1-Yr of Coral Community Dynamics in Reefs Around

Total Page:16

File Type:pdf, Size:1020Kb

1-Yr of Coral Community Dynamics in Reefs Around 1-yr of coral community dynamics in reefs around Dahab (Gulf of Aqaba, Red Sea): the collapse of urchins and rise of macroalgae and cyanobacterial mats Miriam Reverter, Matthew Jackson, Nauras Daraghmeh, Christian von Mach, Nina Milton To cite this version: Miriam Reverter, Matthew Jackson, Nauras Daraghmeh, Christian von Mach, Nina Milton. 1-yr of coral community dynamics in reefs around Dahab (Gulf of Aqaba, Red Sea): the collapse of urchins and rise of macroalgae and cyanobacterial mats. Coral Reefs, Springer Verlag, 2020. hal-03020819 HAL Id: hal-03020819 https://hal.archives-ouvertes.fr/hal-03020819 Submitted on 24 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Coral Reefs https://doi.org/10.1007/s00338-020-01988-6 REPORT 11-yr of coral community dynamics in reefs around Dahab (Gulf of Aqaba, Red Sea): the collapse of urchins and rise of macroalgae and cyanobacterial mats 1,2 1,2 2,3 Miriam Reverter • Matthew Jackson • Nauras Daraghmeh • 2 2 Christian von Mach • Nina Milton Received: 17 February 2020 / Accepted: 23 July 2020 Ó The Author(s) 2020 Abstract Corals from the Gulf of Aqaba (northern Red hard coral cover, both macroalgae mat cover and Sea) are resilient to high temperatures and therefore this cyanobacterial mat cover were significantly negatively region is regarded as globally important for reef conser- related to hard coral cover and hard coral disease. Soft vation. However, long-term dynamics of coral reef coral cover (mainly corals from the Xeniidae family) assemblages from the Gulf of Aqaba remain largely decreased significantly in two of the site clusters, their understudied. In this study, we analysed the change in cover being negatively related to macroalgal and benthic, fish and invertebrate assemblages of reefs around cyanobacterial cover. Significant declines in grazer urchins Dahab (South Sinai, Egypt) between 2009 and 2019. We were observed at all site clusters, and a strong negative also studied the individual trajectories of coral reef benthic relationship was found with macroalgae and cyanobacterial categories, key invertebrate and fish species and their mats cover, suggesting urchin decline as one of the main relationship. As site emerged as the main factor explaining drivers behind algal increases. Different site clusters had the variability in coral reef communities, we identified different fish trajectories (butterflyfish, parrotfish, sur- three clusters of sites with similar assemblages. Both geonfish and predators), with only damselfish densities benthic, fish and invertebrate assemblages changed con- significantly decreasing at all sites. A significant decrease siderably at the three site clusters between 2009 and 2019. in damselfish densities was related to increases in We found significant increases in fleshy macroalgae (* 6 cyanobacterial mats. These findings suggest that if to 15%) and cyanobacterial mats (* 6 to 12%) in all site macroalgae and cyanobacteria continue to increase, Dahab clusters. Although not observing a significant reduction of coral reefs could undergo degradation, and therefore, more studies are needed to elucidate the drivers behind these algal increases. Topic Editor Morgan S. Pratchett Keywords Coral reef Á Gulf of Aqaba Á Coral reef Electronic supplementary material The online version of this resilience Á Macroalgae Á Cyanobacterial mats Á Urchins Á article (https://doi.org/10.1007/s00338-020-01988-6) contains sup- plementary material, which is available to authorised users. Algae phase shift & Miriam Reverter [email protected] Introduction & Christian von Mach [email protected] Coral reefs, which harbour 25% of the marine biodiversity 1 Institut fu¨r Chemie und Biologie des Meeres (ICBM), Carl and provide ecosystem services to over 500 million people, von Ossietzky Universita¨t Oldenburg, Schleusenstraße 1, are suffering severe degradation due to the combined 26382 Wilhelmshaven, Germany effects of anthropogenic perturbations and global climate 2 Red Sea Environmental Centre (RSEC), Dahab, Egypt change (Hughes et al. 2017; Lamb et al. 2018). Anthro- 3 Department of Marine Ecology, Faculty of Biology and pogenic disturbances such as overfishing, coastal devel- Chemistry, University of Bremen, Bremen, Germany opment and pollution, together with increasing climate 123 Coral Reefs anomalies reduce coral reef resilience, which can result in regrowth (Williams and Polunin 2001; Burkepile and Hay changes of coral reef assemblages (Adjeroud et al. 2018; 2008; Sandin and McNamara 2012). However, when her- Hughes et al. 2018a; McWilliam et al. 2020). Decreases in bivory capacity is reduced, for example due to overfishing coral cover and increases in alternate groups such as algae or algal deterrence, algae can proliferate and disrupt coral or sponges are increasingly common and have profound reef functioning, leading to coral reef degradation and a effects on ecosystem functioning and the ecosystem ser- community phase shift (Bellwood et al. 2004; Hoey and vices provided (Done 1992; Norstro¨m et al. 2009; Bell Bellwood 2011). Given the key importance of the Gulf of et al. 2013). Declines in the scleractinian coral cover of up Aqaba region at a global scale, long-term studies are nee- to 80% in Caribbean coral reefs and 50% in the Indo- ded to investigate the dynamics and state of its coral reef Pacific have been reported (e.g. Bruno and Selig 2007; assemblages and evaluate the full implications of the pre- Gardner et al. 2003; Pandolfi et al. 2003; De’ath et al. viously reported algal increases, in order to establish ade- 2012). More recently, unprecedented pan-tropical mass quate conservation measures. bleaching, which killed 30% of the world’s largest coral In this study, we have surveyed fringing reefs in the Dahab reef ecosystem, the Great Barrier Reef, has raised concerns area (South Sinai, Egypt) between 2009 and 2019. Dahab is a about the future of coral reefs under pressure in the world-renowned dive destination since the late 1990s and its Anthropocene (Hughes et al. 2017, 2018b). reefs are amongst the world’s most dived upon (30,000 With the increasing frequency and intensity of bleaching dives/yr) (Hasler and Ott 2008). We collected data on the reef events and estimates predicting 90% of the world’s coral benthos composition, the abundance of diseased coral reefs are expected to experience severe bleaching by 2050 colonies and the densities of key invertebrate and fish species (van Hooidonk et al. 2014; Heron et al. 2016), conservation in order to: (1) study whether there were significant temporal of regions with heat-tolerant corals is paramount. The Red changes in reef benthos assemblages or fish and invertebrate Sea, which extends between the Arabian Peninsula and the communities and (2) analyse individual temporal trajectories African mainland, is one of the world’s warmest (20–28 °C of benthos categories, colonies of diseased coral and key in the Northern Red Sea and 28–35 °C in the Southern Red invertebrate and fish species. We also explored the rela- Sea) and most saline water bodies (36–42 ppt) hosting tionships between different organisms to explore the fol- highly diverse coral reefs (Abdelmongy and El-Moselhy lowing hypotheses: (1) whether macroalgae and 2015; Rasul et al. 2015). Despite the northern Red Sea cyanobacterial mats affect hard and soft coral cover and the displaying the highest rates of warming throughout the Red abundance of hard coral diseases and (2) if top-down control Sea (Chaidez et al. 2017), including more severe thermal (from herbivorous fish or herbivorous invertebrates such as anomalies (Osman et al. 2018), this region has not expe- urchins) is related to changes in fleshy macroalgae and rienced massive coral bleaching events. Due to this high cyanobacterial mats cover. coral heat tolerance, the northern Red Sea has been pro- posed as a coral refuge of global importance, as this region may host a gene pool of heat-resistant scleractinian corals Materials and methods that could be extremely useful for reef restoration efforts around the world (Fine et al. 2013). Coral reefs in the Gulf Coral reef surveys of Aqaba are, however, subject to increasing anthropogenic disturbances mostly linked to the development of the A total of 11 fringing reefs around Dahab in the northern tourism sector (Rinkevich 2005; Naumann et al. 2015). Red Sea were surveyed twice a year (August–September Previous studies have shown the deleterious effects of and March–April) between 2009 and 2019 using four end- intensive diving and snorkelling activities, coastal devel- to-end 20 m transects perpendicular to the reef slope opment and eutrophication on the health of northern Red (Fig. 1a). Surveys were carried out by volunteers trained Sea coral reefs (Zakai and Chadwick-Furman 2002; Hasler and supervised by professional scientists (ESM Supple- and Ott 2008; Naumann et al. 2015). Short-term studies in mentary Information). Benthic composition, coral damage the area (1–3 yr) have reported increases in the cover of and invertebrate and fish indicator species were monitored turf algae and macroalgae, which were positively corre- at each site at 5 and 10 m depth, using SCUBA. Due to lated to environmental nutrient levels (Bahartan et al. 2010; logistics, not all sites and depths were monitored at each Naumann et al. 2015). Algae are fierce spatial competitors, sampling episode (ESM Table 1). Benthic composition and at high abundances they have multiple effects on coral was determined using the point intercept transect (PIT) health and impair coral and fish recruitment (Rasher and method (Hill and Wilkinson 2004), in which the benthos Hay 2010; Dixson et al.
Recommended publications
  • Diving Holidays Worldwide
    diving holidays worldwide Red Sea Spain Maldives Mauritius Caribbean Cape Verde Islands Kenya Zanzibar Indonesia Malaysia QUALITY • VALUE • EXPERTISE Micronesia Australia 01 November 2009 – 31 December 2010 South Pacific Galapagos Islands Latin America Liveaboards 2010 dive sportif – worldwide 2009-2010 Over 30 years experience World Class des tinations World Class diving Africa Red Sea Australia Caribbean RED SEA & EGYPT world class diving off the coast of Zanzibar with 4 Cairo & Nile cruise closest coral sea to these shores, one of the underwater one of the seven one of the world’s favourite dive destinations, enchanting coral, adrenaline opportunity to encounter whale shark and dolphin. wonders of the world - packed wall dives, impressive marine life and superb drift dives. 5 - 7 Sharm wonders of the world. wonderful dives for the beginner wonderful dives in kenya with the added opportunity to and experienced alike. the Great Barrier reef. 8 - 10 Dahab view the spectacular wildlife while on a safari. explore the distant 11 Hurghada coral sea plus the 13 Safaga world famous cod Hole 14 El Qusier where you dive with giant potato cod. Latin Micronesia 15 Marsa Alam 16 - 17 Red Sea Liveaboards Spain Indian Ocean Far East America Best known for it’s wreck diving in truk MEDITERRANEAN Share family holidays with exciting marine life abounds, best summed up by the quantity and Home to some of the world’s most exciting wonderful variety of Lagoon, with hundreds 18 Spain some excellent diving size. A great mix of white sand beaches, azure blue waters and and sought after dives. visit sites that spectacular dives from of wrecked world war surprises, picturesque vistas, fabulous, underwater topography.
    [Show full text]
  • Microbiomes of Gall-Inducing Copepod Crustaceans from the Corals Stylophora Pistillata (Scleractinia) and Gorgonia Ventalina
    www.nature.com/scientificreports OPEN Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata Received: 26 February 2018 Accepted: 18 July 2018 (Scleractinia) and Gorgonia Published: xx xx xxxx ventalina (Alcyonacea) Pavel V. Shelyakin1,2, Sofya K. Garushyants1,3, Mikhail A. Nikitin4, Sofya V. Mudrova5, Michael Berumen 5, Arjen G. C. L. Speksnijder6, Bert W. Hoeksema6, Diego Fontaneto7, Mikhail S. Gelfand1,3,4,8 & Viatcheslav N. Ivanenko 6,9 Corals harbor complex and diverse microbial communities that strongly impact host ftness and resistance to diseases, but these microbes themselves can be infuenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly infuencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially diferent with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassifed bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had signifcantly diferent prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was diferent.
    [Show full text]
  • Ecological and Socio-Economic Impacts of Dive
    ECOLOGICAL AND SOCIO-ECONOMIC IMPACTS OF DIVE AND SNORKEL TOURISM IN ST. LUCIA, WEST INDIES Nola H. L. Barker Thesis submittedfor the Degree of Doctor of Philosophy in Environmental Science Environment Department University of York August 2003 Abstract Coral reefsprovide many servicesand are a valuableresource, particularly for tourism, yet they are suffering significant degradationand pollution worldwide. To managereef tourism effectively a greaterunderstanding is neededof reef ecological processesand the impactsthat tourist activities haveon them. This study explores the impact of divers and snorkelerson the reefs of St. Lucia, West Indies, and how the reef environmentaffects tourists' perceptionsand experiencesof them. Observationsof divers and snorkelersrevealed that their impact on the reefs followed certainpatterns and could be predictedfrom individuals', site and dive characteristics.Camera use, night diving and shorediving were correlatedwith higher levels of diver damage.Briefings by dive leadersalone did not reducetourist contactswith the reef but interventiondid. Interviewswith tourists revealedthat many choseto visit St. Lucia becauseof its marineprotected area. Certain site attributes,especially marine life, affectedtourists' experiencesand overall enjoyment of reefs.Tourists were not alwaysable to correctly ascertainabundance of marine life or sedimentpollution but they were sensitiveto, and disliked seeingdamaged coral, poor underwatervisibility, garbageand other tourists damagingthe reef. Some tourists found sitesto be
    [Show full text]
  • Coral Disease Fact Sheet
    Florida Department of Environmental Protection Coral Reef Conservation Program SEAFAN BleachWatch Program Coral Disease Fact Sheet About Coral Disease Like all other animals, corals can be affected by disease. Coral disease was first recognized in the Florida Keys and the Caribbean in the 1970s, and since that time disease reports have emerged from reefs worldwide. Naturally, there are background levels of coral disease but reports of elevated disease levels – often called disease outbreaks – have been increasing in both frequency and severity over the past few decades. Today, coral disease is recognized as a major driver of coral mortality and reef degradation. Coral disease can result from infection by microscopic organisms (such as bacteria or fungi) or can be caused by abnormal growth (akin to tumors). The origins or causes of most coral diseases are not known and difficult to determine. There is increasing evidence that environmental stressors, including increasing water temperatures, elevated nutrient levels, sewage input, sedimentation, overfishing, plastic pollution, and even recreational diving, are increasing the prevalence and Disease affecting Great Star Coral (Montastraea severity of coral diseases. There is also strong evidence cavernosa). Photo credit: Nikole Ordway-Heath (Broward County; 2016). that a combination of coral bleaching and disease can be particularly devastating to coral populations. This is likely due to corals losing a major source of energy during a bleaching event, reducing their ability to fight off or control disease agents. Coral disease is often identifiable by a change in tissue color or skeletal structure as well as progressive tissue loss. Tissue loss may originate from a single discrete spot, multiple discrete areas, or appear scattered throughout the colony.
    [Show full text]
  • Atoll Research Bulletin No. 481 First Protozoan Coral
    ATOLL RESEARCH BULLETIN NO. 481 FIRST PROTOZOAN CORAL-KILLER IDENTIFIED IN THE INDO-PACIFIC BY ARNFRIED A. ANTONIUS AND DIANA LIPSCOMB ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. JUNE 2000 Great Barrier Reef 0 M Mauritius 6 0 120 Figure 1. Chart of Indo-Pacific region showing the three SEB observation sites where corals infected with Halofollict~lina corallcuia were investigated: the coral reefs along the coast of Sinai, Red Sea; around the island of Mauritius, Indian Ocean; and in the area of Lizard Island, Great Barrier Reef, Pacific. Motupore Island on the SE coast of Papua New Guinea is not marked on the chart. Sites that were investigated with negative result (no SEB found) are: B: Bali; W: Wakatobi Islands; G: Guam; and M: Moorea. FIRST PROTOZOAN CORAL-KILLER IDENTIFIED IN THE INDO-PACIFIC ARNFRIED ANTONIUS' and DIANA LIPS COMB^ ABSTRACT A unique coral disease has appeared on several Indo-Pacific reefs. Unlike most known coral diseases, this one is caused by an eukaryote, specifically Halofolliculina covallasia, a heterotrich, folliculinid ciliate. This protist is sessile inside of a secreted black test or lorica. It kills the coral and damages the skeleton when it settles on the living coral tissue and secretes the lorica. Thus, the disease was termed Skeleton Eroding Band (SEB). The ciliate population forms an advancing black line on the coral leaving behind it the denuded white coral skeleton, often sprinkled with a multitude of empty black loricae. This disease was first noted in 1988 and since has been observed infecting both branching and massive corals at several locations in the Indo-Pacific.
    [Show full text]
  • International Magazine on Sea and ■ Vita Mari Ph
    INTERNATIONAL MAGAZINE ON SEA AND ■ VITA MARI PH Nautilus Shells as collectors’ items (3) The Neritidae from the circumarabian seas VITA MARINA A magazine on marine Zoology, with emphasis Een blad op het gebied van mariene zoölogie, on molluscs met nadruk op weekdieren. EDITORIAL STAFF Jan Paul Buijs REDACTIE Henk Dekker Willem Faber David Feld Dr.Theo Kemperman Gijs Kronenberg Freek Titselaar Dr. Tom Walker COVER PLATE Leo Man in ’t Veld PLAAT OMSLAG ADVISORY BOARD Dr. A.C. van Bruggen REDACTIE ADVIESRAAD Dr. H.E. Coomans Prof. Dr. E. Gittenberger Prof. Dr. L.B. Holthuis PUBLISHER VITA MARINA AND STICHTING UITGEVER VITA MARINA EN SPIRULA BIOLOGIA MARITIMA SPIRULA BOARD BESTUUR PRESIDENT Jan Paul Buijs VOORZITTER SECRETARY Henk Dekker SECRETARIS TREASURER Gab Mulder PENNINGMEESTER Jeroen Goud ADDRESS P.O. Box 64628 ADRES NL-2506 CA DEN HAAG The Netherlands TELEPHONE +31(0)70-3551245 TELEFOON +31(0)70-3600434 FAX +31(0)70-3551245 FAX E-MAIL [email protected] E-MAIL WWW http://home.wxs.nl/~spirula WWW GIRO BANK ACCOUNT 606100 POSTGIROREKENING PRINTER RIBBERINK VAN DER GANG DRUKKER ZOETERMEER The Netherlands ISSN-0165-8980 Vita Marina 47(2): 25-28 August 2000 Nautilus Shells as collectors’ items in the “Kunst- und Wunderkammer”. Supplementary notes (2) Nautilusschelpen als verzamelobjecten in de “Kunst- und Wunderkammer”. Aanvullende notities (2) C.J.H.M. TAX Kempkeshoeve 55, NL-5256 NV Vught, the Netherlands As a sequel to my article with the above title (1995) and In aanvulling op mijn artikel met bovenstaande titel to the first supplement thereof (1996), 1 would like to (1995) en het eerste supplement hierop (1996), wil ik comment on some Nautilus objects that have been treat­ bij deze gelegenheid gaarne nog enkele tot dusverre ed in literature only once before or not at all.
    [Show full text]
  • Assessing the Effectiveness of Two Intervention Methods for Stony Coral
    www.nature.com/scientificreports OPEN Assessing the efectiveness of two intervention methods for stony coral tissue loss disease on Montastraea cavernosa Erin N. Shilling 1*, Ian R. Combs 1,2 & Joshua D. Voss 1* Stony coral tissue loss disease (SCTLD) was frst observed in Florida in 2014 and has since spread to multiple coral reefs across the wider Caribbean. The northern section of Florida’s Coral Reef has been heavily impacted by this outbreak, with some reefs experiencing as much as a 60% loss of living coral tissue area. We experimentally assessed the efectiveness of two intervention treatments on SCTLD-afected Montastraea cavernosa colonies in situ. Colonies were tagged and divided into three treatment groups: (1) chlorinated epoxy, (2) amoxicillin combined with CoreRx/Ocean Alchemists Base 2B, and (3) untreated controls. The experimental colonies were monitored periodically over 11 months to assess treatment efectiveness by tracking lesion development and overall disease status. The Base 2B plus amoxicillin treatment had a 95% success rate at healing individual disease lesions but did not necessarily prevent treated colonies from developing new lesions over time. Chlorinated epoxy treatments were not signifcantly diferent from untreated control colonies, suggesting that chlorinated epoxy treatments are an inefective intervention technique for SCTLD. The results of this experiment expand management options during coral disease outbreaks and contribute to overall knowledge regarding coral health and disease. Coral reefs face many threats, including, but not limited to, warming ocean temperatures, overfshing, increased nutrient and plastic pollution, hurricanes, ocean acidifcation, and disease outbreaks 1–6. Coral diseases are com- plex, involving both pathogenic agents and coral immune responses.
    [Show full text]
  • Disease in Tropical Coral Reef Ecosystems
    DISEASE IN TROPICAL CORAL REEF ECOSYSTEMS Key Messages on Coral Disease Coral Disease An introductory guide for policy advisors and decision makers Disease in Tropical Coral Reef Ecosystems ICRI Key Messages on Coral Disease There is a clear consensus from the growing scientific literature that large-scale coral disease outbreaks represent a significant threat to the productivity and diversity of coral reef ecosystems. Global climate change has the potential to greatly increase the prevalence of coral disease worldwide, leading to a rise in associated coral mortality. This introductory guide aims to inform policy and decision-makers worldwide about the alarming emergence and progression of disease throughout coral reef ecosystems, the possible interactions of disease with other environmental influences causing stress to reef ecosystems, as well as appropriate management responses promoted by the international community. CITATION ICRI/UNEP-WCMC (2010). Disease in Tropical Coral Reef Ecosystems: ICRI Key Messages on Coral Disease. 11pp. ONLINE GUIDE AND FURTHER INFORMATION A copy of this guide, as well as further information on coral disease, can be found on the website of the Global Coral Disease Database (GCDD): www.coraldisease.org CONTRIBUTORS Produced by UNEP-WCMC, Cambridge, United Kingdom Prepared by Nicola Barnard and Christel Scheske, with generous support from the members of the ICRI Ad Hoc Committee on Coral Disease: Jan-Willem von Bochove, Angelique Brathwaite, Dave Gulko, Anthony Hooten, and Michael Schleyer. Additional inputs were provided by members of the GEF Coral Reef Targeted Research Disease Working Group: Laurie Raymundo and Ernesto Weil. Design and layout by Dan Shurey Quality Assurance This guide has been produced with financial support from the US Department of State.
    [Show full text]
  • Changes in the Bacterial Community Associated with Black Band Disease in a Red Sea Coral, Favia Sp., in Relation to Disease Phases
    Vol. 116: 47–58, 2015 DISEASES OF AQUATIC ORGANISMS Published September 17 doi: 10.3354/dao02911 Dis Aquat Org Changes in the bacterial community associated with black band disease in a Red Sea coral, Favia sp., in relation to disease phases Luba Arotsker1, Esti Kramarsky-Winter1, Eitan Ben-Dov2,3, Nachshon Siboni1, Ariel Kushmaro1,2,4,* 1Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Be’er-Sheva 84105, Israel 2National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er-Sheva 84105, Israel 3Department of Life Sciences, Achva Academic College, MP Shikmim 79800, Israel 4School of Materials Science and Engineering, Nanyang Technological University, Singapore ABSTRACT: Changes of the black band disease (BBD)-associated microbial consortium on the surface of a Favia sp. coral colony were assessed in relation to the different disease phases. A number of highly active bacterial groups changed in numbers as the BBD disease signs changed. These included Gamma- and Epsilonproteobacteria, Bacteroidetes and Firmicutes groups. One cyanobacterium strain, BGP10_4ST (FJ210722), was constantly present in the disease interface and adjacent tissues of the affected corals, regardless of disease phase. The dynamics of the oper- ational taxonomic units (OTUs) of this BBD-specific strain provide a marker regarding the disease phase. The disease’s active phase is characterized by a wide dark band progressing along the tis- sue-skeleton interface and by numerous bacterial OTUs. Cyanobacterial OTUs decreased in num- bers as the disease signs waned, perhaps opening a niche for additional microorganisms. Even when black band signs disappeared there was a consistent though low abundance of the BBD- specific cyanobacteria (BGP10_4ST), and the microbial community of the disease-skeleton inter- face remained surprisingly similar to the original band community.
    [Show full text]
  • Coral Diseases: What Is Really Known? Laurie L
    REVIEWS Coral diseases: what is really known? Laurie L. Richardson uring the International Reports of new and emerging coral Research in the late 1970s and Year of the Reef (1997) and diseases have proliferated in recent years. early 1980s followed the same de- continuing into the Inter- Such coral diseases are often cited as scriptive approach. New results, Dnational Year of the Ocean contributing to coral reef decline. Many of however, included the first quan- (1998), much attention and activity these diseases, however, have been titative study of disease preva- have been focused on evaluating described solely on the basis of field lence, and it was determined that the current status of coral reefs1–6. characteristics, and in some instances white band disease was relent- The uniform conclusion of these there is disagreement as to whether an lessly eliminating the important multiple assessments is that coral observed coral condition is actually a reef-forming acroporid corals of reef ecosystems are degrading, disease. A disease pathogen has been shallow Caribbean waters13. This and that this is most likely a com- identified for only three coral diseases, was the first case in which the po- bined result of global warming, and for only two of these has the pathogen tential severity of coral diseases ozone depletion, overfishing, eutro- been shown (in the laboratory) to be the was verified. phication, poor land-use practices disease agent. In one case, the same Further efforts were made and other manifestations of human disease name has been used for several to identify pathogens associated activities. All of these reports have widely varying coral syndromes, with specific diseases, and ad- emphasized that an increase in whereas in another multiple disease ditional causative agents were coral disease is contributing to reef names have been applied to symptoms proposed14–16.
    [Show full text]
  • Coral Reefs of Japan -3 Coral Diseases 2 Hideyuki Yamashiro 1 Introduction 2 Malignant Coral Diseases
    0201_03(英) 04.9.3 3:04 PM ページ 56 02 Coral Reefs of Japan -3 Coral diseases 2 Hideyuki Yamashiro 1 Introduction 2 Malignant coral diseases Many of the coral communities around the world may dis- Coral disease transmission processes are poorly under- appear within a few decades as a result of influences such stood. They can be caused by infection with pathogenic as global warming (Hughes et al. 2003). In Japan, elevat- bacteria, viruses, fungi, or protozoans, as well as by ed seawater temperatures during the 1997/1998 El Niño- helminthes and arthropods. Coral diseases can also be Southern Oscillation (ENSO) event caused the most triggered by abiotic factors such as temperature, soil par- severe coral bleaching and mortality ever observed. This ticles, ultraviolet rays, heavy metals, and agricultural phenomenon has continued to occur intermittently dur- chemicals. However, in reality, both biotic and abiotic fac- ing subsequent years. In addition to bleaching, corals tors are likely to be intricately intertwined in many cases, have been threatened with predation by the crown-of- and specifying a single causative factor is not easy. thorns starfish (Acanthaster planci), smothering by ter- rigenous sediments, and poisoning by agricultural chemi- Many coral diseases have been recognized, but compara- cals in runoff. Since the 1970s, there have been reports of tively little is known about the causative agents bacterial diseases among hard corals (scleractinians), and (Richardson 1998). Research is further complicated by the number of such reports increased throughout the the assignment of more than one descriptive name to a 1990s. In some locations, the damage caused by coral dis- single disease.
    [Show full text]
  • Birding Melanesia 2015 Report by Adam Walleyn
    Melanesia Discover and Secrets of Melanesia: Birding Melanesia 2015 Report By Adam Walleyn Cardinal Lory pair. Copyright Adrian Hayward The 2015 Melanesian Birding trip was another great success. The year will probably long be remembered for one of the worst droughts ever and while the dry and windy conditions made birding more difficult than usual, we persevered and ended up with an incredible tally of endemics, many of them amongst the most poorly known birds in the world! This incredible itinerary takes in part of the north coast of Papua New Guinea and all of the main islands of the Bismarcks, Solomons and Vanuatu, along with many of the smaller ones. This region is one of the world’s most avian endemic-rich hotspots and is largely inaccessible and unvisited by birders. Amongst 267 species, highlights this year included Superb Pitta sitting right in the open, an unexpected Manus Fantail, one of the first observations of Mussau Triller, a stunning Solomons Nightjar, and incredible diversity of fruit doves (12 species), imperial pigeons (12 species), myzomelas (11 species) and of course white-eyes (10 species). The trip started off with a nice dinner in Madang and then our first of many early mornings to bird a patch of forest not far from town. Bird activity was great this morning and there were a number of fruiting trees which allowed good views of two species of birds of paradise - Lesser Bird of Paradise and Glossy-mantled Manucode. Other nice birds in the fruiting trees included Orange-bellied and Pink-spotted Fruit Dove, Zoe’s Imperial Pigeon, Orange-breasted Fig Parrot, and numerous Golden Myna.
    [Show full text]