Proteomics Answers Which Yeast Genes Are Specific for Baking
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brewing Yeast – Theory and Practice
Brewing yeast – theory and practice Chris Boulton Topics • What is brewing yeast? • Yeast properties, fermentation and beer flavour • Sources of yeast • Measuring yeast concentration The nature of yeast • Yeast are unicellular fungi • Characteristics of fungi: • Complex cells with internal organelles • Similar to plants but non-photosynthetic • Cannot utilise sun as source of energy so rely on chemicals for growth and energy Classification of yeast Kingdom Fungi Moulds Yeast Mushrooms / toadstools Genus > 500 yeast genera (Means “Sugar fungus”) Saccharomyces Species S. cerevisiae S. pastorianus (ale yeast) (lager yeast) Strains Many thousands! Biology of ale and lager yeasts • Two types indistinguishable by eye • Domesticated by man and not found in wild • Ale yeasts – Saccharomyces cerevisiae • Much older (millions of years) than lager strains in evolutionary terms • Lot of diversity in different strains • Lager strains – Saccharomyces pastorianus (previously S. carlsbergensis) • Comparatively young (probably < 500 years) • Hybrid strains of S. cerevisiae and wild yeast (S. bayanus) • Not a lot of diversity Characteristics of ale and lager yeasts Ale Lager • Often form top crops • Usually form bottom crops • Ferment at higher temperature o • Ferment well at low temperatures (18 - 22 C) (5 – 10oC) • Quicker fermentations (few days) • Slower fermentations (1 – 3 weeks) • Can grow up to 37oC • Cannot grow above 34oC • Fine well in beer • Do not fine well in beer • Cannot use sugar melibiose • Can use sugar melibiose Growth of yeast cells via budding + + + + Yeast cells • Each cell is ca 5 – 10 microns in diameter (1 micron = 1 millionth of a metre) • Cells multiply by budding a b c d h g f e Yeast and ageing - cells can only bud a certain number of times before death occurs. -
Into Son," the Chief Replied
THE SUNDAY OREGONJAN, PORTLAND, NOVEMBER 12, 1922 17 fcallet YOUTHFUL JAPANESE GIRL WHO IS VISITING IN PORTLAND we can get valiant assistance from the second alarm, who reproved a wings in her abbreviated every one of those who made the bystander who wanted to know skirts, there was a moment's horri- EPIDEMIC OF GRIME HAS FUTURE AS A VOCALIST. recent pilgrimage to the Evergreen NEW YORK THEATER FIRE why he seemed to take such a per- fied silence, followed by a storm state. sonal interest in saving the grimy of hisses. Before the dance ended structure. all'the women in the lower tier of Sporting Writers Suggested. EARLY-DA- Y with a fine RECALLS STAGE Old-Tim- Jeplous. boxes left the theater, CITY Here is the hunch. Oregon switching of hoopskirts, for this SWEEPS abounds in splendid fishing streams The chief smiled his wise smile: was in the year of grace, 1837. 01 and ideal hunting grounds for all Bowery Playhouse, Have Been "It'd be sort of hard for us rs They rang down the curtain on a game, virtually every Miners' Said to Cradle of American kinds of and Drama, Is Damaged. to see this place go. We bewildered and furious danseuse, one of the sporting editors of the are growing a little jealous of our was she permitted to dance New York papers is a "nut" on fish- old landmarks." there again. ing and hunting. Therefore, it "Getting sentimental, chief?" the Yet, nine years earlier, nobody Two Holdup not to a great deal of BY JULIAN EDWARDS. -
Multiple Genetic Origins of Saccharomyces Cerevisiae in Bakery
Multiple genetic origins of Saccharomyces cerevisiae in bakery Frédéric Bigey, Diego Segond, Lucie Huyghe, Nicolas Agier, Aurélie Bourgais, Anne Friedrich, Delphine Sicard To cite this version: Frédéric Bigey, Diego Segond, Lucie Huyghe, Nicolas Agier, Aurélie Bourgais, et al.. Multiple genetic origins of Saccharomyces cerevisiae in bakery. Comparative genomics of eukaryotic microbes: genomes in flux, and flux between genomes, Oct 2019, Sant Feliu de Guixol, Spain. hal-02950887 HAL Id: hal-02950887 https://hal.archives-ouvertes.fr/hal-02950887 Submitted on 28 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. genetic diversity of229 propagating a natural sourdough, which is a of mixed naturally fermented domestication of wide diversity of fermented products like wine, Saccharomyces cerevisiae sake, beer, cocoa and bread. While bread is of cultural and historical importance, the highly diverse environments like human, wine, sake, fruits, tree, soil... fruits, tree, human, wine, sake, like highly diverse environments clade on the 1002 genomes whichtree, also includes beer strains. Sourdough strains mosaic are and genetically are to related strains from strains. Selection for strains commercial has maintained autotetraploid. strains mostly to Commercial are related strains of origin the Mixed The origin of bakery strains is polyphyletic. -
Supporting Information
Supporting Information Figure S1. The functionality of the tagged Arp6 and Swr1 was confirmed by monitoring cell growth and sensitivity to hydeoxyurea (HU). Five-fold serial dilutions of each strain were plated on YPD with or without 50 mM HU and incubated at 30°C or 37°C for 3 days. Figure S2. Localization of Arp6 and Swr1 on chromosome 3. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 3L, Tel 3R, CEN3, and the RP gene are shown under the panels. Figure S3. Localization of Arp6 and Swr1 on chromosome 4. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) in the whole chromosome region are compared. The position of Tel 4L, Tel 4R, CEN4, SWR1, and RP genes are shown under the panels. Figure S4. Localization of Arp6 and Swr1 on the region including the SWR1 gene of chromosome 4. The binding of Arp6- FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position and orientation of the SWR1 gene is shown. Figure S5. Localization of Arp6 and Swr1 on chromosome 5. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 5L, Tel 5R, CEN5, and the RP genes are shown under the panels. Figure S6. Preferential localization of Arp6 and Swr1 in the 5′ end of genes. Vertical bars represent the binding ratio of proteins in each locus. -
Relation Between the Recipe of Yeast Dough Dishes and Their Glycaemic Indices and Loads
foods Article Relation between the Recipe of Yeast Dough Dishes and Their Glycaemic Indices and Loads Ewa Raczkowska * , Karolina Ło´zna , Maciej Bienkiewicz, Karolina Jurczok and Monika Bronkowska Department of Human Nutrition, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland * Correspondence: [email protected]; Tel.: +48-71-320-7726 Received: 23 July 2019; Accepted: 30 August 2019; Published: 1 September 2019 Abstract: The aim of the study was to evaluate the glycaemic indices (GI) and glycaemic loads (GL) of four food dishes made from yeast dough (steamed dumplings served with yoghurt, apple pancakes sprinkled with sugar powder, rolls with cheese and waffles with sugar powder), based on their traditional and modified recipes. Modification of the yeast dough recipe consisted of replacing wheat flour (type 500) with whole-wheat flour (type 2000). Energy value and the composition of basic nutrients were assessed for every tested dish. The study was conducted on 50 people with an average age of 21.7 1.1 years, and an average body mass index of 21.2 2.0 kg/m2. The GI of the analysed ± ± food products depended on the total carbohydrate content, dietary fibre content, water content, and energy value. Modification of yeast food products by replacing wheat flour (type 500) with whole-wheat flour (type 2000) contributed to the reduction of their GI and GL values, respectively. Keywords: glycaemic index; glycaemic load; yeast dough 1. Introduction In connection with the growing number of lifestyle diseases, consumers pay increasing attention to food, not only to food that have a better taste but also to food that help maintain good health. -
Atherosclerosis-Susceptible and Atherosclerosis-Resistant Pigeon Aortic Cells Express Different Genes in Vivo
University of New Hampshire University of New Hampshire Scholars' Repository New Hampshire Agricultural Experiment Station Publications New Hampshire Agricultural Experiment Station 7-1-2013 Atherosclerosis-susceptible and atherosclerosis-resistant pigeon aortic cells express different genes in vivo Janet L. Anderson University of New Hampshire, [email protected] C. M. Ashwell University of New Hampshire - Main Campus S. C. Smith University of New Hampshire - Main Campus R. Shine University of New Hampshire - Main Campus E. C. Smith University of New Hampshire - Main Campus See next page for additional authors Follow this and additional works at: https://scholars.unh.edu/nhaes Part of the Poultry or Avian Science Commons Recommended Citation J. L. Anderson, C. M. Ashwell, S. C. Smith, R. Shine, E. C. Smith and R. L. Taylor, Jr. Atherosclerosis- susceptible and atherosclerosis-resistant pigeon aortic cells express different genes in vivo Poultry Science (2013) 92 (10): 2668-2680 doi:10.3382/ps.2013-03306 This Article is brought to you for free and open access by the New Hampshire Agricultural Experiment Station at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in New Hampshire Agricultural Experiment Station Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Authors Janet L. Anderson, C. M. Ashwell, S. C. Smith, R. Shine, E. C. Smith, and Robert L. Taylor Jr. This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/nhaes/207 Atherosclerosis-susceptible and atherosclerosis-resistant pigeon aortic cells express different genes in vivo J. -
Sensory Evaluation and Staling of Bread Produced by Mixed Starter of Saccharomyces Cerevisiae and L.Plantarum
J. Food and Dairy Sci., Mansoura Univ., Vol. 5 (4): 221 - 233, 2014 Sensory evaluation and staling of bread produced by mixed starter of saccharomyces cerevisiae and l.plantarum Swelim, M. A. / Fardous M. Bassouny / S. A. El-Sayed / Nahla M. M. Hassan / Manal S. Ibrahim. * Botany Department, Faculty of science, Banha University. ** Agricultural Microbiology Department, Agricultural Research Center, Giza, Egypt. ***Food Technology Research Institute, Agricultural Research Center, Giza, Egypt. ABSTRACT Impact of processed conditions and type of starter cultivars on characteristics of wheat dough bread by using mixed starter cultivars of Sacch. cerevisiae and L. plantarum was estimated. L. plantarum seemed to be more effective in combination with Sacch. cerevisiae on the dough volume. Dough produced by starter containing L. plantarum characterized with lower PH and higher total titratable acidity (TTA) and moisture content, in comparison with control treatment. Highly significant differences in aroma and crumb texture were recorded with bread produced by starter culture containing L. plantarum. The obtained results also revealed significant differences in bread firmness which reflected the staling and its rate among the tested treatments after 1, 3, 5 and 6 days during storage time at room temperature. Data also confirmed a processing technique using L. planturium mixed with Sacch.cerevisia to enhance organoleptic properties of produced bread. INTRODUCTION Cereal fermentation is one of the oldest biotechnological processes, dating back to ancient Egypt, where both beer and bread were produced by using yeasts and lactic acid bacteria (LAB), Clarke and Arendt, (2005). Starters composed of specific individual LAB, or mixed with yeasts, became available a few years ago allowing the production of a full sourdough in one- stage process. -
AP-42, CH 9.13.4: Yeast Production
9.13.4 Yeast Production 9.13.4.1 General1 Baker’s yeast is currently manufactured in the United States at 13 plants owned by 6 major companies. Two main types of baker’s yeast are produced, compressed (cream) yeast and dry yeast. The total U. S. production of baker’s yeast in 1989 was 223,500 megagrams (Mg) (245,000 tons). Of the total production, approximately 85 percent of the yeast is compressed (cream) yeast, and the remaining 15 percent is dry yeast. Compressed yeast is sold mainly to wholesale bakeries, and dry yeast is sold mainly to consumers for home baking needs. Compressed and dry yeasts are produced in a similar manner, but dry yeasts are developed from a different yeast strain and are dried after processing. Two types of dry yeast are produced, active dry yeast (ADY) and instant dry yeast (IDY). Instant dry yeast is produced from a faster-reacting yeast strain than that used for ADY. The main difference between ADY and IDY is that ADY has to be dissolved in warm water before usage, but IDY does not. 9.13.4.2 Process Description1 Figure 9.13.4-1 is a process flow diagram for the production of baker’s yeast. The first stage of yeast production consists of growing the yeast from the pure yeast culture in a series of fermentation vessels. The yeast is recovered from the final fermentor by using centrifugal action to concentrate the yeast solids. The yeast solids are subsequently filtered by a filter press or a rotary vacuum filter to concentrate the yeast further. -
Bread Baking and Yeast
Bread Baking and Yeast Electronic mail from Dr. Shirley Fischer Arends, Washington, D.C., native of Ashley, North Dakota. Dr. Arends is author of the book, The Central Dakota Germans: Their History, Language and Culture. Everlasting Yeast. The Dakota pioneers made this with dry cubes of yeast. In the evening they cooked 2 medium size potatoes (diced) in 1 quart of water for half an hour or until very soft. The potatoes were mashed in the same cooking liquid. To this liquid in which the potatoes were mashed were added 2 tablespoons of sugar and 1 tablespoon of salt. This mixture was left in the kettle in which the potatoes had been cooked, was covered and put in a warm place. Before going to bed, the 2 dry yeast cubes were added, after which another quart of warm water could be added. The kettle was wrapped in a warm blanket and set next to the cook stove. It had to be kept warm. In the morning, 1 pint was taken out, put in a sealed jar and placed in the cellar. Dough was made with the rest of the yeast. The reserved pint of yeast was then used the next time, along with the potatoes mixture replacing the yeast cubes. Thus the step of adding yeast cubes and water were eliminated. From the new mixture another pint was saved for the next time. The pint had to be used within a week or it would get too old and would not rise. One pint plus the potato mixture was enough to make 4 loaves of bread. -
Brewing Beer with Sourdough
GigaYeast, Inc. Professional Grade Liquid Yeast For Brewers Brewing Beer with Sourdough October 2014 Jim Withee GigaYeast Inc. Brewing Beer with Sourdough The history of sourdough The microbiology of sourdough Brewing with sourdough Sour myth #1 “The lower the pH, the more sour it tastes” and Protonated Acid De-Protonated Acid Proton “…hydrogen ions and protonated organic acids are approximately equal in sour taste on a molar basis. “ Da Conceicao Neta ER et al. 2007 + = SOURNESS! Sour Myth #2 Sour taste is located in discreet locations of the tongue Bitter Sour Sour Salty Salty Sweet Receptors for various tastes, including sour, are distributed throughout the tongue! What is sourdough? A delicious tangy bread with a hard crust and soft chewy middle! Brewing Beer with Sourdough The history of sourdough The microbiology of sourdough Brewing with sourdough Sourdough is the first bread The first leavened breads ever made were likely sourdough Yum! Brewing Beer with Sourdough The history of sourdough The microbiology of sourdough Brewing with sourdough Sourdough is a microbial ecosystem of wild yeast and bacteria called a starter A sourdough starter is formed when yeast and bacteria from the flour, water, air and the baker inoculate a mixture of flour and water Sourdough starters can become stable over time Repeated re-use of the starter creates a stable ecosystem dominated by a small number of different species of yeast and bacteria that grow well together but keep intruding microbes at bay The sourdough microbiome The lactic acid bacteria create acetic and lactic acids to sour the bread and the yeast create CO2 and esters to leaven the bread and add character Yeast– one or more species including. -
(1,3)-Β-D-Glucan Synthase Gene Family in Hordeum Vulgare
lJ Ítìr¡ 1 t¡ The Putative ( 1,3)-9-l-Glucan Synthase Gene Family in Hordeum vulgare Submitted by Michael Scott Schober This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Discipline of Plant and Pest Science School of Agriculture and Wine Faculty of Sciences University of Adelaide,'Waite Campus Glen Osmond, South Australia, 5064, Australia January,2006 Statement of Authorship This thesis contains no material that has been accepted for the award of any other degree or diploma in any university and that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference being made in the text of the thesis. I give consent to this copy of my thesis, when deposited in the University Libraries, being available for photocopying and loan. Michael Scott Schober January 2006 ll Table of Contents STATEMENT or AutgonsulP ll TABLE OF CONTENTS iii ACKNOWLEDGEMENTS vi PUBLTCATIONS vii ABBREVIATIONS viii ABSTRACT ix CHAPTER 1 General Introduction I 1.I INTRODUCTION 2 1.2 (1,3)-p-D-GLUCAN 4 1.2.1 StructuralProperties 4 1.2.2 Cellular Locations and Associated Functions 6 1.2.2.1 Cell Plate Formation 6 1,2.2.2 Plasmodesmata and Sieve Plate Pores 7 1.2.2.3 ReproductiveTissues 9 1.3 STRESSRELATED(1,3)-B-o-GLUCANDEPOSITION ll I .3. 1 Abiotic stress ll l.3.l.l Wounding ll 1.3.1.2 Metaltoxicity t2 1.3.2 Blotic Stress 12 1.3.2.1 Viral infection t2 1.3.2.2 Bacterialinfection 13 1.3.2.3 Nematode infection l3 1.3.2.4 Fungal Infection -
Sourdough for Science:Activity Overview
Sourdough For Science: Activity Overview About the Activity Humans have baked bread for over 10,000 years. All over the world, different cultures bake their own unique bread - and have for centuries - and yet we know almost nothing about the microbes that truly make a traditional sourdough bread. In this project, you will grow your own sourdough starter from scratch just by mixing flour and water. For two weeks, you will measure the height and pH of your starter to track the growth of your “microbial zoo” over time, and share your data with a scientist. By participating in a real science project, you can help us solve the mysteries of bread. Your data will be compared with data from other participants, all over the world, who have completed the same experiment. Together we can use these data to learn how different flours affect microbial growth over time - and how those microbes affect the taste and texture of bread. Here’s What You’ll Need ❏ Student Data Sheet (one per student) ❏ 6 half-pint wide-mouth jars (one per group) ❏ 6 tablespoon measuring spoons (one per group) ❏ 6 plastic spoons (to mix and scoop starter) ❏ 6 rulers (to measure the height of the starter) ❏ 6 Sharpie markers (one per group) ❏ pH paper (that will detect from 3.5-8.0 at the accuracy of at least one decimal place) ❏ 6 pH color keys (one per group) ❏ 6 different types of flour (one per group) ❏ Distilled water ❏ Paper towels ❏ Pencils for data recording ❏ Sourdough For Science Introduction video ❏ Sourdough For Science Demo video Helpful Hints ● Organize 6 starter kits to include: one wide mouth jar, one spoon, one ruler, one sharpie, one pH paper key, pH paper (15 small strips), one type of flour, and a paper towel.