Collective Behavior at the Interface of Lithium-Ion Batteries Under Cyclic
Total Page:16
File Type:pdf, Size:1020Kb
Collective Behavior at the Interface of Lithium-Ion Batteries under Cyclic Lithiation By Hsiao-Mei Wu B. Sc., National Taiwan University, 2004 M. Sc., University of Illinois at Urbana-Champaign, 2006 M. Sc., Brown University, 2009 Thesis Submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in the School of Engineering at Brown University PROVIDENCE, RHODE ISLAND MAY 2014 © Copyright 2014 by Hsiao-Mei Wu This dissertation by Hsiao-Mei Wu is accepted in its present form by the School of Engineering as satisfying the dissertation requirement for the degree of Doctor of Philosophy. Date Kyung-Suk Kim, Advisor Recommended to the Graduate Council Date Pradeep R. Guduru, Reader Date Brian W. Sheldon, Reader Approved by the Graduate Council Date Peter M. Weber, Dean of the Graduate School iii Curriculum Vitae Hsiao-Mei Wu was born on December 27, 1981, at Taipei, Taiwan, Republic of China. She attended National Taiwan University in 2000 and got her B. Sc. degree in Civil Engineering in 2004. Later she completed her M. Sc. in Civil and Environmental Engineering at University of Illinois at Urbana-Champaign in December 2006. She entered the Mechanics of Solids program at Brown University in 2008 and was awarded an M. Sc. in 2009. Publications Wu, H.-M., Yi, J. W., Moon, M.-W., & Kim, K.-S. (2011). Nanobearings in Nature. Poster, Future Directions in Mechanics Research, NSF Workshop and Symposium in honor of Professor L. B. Freund. Wu, H.-M., Tokranov, A., Xiao, X., Qi, Y., Verbrugge, M. W., Sheldon, B. W., & Kim, K.-S. (2014). Characterization of Interfacial Sliding Properties at Amorphous Si/Cu Interface due to Li-ion Intercalation by Using Self-Adjusting Liquid Linnik Interferometer. Extended Abstract, 17th U.S. National Congress on Theoretical and Applied Mechanics. iv Acknowledgments I would like to express the deepest appreciation to my advisor Professor Kyung-Suk Kim, who inspired me the beauty of experiment, taught me the importance of uniqueness, and cultivated me the persistence of chasing principles. Without his guidance and continually help, this research work would not have been possible. I am grateful to Professor Pradeep Guduru and Professor Brain Sheldon for their insightful comments leading to significant improvement in the quality of this work. Thank all other faculty members and staffs at School of Engineering for providing me a robust and warm academic environment. I would like to thank the research scientists at the General Motors R&D center, especially Dr. Yue Qi, Dr. Xingcheng Xiao, Dr. Mark Verbrugge, and Dr. Qian Lin for giving me the suggestions and materials to complete my studies. I am indebted to the funding support from General Motors through the GM/Brown collaborative research lab. I also thank my fellow lab mates in Nano and Micromechanics Laboratory, Moon-Hyun Cha, Huck Beng Chew, Mazen Diab, Hyun-Gyu Kim, Sang-Pil Kim, Jahn Torres, Shuman Xia, Jin Woo Yi, Cheng Zhang, Ruike Zhao, and my fellow graduate students, Jay Sheth, Maria Stournara, Anton Tokranov, Ravi Kumar, Xin Yi, Teng Zhang, for their friendships and helpful assistances. Moreover, I thank to my friends in Brown Taiwanese Graduate Student Association who made my life at Brown enjoyable. Last but not the least, I would like to express my gratitude to my parents, my brother, and my husband Dr. Chien-Kai Wang for always supporting and encouraging me. v Table of Contents Curriculum Vitae ............................................................................................................... iv Acknowledgments............................................................................................................... v List of Tables ..................................................................................................................... ix List of Figures ..................................................................................................................... x Chapter 1. Introduction ....................................................................................................... 1 1.1 Background of the Li-Ion Battery ............................................................................ 1 1.2 Mechanical Issues of the Li-Ion Battery .................................................................. 5 1.3 Outline of Present Work ......................................................................................... 10 Chapter 2. In Situ Optical Measurement of Displacement Fields of Si Thin Film Anode Using Self-Adjusting Liquid Linnik Interferometer (SALLI) .......................................... 13 2.1 Introduction ............................................................................................................ 13 2.2 Introduction to Interference Microscopes .............................................................. 16 2.2.1 The principle of Michelson interferometer ................................................... 16 2.2.2 Summary of scanning white-light interferometers (SWLIs) ......................... 18 2.2.3 Limitations of existing SWLIs ...................................................................... 20 2.3 Principles of SALLI ............................................................................................... 23 vi 2.4 Algorithms for SALLI ............................................................................................ 25 2.4.1 Detection of the edge of the sample .............................................................. 26 2.4.2 Computation of phase map ............................................................................ 27 2.4.3 Noise reduction technique ............................................................................. 31 2.5 Experimental Procedures ........................................................................................ 33 2.5.1 Optical setup of SALLI ................................................................................. 33 2.5.2 Electrochemical half cell preparation and test .............................................. 38 2.6 Results and Discussions ......................................................................................... 40 2.7 Concluding Remarks .............................................................................................. 47 Chapter 3. Shear Characteristics of a-SiLix//Cu Interface under Electrochemically Active Segregation of Lithium ..................................................................................................... 48 3.1 Introduction ............................................................................................................ 48 3.2 Formulation of Plate Bending Distribution Sensor (PBDS) .................................. 50 3.2.1 Substrate bending in the presence of interfacial sliding ................................ 51 3.2.2 PBDS for experimental data .......................................................................... 54 3.3 Algorithms and Finite Element Model for PBDS .................................................. 56 3.4 Optimization Scheme ............................................................................................. 60 3.5 Results and Discussions ......................................................................................... 62 Chapter 4. In Situ Observation and Modeling of the Li-Ion Battery Cell Deformation ... 72 4.1 Introduction ............................................................................................................ 72 vii 4.2 In Situ Observation of the Non-homogeneous Deformation in a Free Li-Ion Battery Cell through Electronic Speckle Pattern Interferometer (ESPI) ................................... 74 4.2.1 Experimental setup ........................................................................................ 75 4.2.2 Thickness variation during charge and discharge cycles .............................. 78 4.3 In Situ Stress Variation of Confined Li-Ion Battery Cells via Amplified Pressure Distribution Sensor (APDS) ......................................................................................... 85 4.3.1 Experimental setup ........................................................................................ 86 4.3.2 Confinement-pressure variations during charge and discharge cycles ......... 88 4.4 Micromechanical Internal State Model of the Li-Ion Battery Cell ........................ 92 4.4.1 Formation of the model ................................................................................. 92 4.4.2 Finite element analysis of the model ............................................................. 97 4.4.3 Verification of the internal state model with experimental data ................... 99 4.5 Concluding Remarks ............................................................................................ 103 Appendix A: The LG Pouch Li-Ion Battery Cells ...................................................... 105 Appendix B: The Details of Finite Element Model .................................................... 106 Chapter 5. Conclusions and Future Works ..................................................................... 109 5.1 Concluding Remarks ............................................................................................ 109 5.2 Future Works ........................................................................................................ 112 References ......................................................................................................................