Characterization of Jobís Tears Germplasm in North-East India

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Jobís Tears Germplasm in North-East India Natural Product Radiance, Vol. 6(1), 2007, pp.50-54 Green page: Article Characterization of Jobís tears germplasm in North-East India D K Hore* and R S Rathi NBPGR Regional Station, Umiam - 793 103, Barapani, Meghalaya, India *Correspondent author Received 29 July 2005; Accepted 21 September 2006 Abstract Polytoca R. Br. and Coix are of the 4, 5 Job’s tears (Coix lacryma-jobi Linn.) is an underutilized crop widely distributed in old world origin . The established South-East Asia. The seeds of this crop are used as pseudocereal, poultry feed and beer brewing; species of the genus in India are: Coix while leaves are used as fodder. The North-eastern India is considered as one of the major aquatica Roxb., C. lacryma-jobi, C. centres of diversity for the crop. There are four well-marked forms of Job’s tears met within India, puellarum Balansa and C. gigantea which differ in their shape, size, colour and degree of hardiness of the involucres. Till 2004, Koen. ex Roxb6. Species of Coix form NBPGR Regional Station, Shillong, Meghalaya has collected a total of 54 accessions of Job’s tears germplasm. The germplasm characterization and protein and phosphorus contents of 29 accessions a polyploid series with base number 5 (ref. have been presented in this paper. Potentiality for systematic large scale cultivation of genotypes 7). All the varieties of has also been emphasized. C. lacryma-jobi are tetraploid Keywords : Job’s tears, Coix lacryma-jobi, Under utilized crop, Pseudocereal, Diversity, (2n=4x=20). There are four well-marked Germplasm. types of Job’s tears found in India, which IPC code; Int. cl.8 — A01G 1/00, A23L 1/10, A61K 36/00, A61K 36/8994 differs from each other with respect to their shape, size, colour and degree of hardiness of the involucres. These four Introduction to the shape of the grains which resembles taxonomical varieties: var. typica, var. The generic name of Coix Linn. the drop of tear. Job’s tears (Coix stenocarpa, var. mayuen and var. is derived from the works of Theophrastus, lacryma-jobi Linn.) is known as Adlay monilifer are wild type, which occur in who in the fourth century BC applied it to (Filipino), Jargadi in Sanskrit, Sankru the North-eastern India. The var. mayuen a reed like plant, which might have been in Hindi, Gurgur in Bengali, Megaru Stapf. ex Hook. f. alone is of importance a form of Coix. The Coix was originated in Garo, Sohriew in Khasi and Kunch as a source of human food. in North-eastern hill tracts of India and in Tripuri language. Coix is one of the Looking to the occurrence, Myanmar, because the great variability of eight genera included in the tribe Maydeae small-scale cultivation and utilization by the wild type of C. lacryma-jobi and (Family-Poaceae). Of C. aquatica occurs in this region. the tribe, these Venkateswaralu and Chaganti1 and Burkill2 genera Zea Linn., pointed out that its origin in Euchlaena Schrad. Indo-China while Vallaeys3 considered and Tripsacum Linn. Malay Archipelago is the center of origin. belong to the new The aboriginals who migrated from world, whereas the five Indo-China to Malaysia about 1000 B.C. genera, viz. are said to have had the knowledge of Sclerachne R.Br., cultivation of Coix and introduced the Trilobachne same in North-eastern parts of India. Its Schenck ex Henr., common English name Job’s tears is due Chionachne R. Br., Coix lacryma-jobi 50 Natural Product Radiance Green page: Article lower subtropical terrains9, 10. According The fruit colour in wild forms to Pieris11 the edible grain (known as varies from white to greyish or greyish- Adlay in the Philippines) has been black while in the cultivated forms these under cultivation in India for some represents from whitish, creamy, 3000-4000 years. The plant was being brownish, greyish and black. The grain grown in the remote past as a minor cereal shape also varies from pear-shaped to or fodder and grown extensively by the elongated one. Variability exhibited in Matured harvested seeds of Coix lacryma-jobi farmers of North-eastern India12. nonstraited type and only a few collections It is grown mainly during showed the striated forms. Kharif/rainy season in hilly areas, in All 54 collected accessions were homesteads area as well as in Jhumland. characterized at National Bureau of Plant The mature plants do not remain longer Genetic Resources (NBPGR), Regional in the lush green stage and turns greyish Station, Umiam, Barapani. This was var. mayeum as maturity attains for harvest. The plant subjected to an experiment in two is cut from the base, tied in bundles and replications in RBD design over the Seeds of Coix lacryma-jobi var. mayeum carried to the tribal dwelling for period of three years (2001-2004). The threshing. It was reported that Coix could plot size (2×25m) was kept for each the local tribal people, an attempt was be grown successfully in such areas where accession. Two land races named made for systematic collections of various other crops are difficult to grow. pollin and mayeum were used as a genotypes of this underutilized crop from standard check variety. Based on the data this region so that their importance can recorded, four genotypes were identified be determined through germplasm Germplasm collection and as promising. The genotype ‘IC-012703’ evaluation. Many exploration and characterization gave the highest grain yield with collection trips were undertaken during The details of germplasm collection 318 qt/ha whereas genotype ‘IC-089391’ the years 1986 to 2004. The germplasm are given in Table 1. There are two major was next with a net yield of 300 qt/ha. variability was collected from the parts of regions of origin — the North-East India- The genotype ‘IC-521338’ recorded a grain Arunachal Pradesh, Nagaland, Tripura, Myanmar, and the regions of Indo-China yield of 290 qt/ha (Table 2). These Manipur, Meghalaya and Mizoram states which accounted for the multiplicity of promising genotypes were also sent for of the region. the cultivated races of C. lacryma-jobi. adaptive trial at various hilly areas of A total of 54 genotypes were the country under All India Coordinated collected from the North-eastern region Origin and Distribution Research Project on Under-Utilized during 1986 to 2004. Much variability was Job’s tears, a cultigens of great crop13. noticed in cultivated type as well as in antiquity, is grown in South Asia mainly The plant is usually resistant to wild type. The collected material, by the natives of various ethnic groups of pest attack. However, losses may occur due 2, 8 accumulated through germplasm Mongolian origin . The North-eastern to damage by birds and rats14. Unusual region of India is a center of variability of exploration trips showed the wide range phenomenon was observed in Coix the genus Coix. It is considered that this of variability with regards to their size, during 1999-2000 in experimental trials, plant was introduced here either by the shape, shell type, colour of seeds, plant before the crop maturity. While growing pastoral Aryans invaders, who grew it on height and in leaf size. The collections the crop in Barapani condition, there was the slope of Himalaya or during were made from sub-tropical region of an outbreak of leaf spot disease, caused Mongolian conquers, when the crop got the North-East region, dominated by the by Phyllocora sp. due to which the leaves distributed from the eastern Himalaya to ethnic people. got withered within a few days. The attack Vol 6(1) January-February 2007 51 Green page: Article Table 1 : Number of accession collected from North-eastern states by NBPGR, Regional Station, Barapani, Meghalaya during the year(s) 1986-2004 S. No. Exploration and collection sites Year of collection No. of genotypes collected 1. Karbi Anglong (Mikir Hills) 1986 12 2. Parts of Tripura State 1986 2 3. Parts of Nagaland 1986 7 4. Lower Assam and Subtropical range of 1987 1 Arunachal Pradesh 5. East Khasi & Jaintia Hills and 1987 1 North Cachar Hills 6. East and West Kameng, Subansiri of 1988 8 Arunachal Pradesh 7. Manipur State 1989 1 8. West Kameng and Tawang district of 1996-97 2 Arunachal Pradesh 9. East Kameng, Lower Subansiri and 1996-97 2 Upper Subansiri of Arunachal Pradesh 10. Parts of Meghalaya and Mizoram 2000 5 11. Assam, Mizoram, Manipur and 2001-2002 8 Arunachal Pradesh 12. Assam and Mizoram 2002-2003 2 13. Mizoram 2003-2004 3 Total 54 was severe and the disease reappeared after piggeries, it trampled and mixed with Chemical composition a gap of 25 years in this locality of mud and this make a good compost10, 15. The grain has very hard seed coat. Meghalaya, as it was first noticed by the Dry leaves are also used for thatching16. The ratio of seed vs coat is 257:1. Grains farmers during 1974-1975, locally. The soft-shelled types are becoming very of Job’s tears contain much higher popular for poultry and animal feeds17-19. percentages of protein, fat and fibre as Utilization In North-East India and in western world, compared to rice. Out of 54 collected accessions, C. lacryma-jobi var. mayuen the hard-shelled grain type of phytochemical characterization was done for is an important food crop. Grains are used Coix has long been used in ornamental 29 promising and superior accessions on in various ways by the tribals for food, purposes i. e. in rosaries, necklaces, protein and phosphorus percentage. fodder and for personal adornment. The curtains and draperies. Naga tribes use Nitrogen content of sample was mature seeds after de-hulling and cleaning the seeds for the decoration of their determined by Kjeldahal digestion are boiled and eaten with cooked rice.
Recommended publications
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • Finger Millet (Eleusine Coracana L.) Grain Yield and Yield Components As Influenced by Phosphorus Application and Variety in Western Kenya
    ISSN (E): 2349 – 1183 ISSN (P): 2349 – 9265 3(3): 673–680, 2016 DOI: 10.22271/tpr.2016. v3.i3. 088 Research article Finger millet (Eleusine coracana L.) grain yield and yield components as influenced by phosphorus application and variety in Western Kenya Wekha N. Wafula1*, Korir K. Nicholas1, Ojulong F. Henry2, Moses Siambi2 and Joseph P. Gweyi-Onyango1 1Department of Agricultural Science and Technology, Kenyatta University, PO Box 43844-00100 Nairobi, Kenya 2ICRISAT, ICRAF house, UN Avenue, Gigiri, PO BOX 39063-00623, Nairobi, Kenya *Corresponding Author: [email protected] [Accepted: 15 December 2016] Abstract: Finger millet is one of the potential cereal crops that can contribute to the efforts of realization of food security in the Sub-Saharan Africa. However, scientific information available with regards to improving soil phosphorus supply and identification of P efficient varieties for the crops potential yield is limited. In order to investigate the effects of P levels on yield components and grain yield On-station field experiments were conducted in two sites of western Kenya during the long and short rain seasons of 2015. The experiment was laid out in a Randomized Complete -1 Block Design in factorial arrangement with four levels of P (0, 12.5, 25 and 37.5 kg P2O5 ha and three finger millet varieties (U-15, P-224 and a local check-Ikhulule) and the treatments replicated three times. The increase of phosphorus levels significantly (P≤0.05) increased the grain yield -1 -1 over the control up to 25 kg P2O5 ha during the long rain seasons and 25 kg P2O5 ha during the short rain seasons in both sites.
    [Show full text]
  • Identification of Cereal Remains from Archaeological Sites 2Nd Edition 2006
    Identification of cereal remains from archaeological sites 2nd edition 2006 Spikelet fork of the “new glume wheat” (Jones et al. 2000) Stefanie JACOMET and collaborators Archaeobotany Lab IPAS, Basel University English translation partly by James Greig CEREALS: CEREALIA Fam. Poaceae /Gramineae (Grasses) Systematics and Taxonomy All cereal species belong botanically (taxonomically) to the large family of the Gramineae (Poaceae). This is one of the largest Angiosperm families with >10 000 different species. In the following the systematics for some of the most imporant taxa is shown: class: Monocotyledoneae order: Poales familiy: Poaceae (= Gramineae) (Süssgräser) subfamily: Pooideae Tribus: Triticeae Subtribus: Triticinae genera: Triticum (Weizen, wheat); Aegilops ; Hordeum (Gerste; barley); Elymus; Hordelymus; Agropyron; Secale (Roggen, rye) Note : Avena and the millets belong to other Tribus. The identification of prehistoric cereal remains assumes understanding of different subject areas in botany. These are mainly morphology and anatomy, but also phylogeny and evolution (and today, also genetics). Since most of the cereal species are treated as domesticated plants, many different forms such as subspecies, varieties, and forms appear inside the genus and species (see table below). In domesticates the taxonomical category of variety is also called “sort” (lat. cultivar, abbreviated: cv.). This refers to a variety which evolved through breeding. Cultivar is the lowest taxonomic rank in the domesticated plants. Occasionally, cultivars are also called races: e.g. landraces evolved through genetic isolation, under local environmental conditions whereas „high-breed-races“ were breed by strong selection of humans. Anyhow: The morphological delimitation of cultivars is difficult, sometimes even impossible. It needs great experience and very detailed morphological knowledge.
    [Show full text]
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • Zea Mays Subsp
    Unclassified ENV/JM/MONO(2003)11 Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 23-Jul-2003 ___________________________________________________________________________________________ English - Or. English ENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND Unclassified ENV/JM/MONO(2003)11 THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY Cancels & replaces the same document of 02 July 2003 Series on Harmonisation of Regulatory Oversight in Biotechnology, No. 27 CONSENSUS DOCUMENT ON THE BIOLOGY OF ZEA MAYS SUBSP. MAYS (MAIZE) English - Or. English JT00147699 Document complet disponible sur OLIS dans son format d'origine Complete document available on OLIS in its original format ENV/JM/MONO(2003)11 Also published in the Series on Harmonisation of Regulatory Oversight in Biotechnology: No. 4, Industrial Products of Modern Biotechnology Intended for Release to the Environment: The Proceedings of the Fribourg Workshop (1996) No. 5, Consensus Document on General Information concerning the Biosafety of Crop Plants Made Virus Resistant through Coat Protein Gene-Mediated Protection (1996) No. 6, Consensus Document on Information Used in the Assessment of Environmental Applications Involving Pseudomonas (1997) No. 7, Consensus Document on the Biology of Brassica napus L. (Oilseed Rape) (1997) No. 8, Consensus Document on the Biology of Solanum tuberosum subsp. tuberosum (Potato) (1997) No. 9, Consensus Document on the Biology of Triticum aestivum (Bread Wheat) (1999) No. 10, Consensus Document on General Information Concerning the Genes and Their Enzymes that Confer Tolerance to Glyphosate Herbicide (1999) No. 11, Consensus Document on General Information Concerning the Genes and Their Enzymes that Confer Tolerance to Phosphinothricin Herbicide (1999) No.
    [Show full text]
  • Gene Bank Curators Towards Implementation of the International Treaty on Plant Genetic Resources for Food and Agriculture by the Indian National Gene Bank
    Chapter 14 Gene Bank Curators Towards Implementation of the International Treaty on Plant Genetic Resources for Food and Agriculture by the Indian National Gene Bank Shyam Kumar Sharma and Pratibha Brahmi Introduction: PGRFA diversity in India The Indian subcontinent is very rich in biological diversity, harbouring around 49,000 species of plants, including about 17,500 species of higher plants. The Indian gene centre holds a prominent position among the 12 mega-gene centres of the world. It is also one of the Vavilovian centres of origin and diversity of crop plants. Two out of the 25 global hotspots of biodiversity, namely the Indo-Burma and Western Ghats are located here. India possesses about 12 per cent of world flora with 5725 endemic species of higher plants belonging to about 141 endemic genera and over 47 families. About 166 species of crops including 25 major and minor crops have originated and/or developed diversity in this part of the world. Further, 320 species of wild relatives of crop plants are also known to occur here. Presently, the Indian diversity is composed of rich genetic wealth of native as well as introduced types. India is a primary as well as a secondary centre of diversity for several crops, and also has rich regional diversity for several South/ Southeast Asian crops such as rice, black gram, moth bean, pigeon pea, cucur- bits (like smooth gourd, ridged gourd and pointed gourd), tree cotton, capsularis jute, jackfruit, banana, mango, Syzygium cumini/jamun, large cardamom, black pepper and several minor millets and medicinal plants like Rauvolfia serpentina and Saussurea costus.
    [Show full text]
  • Appendix C. Plant Species Observed at the Yolo Grasslands Regional Park (2009-2010)
    Appendix C. Plant Species Observed at the Yolo Grasslands Regional Park (2009-2010) Plant Species Observed at the Yolo Grassland Regional Park (2009-2010) Wetland Growth Indicator Scientific Name Common Name Habitat Occurrence Habit Status Family Achyrachaena mollis Blow wives AG, VP, VS AH FAC* Asteraceae Aegilops cylinricia* Jointed goatgrass AG AG NL Poaceae Aegilops triuncialis* Barbed goat grass AG AG NL Poaceae Aesculus californica California buckeye D T NL Hippocastanaceae Aira caryophyllea * [Aspris c.] Silver hairgrass AG AG NL Poaceae Alchemilla arvensis Lady's mantle AG AH NL Rosaceae Alopecurus saccatus Pacific foxtail VP, SW AG OBL Poaceae Amaranthus albus * Pigweed amaranth AG, D AH FACU Amaranthaceae Amsinckia menziesii var. intermedia [A. i.] Rancher's fire AG AH NL Boraginaceae Amsinckia menziesii var. menziesii Common fiddleneck AG AH NL Boraginaceae Amsinckia sp. Fiddleneck AG, D AH NL Boraginaceae Anagallis arvensis * Scarlet pimpernel SW, D, SS AH FAC Primulaceae Anthemis cotula * Mayweed AG AH FACU Asteraceae Anthoxanthum odoratum ssp. odoratum * Sweet vernal grass AG PG FACU Poaceae Aphanes occidentalis [Alchemilla occidentalis] Dew-cup AG, F AH NL Rosaceae Asclepias fascicularis Narrow-leaved milkweed AG PH FAC Ascepiadaceae Atriplex sp. Saltbush VP, SW AH ? Chenopodiaceae Avena barbata * Slender wild oat AG AG NL Poaceae Avena fatua * [A. f. var. glabrata, A. f. var. vilis] Wild oat AG AG NL Poaceae Brassica nigra * Black mustard AG, D AH NL Brassicaceae Brassica rapa field mustard AG, D AH NL Brassicaceae Briza minor * Little quakinggrass AG, SW, SS, VP AG FACW Poaceae Brodiaea californica California brodiaea AG PH NL Amaryllidaceae Brodiaea coronaria ssp. coronaria [B.
    [Show full text]
  • Tripsacum Dactyloides Scientific Name  Tripsacum Dactyloides (L.) L
    Tropical Forages Tripsacum dactyloides Scientific name Tripsacum dactyloides (L.) L. Subordinate taxa: Perennial clump grass, Texas, USA Tripsacum dactyloides (L.) L. var. dactyloides Tiller base with short, knotty rhizome and developing prop roots (ILRI 15488) Tripsacum dactyloides (L.) L. var. hispidum (Hitchc.) de Wet & J.R. Harlan Tripsacum dactyloides (L.) L. var. meridonale de Wet & Timothy Tripsacum dactyloides (L.) L. var. mexicanum de Wet & J.R. Harlan Synonyms Single raceme with white stigmas emerging from ♀ spikelets at base of var. dactyloides: basionym Coix dactyloides L.; raceme; purplish stems Tripsacum dactyloides (L.) L. var. occidentale H.C. Single racemes and subdigitate panicle; Cutler & E.S. Anderson anthers emerging from ♂ apical flowers, stigmas on ♀ basal flowers already var. hispidum (Hitchc.) de Wet & J.R. Harlan: senescent Basionym: Tripsacum dactyloides subsp. hispidum Hitchc. Family/tribe Family: Poaceae (alt. Gramineae) subfamily: Panicoideae tribe: Andropogoneae subtribe: Tripsacinae. Morphological description Seed unit with caryopsis Seed units An extremely variable perennial clump grass, with short, fibrous, knotty rhizomes and deep hollow roots. Culms 1‒2.5 (‒4 m) tall, and 3‒5 cm thick at base, branching, prop-rooting from lower nodes; stems purplish, glabrous. Leaf sheath glabrous, often purplish; leaf-blade lanceolate-acuminate, to 30‒75 (‒1.5) cm long and 9‒35 (‒45) mm wide, mostly glabrous, sometimes hairy at the base of the upper blade surface; prominent midrib; Seed production area, Knox margin scabrous; ligule a fringed membrane, 1‒1.5 mm County, Texas, USA (PI 434493) long. Inflorescence 10‒20 (‒30) cm long, terminal and axillary, commonly a single raceme, or subdigitate panicle comprising 2‒3 (‒6) racemes of usually A.
    [Show full text]
  • Maize (Zea Mays L.) Is the Third Most Important Cereal Crop of the World (F.A
    Cytologia 51: 527-547, 1986 Karyomorphology of Different Strains of Maydeae J. S. P. Sarma1 and A. K. Sharma Department of Botany, Centre of Advanced Study (Cell and Chromosome Research), University College of Science, University of Calcutta, 35, Ballygunge Circular Road, Calcutta-700 019, India Accepted February 22, 1985 Maize (Zea mays L.) is the third most important cereal crop of the world (F.A. O. 1976) and a considerable acerage is under maize cultivation in India, mostly centered around the Indo-Gangetic plains (Wealth of India 1976, Wilkes 1981). Its asssociation with several pre-Columbian civilizations of America has been discussed (Brewbaker 1979). It is adaptible to a wide range of climates and soils and has a genetic plasticity that results in the production of innumerable varieties. Hybrid maize may be regarded as one of the most spectacular achievements in applied biology of this century. The modern maize plant is very productive, highly het erozygous and genetically complex, whose basic biology has been considerably altered through artificial hybridization and selection. Maize, along with some other American and oriental genera blelongs to Maydeae, one of the substribes of Andropogoneae, a major tribe of Gramineae. Of the subtribe Maydeae, in addition to maize which is used for various pur poses, teosinte Euchlaena mexicana (Schrad.) Kuntze is cultivated for use as food and fodder (Wilkes 1967, 1972, 1977a). Coix, more commonly known as Job's tears, is a minor cereal in North Eastern India, Burma, Indonesia, etc. and is used for food, fodder, thatching, personal adornment, preparation of beer and other purposes (Arora 1977, Jain and Banerjee 1974).
    [Show full text]
  • Copyright by Stephannie Coeto Coix 2018
    Copyright by Stephannie Coeto Coix 2018 The Thesis committee for Stephannie Coeto Coix Certifies that this is the approved version of the following thesis: Alexandre Testanegra: An Ottoman Spy in the New World? APPROVED BY SUPERVISING COMMITTEE: ________________________________ Jorge Canizares, Supervisor ________________________________ Mariam Bodian Alexandre Testanegra: An Ottoman Spy in the New World? by Stephannie Coeto Coix Thesis Presented to the Faculty of the Graduate School of the University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Arts The University of Texas at Austin May, 2018 Dedicado a los dos seres más importantes de mi vida: Abisai y Elena Acknowledgments I am really thankful to Dr. Jorge Cañizares for all the support, guidance, and faith in my project. I am very proud of being under your supervision. I am also thankful to Dr. Mariam Bodian for the analytical assistance. Your questions and comments about the interpretation of the file, helped me to find its unsuspected scope. Thank you also to Bradley Dixon, Kristie Flannery, Adrian Masters, and Gary Dunbar for your generous comments and corrections in the reviewing process. Más que a nadie, gracias a mi esposo Abisai Pérez. El amor y la admiración que te profeso no pueden expresarse con palabras. Sólo puedo decirte gracias por apoyarme y acompañarme a cada momento de la vida. Por ser mi porrista incondicional, editor y mi modelo a seguir. Gracias a mi mamaita, Elena Coix. Tu amor, sabiduría y ejemplo me han dado todas las cosas maravillosas que tengo hoy en la vida. Estar a la altura de la gran mujer y madre que eres, ha sido y será siempre mi mayor motivación en la vida.
    [Show full text]
  • BIOLOGICAL SCIENCES Ancestry of the Two Subgenomes of Maize
    bioRxiv preprint doi: https://doi.org/10.1101/352351; this version posted June 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. McKain et al. - 1 CLASSIFICATION: BIOLOGICAL SCIENCES Ancestry of the two subgenomes of maize Michael R. McKaina,b , Matt C. Estepc, Rémy Pasquetd, Daniel J. Laytona,e, Dilys M. Vela Díazf, Jinshun Zhongg,h,i, John G. Hodgea,j, Simon T. Malcomberk, Gilson Chipabikal, Beatrice Pallangyom, Elizabeth A. Kellogga,* aDonald Danforth Plant Science Center, 975 North Warson Rd., St. Louis, MO 63121, USA; bDepartment of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; cDepartment of Biology, Appalachian State University, Boone, NC 28608, USA; dDIADE, Univ Montpellier, IRD, F-34394 Montpellier, France; eIndiana University, Department of Biology, Jordan Hall, 1001 E 3rd St, Bloomington, IN 47405, USA; fDepartment of Biology, Washington University, St. Louis, MO, USA; gMax Planck Institute for Plant Breeding, 50829 Köln, Germany; hInstitute of Plant Genetics, Heinrich Heine University, 40225 Düsseldorf, Germany; iCluster of Excellence on Plant Sciences “From Complex Traits towards Synthetic Modules”, 40225 Düsseldorf, Germany; jPlant Biology Department, Oklahoma State University, Stillwater, OK, USA; kDivision of Environmental Biology, National Science Foundation, 2415 Eisenhower Avenue, Alexandria, VA 22314, USA lZARI, Mount Maluku Central Research Station, Private Bag 7, Chilanga, Zambia mBiocontrol Program, PO Box 30031, Kibaha, Tanzania *Author for correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/352351; this version posted June 20, 2018.
    [Show full text]
  • 47 Section 3 Maize (Zea Mays Subsp. Mays)
    SECTION 3 MAIZE (ZEA MAYS SUBSP. MAYS) 1. General Information Maize, or corn, is a member of the Maydeae tribe of the grass family, Poaceae. It is a robust monoecious annual plant, which requires the help of man to disperse its seeds for propagation and survival. Corn is the most efficient plant for capturing the energy of the sun and converting it into food, it has a great plasticity adapting to extreme and different conditions of humidity, sunlight, altitude, and temperature. It can only be crossed experimentally with the genus Tripsacum, however member species of its own genus (teosinte) easily hybridise with it under natural conditions. This document describes the particular condition of maize and its wild relatives, and the interactions between open-pollinated varieties and teosinte. It refers to the importance of preservation of native germplasm and it focuses on the singular conditions in its centre of origin and diversity. Several biological and socio-economic factors are considered important in the cultivation of maize and its diversity; therefore these are described as well. A. Use as a crop plant In industrialised countries maize is used for two purposes: 1) to feed animals, directly in the form of grain and forage or sold to the feed industry; and 2) as raw material for extractive industries. "In most industrialised countries, maize has little significance as human food" (Morris, 1998; Galinat, 1988; Shaw, 1988). In the European Union (EU) maize is used as feed as well as raw material for industrial products (Tsaftaris, 1995). Thus, maize breeders in the United States and the EU focus on agronomic traits for its use in the animal feed industry, and on a number of industrial traits such as: high fructose corn syrup, fuel alcohol, starch, glucose, and dextrose (Tsaftaris, 1995).
    [Show full text]