetation Map of the Colorado Springs-Castle
    University of Wisconsin-Green Bay Cofrin Library-Government Documents I 19 Maps: Discard List 8 – 07/2019 Contact: Joan Robb Depository 0674-A Deadline: August 1, 2019 Phone: (920) 465-2384 2420 Nicolet Drive Email: [email protected] Green Bay, WI 54311-7001 I 19.91:I-857-G 1979 Vegetation map of the Colorado Springs-Castle Rock area, Front Range Urban Corridor, Colorado I 19.91:I-857-H 1980 Depth to the water table (1976-77) in the Colorado Springs- Castle Rock area, Front Range Urban Corridor, Colorado I 19.91:I-857-I 1980 Well yields and chemical quality of water from water-table aquifers in the Colorado Springs-Castle Rock area, Front Range Urban Corridor, Colorado I 19.91:I-858-A 1974 Folio of land use in the Washington, D.C., urban area. I 19.91:I-858-B 1974 Folio of land use in the Washington, D.C., urban area. I 19.91:I-858-C 1974 Folio of land use in the Washington, D.C., urban area. I 19.91:I-858-D 1975 Land use change map, 1970-1972, Washington urban area, D.C., Md., and Va. I 19.91:I-858-E 1978 Folio of land use in the Washington, D.C., urban area. I 19.91:I-858-F 1978 Land cover map from Landsat, 1973, with census tracts, Washington urban area, D.C., Md., and Va. I 19.91:I-861 1974 Generalized pre-Pleistocene geologic map of the northern United States Atlantic continental margin I 19.91:I-863 1975 Geologic map of the Ponce quadrangle, Puerto Rico I 19.91:I-865 1974 Map showing geochemical data for the Atlantic City gold district, Fremont County, Wyoming I 19.91:I-866 1976 Geologic map of the Waldport and Tidewater quadrangles,
    [Show full text]
  • Saudi Arabia
    1 Reactivation of the Pleistocene trans-Arabian Wadi ad 2 Dawasir fluvial system (Saudi Arabia) during the 3 Holocene humid phase 4 5 Albert Matter a, Ayman Mahjoub b, Eike Neubert c, Frank Preusser d,e *, Antje Schwalb f, Sönke Szidat g, 6 Gerwin Wulf e 7 8 a Institute of Geological Sciences, University of Bern, Balterzerstrasse 1+3, 3012 Bern, Switzerland 9 b Saudi Geological Survey, P.O.Box 54141, Jeddah 21514, Kingdom of Saudi Arabia 10 c Natural History Museum Bern, Bernastrasse 15, 3005 Bern, Switzerland 11 d Previously at: Department of Physical Geography and Quaternary Geology, Stockholm University, 10690 Stockholm, Sweden 12 e Institute of Earth and Environmental Sciences, University of Freiburg, Albertstraße 23b, 79104 Freiburg, Germany 13 f Institut für Geosysteme und Bioindikation, Technische Universität Braunschweig, 38106 Braunschweig, Germany 14 g Department of Chemistry and Biochemistry & Oeschger Centre for Climate Change Research, University of Bern, Freiestrasse 3, 15 3012 Bern, Switzerland 16 *corresponding author. E-mail: [email protected] 17 18 19 Accepted version 20 21 Published in 22 Geomorphology 270 (2016) 88–101 23 http://dx.doi.org/10.1016/j.geomorph.2016.07.013 24 | downloaded: 6.1.2020 https://doi.org/10.7892/boris.85894 source: 1 25 Abstract – The Wadi ad Dawasir fluvial system in central Saudi Arabia is investigated using 26 remote sensing and sedimentology, in combination with bio-proxy analyses (molluscs and 27 ostracods). Age control is provided by radiocarbon as well as luminescence dating, using both 28 quartz and feldspar grains. It is shown that the fluvial system was active from the Asir 29 Mountains across the partially sand-covered interior of the Arabian Peninsula to the Arabian 30 Gulf during the Holocene humid period.
    [Show full text]
  • Reports and Maps of the Geological Survey Released Only in the Open Files, 1968
    GEOLOGICAL SURVEY CIRCULAR 568 Reports and Maps of the Geological Survey Released Only in the Open Files, 1968 Reports and Maps of the Geological Survey Released Only in the Open Files, 1 968 By Betsy A. Weld, Margaret S. Griffin, and George W. Brett G E 0 L 0 G I CAL SURVEY CIRCULAR 568 United States Department of the Interior WALTER J. HICKEL, Secretory Geological Survey William T. Pecora, Director Free on oppliamon to fbe U.S. Geological Sunoey, Washingfon, D.C. 20242 Reports and Maps of the Geological Survey Released Only in the Open Files, 1 968 By Betsy A. Weld, Margaret S. Griffin, and George W. Brett CONTENTS Page Introduction------------------------------- 1 Maps and book reports--------------------- 2 Index------------------------------------- 19 INTRODUCTION This circular contains a list of maps and reports A Public Inquiries Office, 108 Skyline Building, 508 released by the U.S. Geological Survey during 1968 2nd Ave., Anchorage, Alaska 99501. that are available for public inspection in the open LA Public Inquiries Office, 7638 Federal Rtilding, files. These maps and reports may be consulted at the 300 N. Los Angeles Street, Los Angele£:. Calif. indicated depositories, and copies may be made upon 90012. request (at the requestor's expense). S Public Inquiries Office, 678 U.S. Cour': House Building, West 920 Riverside Avenue, ~pokane, The reports are arranged alphabetically by author; Wash. 99201. each report is preceded by a serial number that is SF Public Inquiries Office, 504 Custom House, 555 used to identify the report in the index (p. 19), and is Battery Street, San Francisco, Calif.
    [Show full text]
  • An Evaluation of Probable Bedrock Exposure in the Sinus Meridian! Region of the Martian Highlands
    Proceedings of Lunar and Planetary Science, Volume 21, pp. 645-655 Lunar and Planetary Institute, Houston, 1991 645 An Evaluation of Probable Bedrock Exposure in the Sinus Meridian! Region of the Martian Highlands J. R. Zimbelman and R. A. Craddock Center for Eartb and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC 20560 The study region (15°N to 15°S, 330° to 360°W) includes portions of the classical low-albedo regions of Sinus Meridiani and Sinus Sabaeus and the high-albedo region of Arabia and is entirely within the entered highlands of Mars This region has been the subject of several spectral reflectance studies and it is also included in global studies at thermal infrared and radar wavelengths. More than 400 high- resolution (8-36 m/pixel) Viking images in the study area were used to estimate the percentage of the area of each frame having locally steep slopes, here assumed to be the most probable locality for exposure of bedrock. Forty-two percent of the high-resolution frames have <l% probable bedrock exposure while 5% of the frames have 15% probable bedrock exposure, the maximum observed value. Rims of young impact craters and scarps account for most of the bedrock exposure locations Eroded layets of competent material compose the majority of steep slopes at some locations in low-albedo areas (e.g., 0° to 8°N, 350° to 360° W); these locations are also associated with local enhancements of thermal inertia that may be related to surface exposures of indurated sediments. There is no significant difference in probable bedrock exposure between high-albedo and low-albedo regions, and there is no apparent correlation between bedrock exposure and the units defined by cither spectral reflectance studies or photogeologic mapping.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) f^ , u NASA Technical Memorandum 80317 (NASA-TM-80317) LARGE IMPACT BASINS ON N79-31127 MERCURY AND RELATIVE CRATER PRODUCTION RATES (NASA) 22 p HC A02 /MF A01 CSCL 03B Unclas G3/91 36078 Large Impact Basins On Mercury and Relative Crater Production Dates Herbert Frey and Barbara L. Lowry JULY 1979 National Aeronautics and Space Administration Goddard '.,pace Flight Center Greenbelt, Maryland 20771 c°%tiQ19 F,O c. ex .,.s LARGE IMPACT BASINS ON MERCURY AND RELATIVE CRATER PRODUCTION RATES ar Herbert Frey Geophysics Branch NASA Goddard Space Flight Center Greenbelt, Maryland 20771 Astronomy Program University of Maryland College Park, Maryland 20742 and Barbara L. Lowry Geophysics Branch NASA Goddard Space Flight Center Greenbelt, Maryland 20771 Morehead State University Morehead, Kentucky 40351 In p ress Proceedings Tenth Lunar Planet.
    [Show full text]
  • The Geological and Climatological Case for a Warmer and Wetter Early Mars
    THE GEOLOGICAL AND CLIMATOLOGICAL CASE FOR A WARMER AND WETTER EARLY MARS Ramses M. Ramirezi Robert A. Craddockii iEarth-Life Science Institute (ELSI), Tokyo Institute of Technology, Tokyo 152-8550, Japan (Formerly: Cornell Center of Astrophysics and Planetary Science, Cornell University, Ithaca, NY, USA, 14850) iiCenter for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, D.C., USA, 20560 The climate of early Mars remains a topic of intense debate. Ancient terrains preserve landscapes consistent with stream channels, lake basins, and possibly even oceans, and thus the presence of liquid water flowing on the Martian surface 4 billion years ago. However, despite the geological evidence, determining how long climatic conditions supporting liquid water lasted remains uncertain. Climate models have struggled to generate sufficiently warm surface conditions given the faint young Sun - even assuming a denser early atmosphere. A warm climate could have potentially been sustained by supplementing atmospheric CO2 and H2O warming with either secondary greenhouse gases or clouds. Alternatively, the Martian climate could have been predominantly cold and icy, with transient warming episodes triggered by meteoritic impacts, volcanic eruptions, methane bursts, or limit cycles. Here, we argue that a warm and semi-arid climate capable of producing rain is most consistent with the geological and climatological evidence. Today, the surface of Mars resembles that indiscriminately when the Sun was very of a hyper-arid desert. Perennially dry and young and much more active9. cold, mean surface temperatures are ~70 K lower than on the Earth, and the atmosphere The widespread occurrence of clays also strongly supports the notion of persistent is only ~1% as thick.
    [Show full text]
  • Geologic Map of Meridiani Planum, Mars by Brian M
    Prepared for the National Aeronautics and Space Administration Geologic Map of Meridiani Planum, Mars By Brian M. Hynek and Gaetano Di Achille Pamphlet to accompany Scientific Investigations Map 3356 Version 1.1, April 2017 65° 65° MC–01 MC–03 MC–06 MC–04 MC–05 30° 30° 300° 60° 0° MC–10 MC–11 MC–12 MC–13 270° 315° 45° 90° 0° 0° MC–18 MC–19 MC–20 MC–21 0° 300° 60° –30° –30° MC–26 MC–27 MC–25 MC–28 MC–30 –65° –65° 2017 U.S. Department of the Interior U.S. Geological Survey Contents Introduction and Background ................................................................................................................................................................................1 Data ............................................................................................................................................................................................................................2 Mapping Methods....................................................................................................................................................................................................3 Age Determinations ........................................................................................................................................................................................4 Geologic History .......................................................................................................................................................................................................5 Acknowledgments
    [Show full text]
  • Comparative Climatology of Terrestrial Planets III from Stars to Surface
    Program Comparative Climatology of Terrestrial Planets III from Stars to Surface August 27–30, 2018 • Houston, Texas Institutional Support NASA Science Mission Directorate Lunar and Planetary Institute Universities Space Research Association National Aeronautics and Space Administration Conveners Adriana Ocampo, NASA Planetary Science Division Giada Arney, Co-Convener, NASA Goddard Space Flight Center Shawn Domagal-Goldman, Co-Convener, NASA Goddard Space Flight Center Victoria Hartwick, Co-Convener, Laboratory of Atmospheric and Space Physics Alejandro Soto, Co-Convener, Southwest Research Institute Science Organizing Committee Giada Arney, NASA Goddard Space Flight Center Simona Bordoni, California Institute of Technology David Brain, University of Colorado, Boulder Amanda Brecht, NASA Ames Research Center Ofer Cohen, University of Massachusetts, Lowell Shawn Domagal-Goldman, NASA Goddard Space Flight Center Richard Eckman, NASA Earth Science Division Colin Goldblatt, University of Victoria Victoria Hartwick, University of Colorado, Boulder Sarah Hörst, Johns Hopkins University Doug Hudgins, NASA Astrophysics Division Jared Leisner, NASA Heliophysics Science Division Janet Luhmann, University of California, Berkeley Adriana Ocampo, NASA Planetary Science Division Jonathan Rall, NASA Planetary Science Division Chris Reinhard, Georgia Institute of Technology Antigona Segura, Universidad Nacional Autónoma de México Alejandro Soto, Southwest Research Institute Elsayed Talaat, NASA Heliophysics Science Division Allan Treiman, Lunar and Planetary Institute Thomas Woods, University of Colorado, CU Mary Voytek, NASA Science Mission Directorate Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Abstracts for this conference are available via the conference website at https://www.hou.usra.edu/meetings/climatology2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract.
    [Show full text]
  • Recent Work Challenges View of Early Mars, Picturing a Warm Desert with Occasional Rain 3 May 2018
    Recent work challenges view of early Mars, picturing a warm desert with occasional rain 3 May 2018 warm and wet climate. Secondly, recent climate studies have argued that Mars' ancient fluvial features can be accounted for with an icy climate, where widespread surfaces of ice promoted cooling by reflecting solar radiation (Figure 2). Occasional warming events would have triggered large amounts of ice-melt, and fluvial activity as a result. However, Ramirez and Craddock suggest that early The simplified surface energy balance for early Mars Mars was probably warm and wet, and not so icy, showing the decrease in surface temperature with after a careful geological and climatological increasing amounts of surface ice. The resultant analysis revealed little evidence of widespread increase in surface reflectivity is represented by a glaciation. widening blue arrow. Credit: Ramirez and Craddock (2018), Nature Geoscience The climate of early Mars is a subject of debate. While it has been thought that Mars had a warm and wet climate like Earth, other researchers have suggested early Mars might have been largely glaciated. A recent study by Ramses Ramirez from the Earth-Life Science Institute (Tokyo Institute of Technology, Japan) and Robert Craddock from the National Air and Space Museum's Center for Earth and Planetary Studies (Smithsonian Institution, U.S.) suggests that the early Martian surface may not have been dominated by ice, but might instead have been modestly warm and prone to rain, with only small patches of ice. The Grand Canyon (a) versus a Martian dendritic river system (b) (Arabia quadrangle; 12 degrees N, 43 While there is little debate about whether water degrees E).
    [Show full text]
  • Distribution, Stratigraphy, and Layer Thicknesses of Intra-Crater Deposits in Western Arabia Terra, Mars
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 1916.pdf DISTRIBUTION, STRATIGRAPHY, AND LAYER THICKNESSES OF INTRA-CRATER DEPOSITS IN WESTERN ARABIA TERRA, MARS. G. Schmidt1, M. Pondrelli1, F. Salese1 and A. Rossi2, 1IRSPS, Universita “G.D’Annunzio”, Pescara, Italy, [email protected], [email protected], 2Department of Earth and Plan- etary Science, Jacobs University, Bremen, Germany Introduction: Arabia Terra is a regional dichoto- crater diameter and deposit thickness. The thickest my boundary between the high and lowlands of north- deposits (>900 m) appear in craters deeper than 1,700 ern Mars known for its densely cratered terrain and m, however many craters of similar depth contain thin extensive distribution of water-altered deposits (Fig. 1). deposits of <200 m. Deposits in red and blue groups By analyzing the intra-crater deposits' stratigraphy and are thicker and their layers more continuous. Veneer mineralogy, as well as surveying their geographical deposits retain abundant minor cratering on their sur- distribution, the depositional history of Arabia Terra is faces and display no significant erosional features. The constrained. 485 craters were observed within a 1,307 veneer is flat and lacks any sedimentary structures. by 1,748 km area of western Arabia Terra, bounded by Discussion: Distinct changes in deposit thickness, the Oxia Palus quadrangle (MC-11), with the aim to layering, and composition of intra-crater deposits were identify and characterize potential water-altered depos- observed across Arabia Terra from the boundary with its (Fig. 2). Several distinct varieties of deposits were Meridiani Planum in the southeast to Chryse Panitia in found and distinguished by their mineralogy, albedo, the northwest.
    [Show full text]
  • The Geology of Ancient Fluvial and Lacustrine Systems in Arabia Terra and Melas Chasma, Mars
    THE GEOLOGY OF ANCIENT FLUVIAL AND LACUSTRINE SYSTEMS IN ARABIA TERRA AND MELAS CHASMA, MARS A thesis submitted to University College London for the degree of Doctor of Philosophy by Joel Michael Davis Department of Earth Sciences University College London Gower Street WC1E 6BT July 2017 1 I would like to dedicate this thesis to the men and women who have made the past five decades of Mars exploration possible. Per aspera ad astra. 2 Declaration I confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this is indicated. Joel Davis July 2017 3 “That’s no moon”. Ben Kenobi, Star Wars * “There isn’t enough life on this ice cube to fill a space cruiser”. Han Solo, The Empire Strikes Back * “Yes, I’m sure it’s perfectly safe for droids”. Luke Skywalker, The Empire Strikes Back 4 Abstract Fluvial and lacustrine processes were abundant on early Mars. However, key questions remain about the extent of these processes and the climate in which they formed. This thesis examines two regions of Mars, Arabia Terra and Melas Chasma, using high-resolution, remote sensing datasets, with a focus on (1) the influence of fluvial and lacustrine processes on the landscape and (2) the implications for the early martian climate and environment. I first investigate Arabia Terra, a Noachian region of the southern highlands, and have produced a regional map of fluvial landforms. Fluvial channels and paleolakes preserved as inverted relief are pervasive throughout Arabia Terra and may represent the depositional component of a regional, south to north fluvial transport system.
    [Show full text]