Special Geometry (Term Paper for 18.396 Supersymmetric Quantum Field Theories)

Total Page:16

File Type:pdf, Size:1020Kb

Special Geometry (Term Paper for 18.396 Supersymmetric Quantum Field Theories) Special Geometry (Term paper for 18.396 Supersymmetric Quantum Field Theories) Xi Yin Physics Department Harvard University Abstract This paper is an elementary survey of special geometry that arises in N = 2 supersym- metric theories. We review the definition of rigid and local special K¨ahlermanifolds. For rigid special geometry, we discuss their connection to N = 2 supersymmetric gauge theo- ries and the Seiberg-Witten solution. For local special geometry, we study their emergence in N = 2; d = 4 supergravity and Calabi-Yau moduli space. In particular, we discuss the connection between string effective action and the metric on Calabi-Yau moduli space, and the non-renormalization theorem of type IIB complex moduli space. Finally, Seiberg-Witten theory is recovered from the rigid limit of type IIB string compactified on certain Calabi-Yau manifolds. 1 Introduction It is well known that supersymmetry impose strong constraints on the geometry of the scalar manifold M, on which the scalar fields are viewed as coordinates[1, 2] (for reviews see [3]). In d = 4; N = 1 theories, the scalar manifold for chiral multiplets, M, is restricted to be K¨ahler. If the chiral multiplets are coupled to N = 1 supergravity, then M is further required to be a Hodge K¨ahlermanifold. For rigid N = 2 theories, the target space MV for vector multiplets is restricted to be a rigid special K¨ahlermanifold, whose K¨ahlerpotential is determined by a holomorphic prepotential F; the target space for hypermultiplets MH , on the other hand, is a hyper-K¨ahlermanifold. When coupled to N = 2 supergravity, MV is restricted to be a (local) special K¨ahlermanifold, and MH becomes a quarternionic K¨ahlermanifold. For N ¸ 3 supergravity theories (possibly coupled to vector multiplets for N· 4), the scalar manifolds are in fact completely determined as homogeneous coset spaces. This paper is devoted to a study of some of the rich structures in special geometry and N = 2 theories. Remarkably, the structure of special geometry also emerges in the moduli space of Calabi- Yau manifolds[7]. This is not merely a coincidence. In fact, via the Zamolodchikov metric of (2; 2) superconformal field theories, the prepotential of Calabi-Yau moduli space is closedly related to the prepotential of the low energy effective theories of string compactifications[8]. In type IIA compactifications, vector multiplets are identified with deformations of the K¨ahler moduli, and hypermultiplets are identified with deformations of the complex moduli. In type IIB theory the identifications are reversed. In general, the Calabi-Yau prepotential captures the classical geometry, which may get quantum corrections in the full string theory, or even at the world-sheet level. It is rather striking that in certain cases quantum corrections are absent. For example, the non-renormalization theorem proved in [9] says that there is no quantum corrections to the complex moduli space of type IIB theory. So in this case the exact coupling of vector multiplets can be computed by classical geometry. These ideas have been applied to obtain exact solutions of various quantum field theories. For example, using the technique of mirror symmetry, Candelas et al [10] were able to solve exactly the superconformal field theory corresponding to the quintic 3-fold (and its mirror). Rigid special geometry, on the other hand, finds its beautiful application in Seiberg-Witten theory. In this case, the exact prepotential of N = 2; d = 4 SYM is obtained from periods of the Seiberg-Witten (hyper)elliptic curve[5], fibered over the Coulomb branch moduli space. This is in fact closely related to the previous story. Rigid Yang-Mills theories are contained in the ®0 ! 0 limit of string theory on certain Calabi-Yau geometry. Usually, to produce the desired gauge groups, we take the CY geometry to be K3 (or ALE space) fibration over a base P1. 1 Roughly speaking, the rigid limit amounts to looking very closely at the locus of the singular K3 fiber, whose geometry can be shown to reduce to the Seiberg-Witten curve[16]. The paper is organized as follows. In section 2 we define rigid and special K¨ahlermanifolds and review their basic mathematical properties. In section 3 we study the rigid special geometry that arises in N = 2; d = 4 gauge theories, and describe the Seiberg-Witten solution. Section 4 demonstrates the structure of local special geometry in N = 2; d = 4 supergravity coupled to vector multiplets, using the formulation of superconformal tensor calculus. In section 5 we study the geometry of complex and K¨ahlermoduli space on Calabi-Yau manifolds. In section 6, we discuss the connection between Calabi-Yau moduli space and the effective lagrangian of string theories, and an important non-renormalization theorem. This is the key to the whole story. To understand these connections is the original motivation for the author to write this paper. In section 7, we recover Seiberg-Witten curve from the rigid limit of type IIB string theory compactified on certain Calabi-Yau manifolds. 2 Special K¨ahlermanifolds A K¨ahlermanifold M is a Hodge manifold if there exists a line bundle L! M whose first Chern class coincides with the K¨ahlerclass, i.e. c1(L) = [J] (1) From the Lefschetz theorem on (1; 1)-classes [4], it suffices that [J] lies in the integer cohomology group, i.e. [!] 2 H1;1(M) \ H2(M; Z) Then L can be taken as the canonical bundle of the divisor dual to [J]. The hermitian metric on L is the exponential of the K¨ahlerpotential h(z; z¯) = exp(K(z; z¯)), so that (1) is satisfied. Now the connection 1-form on L is given by θ = h¡1@h = @K θ = h¡1@h¯ = @K¯ Actually, we will refer to Hodge K¨ahlermanifold as those whose K¨ahlerclass [J] is an even element of H2(M; Z). In the context of d = 4 supergravity, this is due to the fact that fermions are sections of the bundle L1=2, as we’ll see in section 4. It has also been proved by Tian in the context of Calabi-Yau moduli space. 2 Let M be an n-dimensional K¨ahlermanifold, L! M be a flat line bundle, SV! M be a flat holomorphic symplectic vector bundle of rank 2n, and consider the tensor bundle H = SV ­ L. Definition A K¨ahlermanifold M is rigid special K¨ahler,if there is a section Ω 2 Γ(H;M) such that the K¨ahlerform is given by i J = @@¯hΩjΩi 2¼ together with the condition h@iΩj@jΩi = 0 where the inner product 0 1 0 ¡1 hΩjΩi = iΩy @ A Ω 1 0 is given by the standard hermitian metric on the Sp(2n; R)-bundle SV. Under a local trivialization, the section Ω can be written as 0 1 XA Ω = @ A FB A;B=1;¢¢¢;n The K¨ahlerpotential is therefore ³ ´ A A K(z; z¯) = hΩjΩi = i X F A ¡ X FA The non-degeneracy of the K¨ahlerform guarantees that locally XA’s span a set of coordinates on M, conventionally called the special coordinates. The integrability condition in special coor- dinates, h@AΩj@BΩi = i(@BFA ¡ @AFB) = 0, implies that locally @ F = F (X) A @XA for a function F (X) holomorphic in XA’s, called the prepotential. Note that F (X) is not Sp(2n; R) invariant. It is defined only in the special coordinate. The period matrix is defined by @ N = F = @ @ F AB @XB A A B Now suppose M be an n-dimensional Hodge K¨ahlermanifold, L! M be a line bundle with c1(L) = [J], SV! M be a flat holomorphic simplectic vector bundle of rank 2n + 2, and consider the tensor bundle H = SV ­ L.1 1A motivation for this formulation can be seen from section 5. 3 Definition A Hodge K¨ahlermanifold M is (local) special K¨ahler,if there is section Ω 2 Γ(H;M) such that the K¨ahlerform is given by i J = ¡ @@¯lnhΩjΩi 2¼ and satisfies hΩj@iΩi = 0 Note that the last condition is well-defined on sections of H: since DiΩ = @iΩ + (@iK)Ω and hΩjΩi = 0, we can replace @i by covariant derivative Di. Under a local trivialization, the section Ω takes the form 0 1 ZI Ω = @ A FJ I;J=0;1;¢¢¢;n The K¨ahlerpotential is therefore ³ ´ I I K = ¡ ln i Z F I ¡ Z FI Under K¨ahlertransformation K ! K + f + f, the holomorphic section Ω transformation as Ω ! e¡f Ω. So ZI ’s can be regarded as a set of homogeneous coordinates on M. Suppose Zi ti = Z0 form a local coordinate system. Then from the condition I I 0 = ¡ihΩj@iΩi = Z @iFI ¡ @iZ FI it is not hard to show2 that (locally) up to a symplectic transformation, we can write @ F (Z) = F (Z) I @ZI where the prepotential F(Z) is holomorphic and of homogeneous degree 2 in ZI ’s. 2 0 i j Write FI = Z FI (t ), then the constraint gives @iF0 ¡ Fi + t @iFj = 0. Taking its derivative with respect to j 0 k 0 t , we get (a) @iFj = @j Fi ) locally Fi = Z @iF for some F(t); (b) @i@j F0 + t @i@j Fk = 0 ) @i@j (F0 ¡ 2Z F + 0 k 0 k 0 2 i 0 Z t @kF) = 0. Up to a symplectic transformation, F0 = Z (2F¡ t @kF). So F (Z) = (Z ) F(Z =Z ) is the desired prepotential. In terms of F(t), the K¨ahlerpotential is given by £ ¤ i i K(t; t) = ¡ ln i 2(F¡ F) ¡ (@iF + @iF)(t ¡ t ) 4 3 Rigid N = 2; d = 4 theories N = 2 theories of vector multiplets can be conveniently formulated using N = 2 superspace.
Recommended publications
  • Bosonization and Mirror Symmetry Arxiv:1608.05077V1 [Hep-Th]
    Bosonization and Mirror Symmetry Shamit Kachru1, Michael Mulligan2,1, Gonzalo Torroba3, and Huajia Wang4 1Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA 2Department of Physics and Astronomy, University of California, Riverside, CA 92511, USA 3Centro At´omico Bariloche and CONICET, R8402AGP Bariloche, ARG 4Department of Physics, University of Illinois, Urbana-Champaign, IL 61801, USA Abstract We study bosonization in 2+1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an O(2)-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a \chiral" mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities. arXiv:1608.05077v1 [hep-th] 17 Aug 2016 Contents 1 Introduction 1 2 Mirror symmetry and its deformations 4 2.1 Superfields and lagrangians . .5 2.2 = 4 mirror symmetry . .7 N 2.3 Deformations by U(1)A and U(1)R backgrounds . 10 2.4 General mirror duality . 11 3 Chiral mirror symmetry 12 3.1 Chiral theory A .
    [Show full text]
  • Flux Moduli Stabilisation, Supergravity Algebras and No-Go Theorems Arxiv
    IFT-UAM/CSIC-09-36 Flux moduli stabilisation, Supergravity algebras and no-go theorems Beatriz de Carlosa, Adolfo Guarinob and Jes´usM. Morenob a School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK b Instituto de F´ısicaTe´oricaUAM/CSIC, Facultad de Ciencias C-XVI, Universidad Aut´onomade Madrid, Cantoblanco, 28049 Madrid, Spain Abstract We perform a complete classification of the flux-induced 12d algebras compatible with the set of N = 1 type II orientifold models that are T-duality invariant, and allowed by the symmetries of the 6 ¯ T =(Z2 ×Z2) isotropic orbifold. The classification is performed in a type IIB frame, where only H3 and Q fluxes are present. We then study no-go theorems, formulated in a type IIA frame, on the existence of Minkowski/de Sitter (Mkw/dS) vacua. By deriving a dictionary between the sources of potential energy in types IIB and IIA, we are able to combine algebra results and no-go theorems. The outcome is a systematic procedure for identifying phenomenologically viable models where Mkw/dS vacua may exist. We present a complete table of the allowed algebras and the viability of their resulting scalar potential, and we point at the models which stand any chance of producing a fully stable vacuum. arXiv:0907.5580v3 [hep-th] 20 Jan 2010 e-mail: [email protected] , [email protected] , [email protected] Contents 1 Motivation and outline 1 2 Fluxes and Supergravity algebras 3 2.1 The N = 1 orientifold limits as duality frames . .4 2.2 T-dual algebras in the isotropic Z2 × Z2 orientifolds .
    [Show full text]
  • Arxiv:2002.11085V1 [Hep-Th]
    On-Shell Electric-Magnetic Duality and the Dual Graviton 1,2 2 Nathan Moynihan and Jeff Murugan ∗ 1High Energy Physics, Cosmology & Astrophysics Theory group, 2The Laboratory for Quantum Gravity & Strings Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town 7700, South Africa Using on-shell amplitude methods, we explore 4-dimensional Electric-Magnetic duality and its double copy. We show explicitly that the on-shell scattering amplitudes know about ‘dual’ photons (and dual gravitons), that the off-shell photon propagator double copies to the graviton propagator and that the magnetic part of the propagator is essential for the double copy to hold. We also show that there is an equivalent gravito-magnetic part of the graviton propagator which is essential in giving rise to solutions with either angular momentum or NUT charge. Furthermore, we comment on the so-called Weinberg paradox, which states that scattering amplitudes involving the mixing of electric and magnetic monopoles cannot be Lorentz invariant, and would seem to preclude the existence of the ’t Hooft-Polyakov (topological) monopole. We trace this paradox to the magnetic part of the propagator, showing that it can be eliminated if one restricts to proper orthochronous Lorentz transformations. Finally, we compute the fully relativistic cross-section for arbitrary spin dyons using the recently formulated on-shell duality transformation and show that this is always fully Lorentz invariant. INTRODUCTION field theory without a Dirac string singularity necessitates the introduction of a second four-vector potential: the The boostrap program of the 1960’s received considerable dual photon [3–6].
    [Show full text]
  • Large N Free Energy of 3D N=4 Scfts and Ads/CFT Benjamin Assel, John Estes, Masahito Yamazaki
    Large N Free Energy of 3d N=4 SCFTs and AdS/CFT Benjamin Assel, John Estes, Masahito Yamazaki To cite this version: Benjamin Assel, John Estes, Masahito Yamazaki. Large N Free Energy of 3d N=4 SCFTs and AdS/CFT. Journal of High Energy Physics, Springer, 2012, pp.074. 10.1007/JHEP09(2012)074. hal-00718824 HAL Id: hal-00718824 https://hal.archives-ouvertes.fr/hal-00718824 Submitted on 18 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LPTENS-12/23 PUPT-2418 Large N Free Energy of 3d = 4 SCFTs and N AdS4/CFT3 Benjamin Assel\, John Estes[ and Masahito Yamazaki] \ Laboratoire de Physique Th´eoriquede l'Ecole´ Normale Sup´erieure, 24 rue Lhomond, 75231 Paris cedex, France [ Instituut voor Theoretische Fysica, KU Leuven, Celestijnenlaan 200D B-3001 Leuven, Belgium ] Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA Abstract We provide a non-trivial check of the AdS4/CFT3 correspondence recently proposed in [1] by verifying the GKPW relation in the large N limit. The CFT free energy is obtained from the previous works [2, 3] on the S3 partition function for 3-dimensional = 4 SCFT T [SU(N)].
    [Show full text]
  • Ads₄/CFT₃ and Quantum Gravity
    AdS/CFT and quantum gravity Ioannis Lavdas To cite this version: Ioannis Lavdas. AdS/CFT and quantum gravity. Mathematical Physics [math-ph]. Université Paris sciences et lettres, 2019. English. NNT : 2019PSLEE041. tel-02966558 HAL Id: tel-02966558 https://tel.archives-ouvertes.fr/tel-02966558 Submitted on 14 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Prepar´ ee´ a` l’Ecole´ Normale Superieure´ AdS4/CF T3 and Quantum Gravity Soutenue par Composition du jury : Ioannis Lavdas Costas BACHAS Le 03 octobre 2019 Ecole´ Normale Superieure Directeur de These Guillaume BOSSARD Ecole´ Polytechnique Membre du Jury o Ecole´ doctorale n 564 Elias KIRITSIS Universite´ Paris-Diderot et Universite´ de Rapporteur Physique en ˆIle-de-France Crete´ Michela PETRINI Sorbonne Universite´ President´ du Jury Nicholas WARNER University of Southern California Membre du Jury Specialit´ e´ Alberto ZAFFARONI Physique Theorique´ Universita´ Milano-Bicocca Rapporteur Contents Introduction 1 I 3d N = 4 Superconformal Theories and type IIB Supergravity Duals6 1 3d N = 4 Superconformal Theories7 1.1 N = 4 supersymmetric gauge theories in three dimensions..............7 1.2 Linear quivers and their Brane Realizations...................... 10 1.3 Moduli Space and Symmetries............................
    [Show full text]
  • Aspects of Supersymmetry and Its Breaking
    1 Aspects of Supersymmetry and its Breaking a b Thomas T. Dumitrescu ∗ and Zohar Komargodski † aDepartment of Physics, Princeton University, Princeton, New Jersey, 08544, USA bSchool of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey, 08540, USA We describe some basic aspects of supersymmetric field theories, emphasizing the structure of various supersym- metry multiplets. In particular, we discuss supercurrents – multiplets which contain the supersymmetry current and the energy-momentum tensor – and explain how they can be used to constrain the dynamics of supersym- metric field theories, supersymmetry breaking, and supergravity. These notes are based on lectures delivered at the Carg´ese Summer School 2010 on “String Theory: Formal Developments and Applications,” and the CERN Winter School 2011 on “Supergravity, Strings, and Gauge Theory.” 1. Supersymmetric Theories In this review we will describe some basic aspects of SUSY field theories, emphasizing the structure 1.1. Supermultiplets and Superfields of various supermultiplets – especially those con- A four-dimensional theory possesses = 1 taining the supersymmetry current. In particu- supersymmetry (SUSY) if it contains Na con- 1 lar, we will show how these supercurrents can be served spin- 2 charge Qα which satisfies the anti- used to study the dynamics of supersymmetric commutation relation field theories, SUSY-breaking, and supergravity. ¯ µ Qα, Qα˙ = 2σαα˙ Pµ . (1) We begin by recalling basic facts about super- { } multiplets and superfields. A set of bosonic and Here Q¯ is the Hermitian conjugate of Q . (We α˙ α fermionic operators B(x) and F (x) fur- will use bars throughout to denote Hermitian con- i i nishes a supermultiplet{O if these} operators{O satisfy} jugation.) Unless otherwise stated, we follow the commutation relations of the schematic form conventions of [1].
    [Show full text]
  • Arxiv:Hep-Th/9902033V2 1 Apr 1999
    IASSNS–HEP–99/15 hep-th/9902033 On Mirror Symmetry in Three Dimensional Abelian Gauge Theories Anton Kapustin and Matthew J. Strassler School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA kapustin, [email protected] Abstract We present an identity relating the partition function of = 4 supersym- N metric QED to that of its dual under mirror symmetry. The identity is a gen- eralized Fourier transform. Many known properties of abelian theories can be derived from this formula, including the mirror transforms for more general gauge and matter content. We show that = 3 Chern-Simons QED and N = 4 QED with BF-type couplings are conformal field theories with exactly N marginal couplings. Mirror symmetry acts on these theories as strong-weak coupling duality. After identifying the mirror of the gauge coupling (some- times called the “magnetic coupling”) we construct a theory which is exactly mirror — at all scales — to = 4 SQED. We also study vortex-creation N operators in the large Nf limit. arXiv:hep-th/9902033v2 1 Apr 1999 1 I. INTRODUCTION Major advances in supersymmetric field theory and string theory in various dimensions have led to the understanding that it is common for apparently different quantum field theories to be quantum-mechanically equivalent. Two theories which are “dual” in this way may be thought of as two choices of variables in a path integral representation for the same generating functional. Not that such “duality relations” are new; the relation between position space and momentum space representations of quantum mechanical systems are of this type; the order-disorder-fermion representations of the Ising model, the identity of the sine-Gordon model and the Thirring model, and target-space duality in two-dimensional sigma-models are well known from two dimensions; and it has long been conjectured that = 4 supersymmetric Yang-Mills theory in four dimensions is a conformal field theory with aN duality symmetry.
    [Show full text]
  • Spontaneous Symmetry Breaking in Free Theories with Boundary
    SciPost Phys. 11, 035 (2021) Spontaneous symmetry breaking in free theories with boundary potentials Vladimir Procházka? and Alexander Söderberg† Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden ? [email protected],† [email protected] Abstract Patterns of symmetry breaking induced by potentials at the boundary of free O(N)- models in d = 3 ε dimensions are studied. We show that the spontaneous symmetry breaking in these− theories leads to a boundary RG flow ending with N 1 Neumann modes in the IR. The possibility of fluctuation-induced symmetry breaking− is examined and we derive a general formula for computing one-loop effective potentials at the boundary. Using the ε-expansion we test these ideas in an O(N) O(N)-model with boundary in- teractions. We determine the RG flow diagram of this⊕ theory and find that it has an IR- stable critical point satisfying conformal boundary conditions. The leading correction to the effective potential is computed and we argue the existence of a phase boundary separating the region flowing to the symmetric fixed point from the region flowing to a symmetry-broken phase with a combination of Neumann and Dirchlet boundary condi- tions. Copyright V.Procházka and A. Söderberg. Received 08-04-2021 This work is licensed under the Creative Commons Accepted 28-07-2021 Check for Attribution 4.0 International License. Published 19-08-2021 updates Published by the SciPost Foundation. doi:10.21468/SciPostPhys.11.2.035 Contents 1 Introduction2 2 One loop effective boundary potentials5 3 O(Nφ) O(Nχ ) scalar model7 3.1 The⊕ model7 3.2 Coleman-Weinberg mechanism9 4 Conclusion 12 A Propagators in boundary quantum field theories 13 A.1 In spacetime coordinates 14 A.2 Momentum propagator 16 B β-function 18 C Functional determinants 20 References 22 1 SciPost Phys.
    [Show full text]
  • Hagedorn Transition, Vortices and D0 Branes: Lessons from 2+1 Confining
    CERN-TH/2001-088 MIT-CTP-3095 hep-th/0103235 Hagedorn transition, vortices and D0 branes: Lessons from 2+1 confining strings. Ian I. Kogana1, Alex Kovnerb,c2, Martin Schvellingera,d3 aTheoretical Physics, Department of Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, UK bTheory Division, CERN, CH-1211, Geneva 23, Switzerland cDepartment of Mathematics and Statistics, University of Plymouth, Plymouth PL4 8AA, UK dCenter for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139, USA Abstract We study the behaviour of Polyakov confining string in the Georgi-Glashow model in three dimensions near confining-deconfining phase transition described in [33]. In the string language, the transition mechanism is the decay of the confining string into D0 branes (charged W ± bosons of the Georgi-Glashow model). In the world-sheet picture the world-lines of heavy D0 branes at finite temperature are represented as world-sheet vortices of a certain type, and the transition corresponds to the condensation of these vortices. We also show that the \would be" Hagedorn transition in the confining string (which is not realized in our model) corresponds to the monopole binding transition in the field theoretical language. The fact that the decay into D0 branes occurs at lower than the Hagedorn temperature is understood as the consequence of the large thickness of the confining string and finite mass of the D0branes. CERN-TH/2001-088 Keywords: Confining Strings, Vortices, Confinement [email protected] [email protected] [email protected] 1 Introduction What happens to strings at very high temperatures is one of the Big questions of string theory.
    [Show full text]
  • String Theory, the Dark Sector, and the Hierarchy Problem
    Letters in High Energy Physics LHEP-186, 2021 String Theory, the Dark Sector, and the Hierarchy Problem Per Berglund,1 Tristan H¨ubsch,2 and Djordje Minic3 1Department of Physics and Astronomy, University of New Hampshire, Durham, NH 03824, USA 2Department of Physics and Astronomy, Howard University, Washington, DC 20059, USA 3Department of Physics, Virginia Tech, Blacksburg, VA24061, USA Abstract We discuss dark energy, dark matter, and the hierarchy problem in the context of a general noncommuta- tive formulation of string theory. In this framework, dark energy is generated by the dynamical geometry of the dual spacetime while dark matter, on the other hand, comes from the degrees of freedom dual to the visible matter. This formulation of string theory is sensitive to both the IR and UV scales, and the Higgs scale is radiatively stable by being a geometric mean of radiatively stable UV and IR scales. We also com- ment on various phenomenological signatures of this novel approach to dark energy, dark matter, and the hierarchy problem. We find that this new view on the hierarchy problem is realized in a toy model based on a nonholomorphic deformation of the stringy cosmic string. Finally, we discuss a proposal for a new nonperturbative formulation of string theory, which sheds light on M-theory and F-theory, as well as on supersymmetry and holography. Keywords: string theory, dark energy, dark matter, hierarchy ical signatures stemming from this correlation. We also com- problem ment about other phenomenological signatures of this new ap- DOI: 10.31526/LHEP.2021.186 proach to dark energy, dark matter, and the hierarchy problem in the context of string theory.
    [Show full text]
  • An Introduction to Dynamical Supersymmetry Breaking
    An Introduction to Dynamical Supersymmetry Breaking Thomas Walshe September 28, 2009 Submitted in partial fulfillment of the requirements for the degree of Master of Science of Imperial College London Abstract We present an introduction to dynamical supersymmetry breaking, highlighting its phenomenological significance in the context of 4D field theories. Observations concerning the conditions for supersymmetry breaking are studied. Holomorphy and duality are shown to be key ideas behind dynamical mechanisms for supersymmetry breaking, with attention paid to supersymmetric QCD. Towards the end we discuss models incorporating DSB which aid the search for a complete theory of nature. 1 Contents 1 Introduction 4 2 General Arguments 8 2.1 Supersymmetry Algebra . 8 2.2 Superfield formalism . 10 2.3 Flat Directions . 12 2.4 Global Symmetries . 15 2.5 The Goldstino . 17 2.6 The Witten Index . 19 3 Tree Level Supersymmetry Breaking 20 3.1 O'Raifeartaigh Models . 20 3.2 Fayet-Iliopoulos Mechanism . 22 3.3 Holomorphicity and non-renormalistation theorems . 23 4 Non-perturbative Gauge Dynamics 25 4.1 Supersymmetric QCD . 26 4.2 ADS superpotential . 26 4.3 Theories with F ≥ N ................................. 28 5 Models of Dynamical Supersymmetry Breaking 33 5.1 3-2 model . 34 5.2 SU(5) theory . 36 5.3 SU(7) with confinement . 37 5.4 Generalisation of these models . 38 5.5 Non-chiral model with classical flat directions . 40 2 5.6 Meta-Stable Vacua . 41 6 Gauge Mediated Supersymmetry Breaking 42 7 Conclusion 45 8 Acknowledgments 46 9 References 46 3 1 Introduction The success of the Standard Model (SM) is well documented yet it is not without its flaws.
    [Show full text]
  • Confinement in Yang{Mills: Elements of a Big Picture
    October 2008 UMN-TH-2720/08 , FTPI-MINN-08/38 , SLAC-PUB-13434 Confinement in Yang{Mills: Elements of a Big Picture M. Shifmana;b and Mithat Unsal• c;d a William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455, USA b Laboratoire de Physique Th´eorique1 Universit´ede Paris-Sud XI Bˆatiment 210, F-91405 Orsay C´edex,FRANCE c SLAC, Stanford University, Menlo Park, CA 94025, USA d Physics Department, Stanford University, Stanford, CA,94305, USA Abstract This is a combined and slightly expanded version of talks deliv- ered at 14th International QCD Conference “QCD 08,” 7-12th July 2008, Montpellier, France, the International Conference “Quark Con- finement and the Hadron Spectrum,” Mainz, Germany, September 1-6, 2008 (Confinement 08), and the International Conference “Approaches to Quantum Chromodynamics,” Oberw•olz,Austria, September 7-13, 2008. Work supported in part by US Department of Energy contract DE-AC02-76SF00515 1UniteMixte de Recherche du CNRS, (UMR 8627). 1 Introduction QCD is a non-Abelian gauge theory of strong interactions. It is extremely rich and describes a very wide range of natural phenomena, e.g.: all of nuclear physics; Regge behavior and Regge trajectories; strongly coupled quark-gluon plasma; high-T and high-density phenom- ena; neutron stars; richness of the hadronic world (chiral phenomena, light and heavy quarkonia, glueballs and exotics, exclusive and inclusive processes, interplay between strong and weak interactions, and many other issues). At short distances QCD is weakly coupled, allowing high precision pertur- bative (multi-loop, multi-leg) calculations, however, analytical computations at all energy and momentum scales seem unlikely due to strong coupling nature at large distances.
    [Show full text]