Using Centrality Measures to Identify Key Members of an Innovation Collaboration Network

Total Page:16

File Type:pdf, Size:1020Kb

Using Centrality Measures to Identify Key Members of an Innovation Collaboration Network Using Centrality Measures to Identify Key Members of an Innovation Collaboration Network John Cardente∗ Group 43 1 Introduction The rest of this paper is organized as follows. Sec- tion 3 reviews relevant prior work. Section 4 de- scribes the network dataset and graph models used Maintaining an innovative culture is critical to the on- to represent it. Section 5 compares the network’s at- going success and growth of an established company. tributes to other collaboration networks analyzed in It is the key to overcoming threats from market con- the literature. Section 6 presents centrality measures dition changes, competitors, and disruptive technolo- that may be effective in identifying key innovators. gies. A critical component to building an innovative Section 7 evaluates the effectiveness of these central- culture is identifying key innovators and providing ity measures in identifying key participants in the them with the support needed to improve their skills EMC collaboration network. Section 8 summarizes and expand their influence [5]. Identifying these in- the findings. novators can be a significant challenge, especially in large organizations. Prior research provides evidence that leading scien- 2 Previous Work tists, innovators, etc, occupy structurally significant locations in collaboration network graphs. If true, then such high-value individuals should be discover- Coulon [6] provides a comprehensive survey of re- able using network analysis techniques. Centrality search literature using network analysis techniques measures are frequently used to describe a node’s rel- to examine innovation theories and frameworks. He ative importance within a network graph. This pa- observes the frequent use of degree, closeness, and be- per’s primary hypothesis is that centrality measures tweenness centrality measures to describe the struc- can be used to identify important participants within ture of innovation networks. In [1] [2], Newman collaboration networks. examines scientific paper author collaboration net- works and introduces a weighted closeness metric that To test this hypothesis, this paper examines a col- appears to effectively identify prominent scientists. laboration network of participants in innovation con- Krebs [12] uses centrality measures to identify influ- tests held by EMC Corporation in 2010, 2011, and ential members of the 911 terrorist association net- 2012. These annual contests invite employees to sub- work. Fleming [15] highlights the importance of “bro- mit creative ideas, individually or in teams, that solve kers” and “gatekeepers” with particular structural at- difficult technical problems, create new or improved tributes in innovation networks. Similarly, Whelan products, or increase the company’s operational effi- [5] discusses the importance of “scouts” and “connec- ciency. They attract the company’s leading innova- tors”. Ahuja [17] examines a collaboration network tors and promote collaborations that span engineer- of patent co-inventors and finds that large number ing teams, business units, and geographic locations. of nodes with low cluster coefficients, called “span- If effective, using the collaboration network and cen- ners” or “brokers”, do not increase an organization’s trality measures to discover top innovators could be a innovative productivity. Various papers [19] [14] [16] valuable tool for managing the company’s talent and examine how small-word attributes contribute to the culture. innovative capacity of inventor and artistic networks. In [3] [4], Freeman presents the fundamental central- ∗[email protected] ity measures and interprets them in the context of 1 human social networks. White and Smyth [18] pro- Figure 1: Example undirected collabora- vide algorithms for determining relative node impor- tion graph. Nodes represent contest partic- tance in networks. Borgatti [10] identifies two classes ipants. Edges represent collaborations. Ex- of key network players, maximally connected and ar- ample node and edge weights indicate the number of contest entries and collabora- ticulation nodes, and discusses methods for select- tions respectively. ing the top k nodes of each. Oritz-Arroyo [8] builds on [10] and presents the use of entropy measures for 2 identifying sets of key nodes. Poulin [13] presents a 5 2 cumulative nomination centrality measure for multi- 3 component networks. Everett [7] presents centrality measures for network sub-groups and 2-mode net- 3 3 works. 3 3 3 Data and Models edge weights are provided in Section 6. The clique This paper analyzes data collected from the 2010, collaboration network has a structure similar to the 2011, and 2012 EMC Innovation Contests. It was ex- participant network. tracted from the database back-end of the web-portal used by employees to enter contest submissions. The data specifies the employees responsible for each con- test entry. This analysis only considers employees 4 Network Attributes that collaborated with one or more other employees on at least one entry. The rational being that prolific Table 1 provides summary statistics for the innova- lone innovators are much easier to identify then those tion contest data. embedded within a collaboration network. Two collaboration graphs are created from this data. Table 1: Innovation network summary The first is a single edged undirected graph represent- statistics. ing the collaborative relationships between individual Statistic Value contest participants. Participants are represented as Participants 3185 nodes. Two nodes are connected if the associated Collaborators 1822 participants submitted at least one contest entry to- Submissions 5317 gether. Node and edge weights are optionally used to Group Submissions 1275 reflect importance. Detailed discussions of node and Collaborations 16668 edge weights are provided in Section 6. Figure 1 is a Placing Participants 408 simple illustration of the collaboration network. Placing Collaborators 372 The second graph is a single edged undirected graph between the maximal cliques in the participant graph. The data in Table 1 indicates that 57% of contest It represents the collaborative relationships between participants collaborated with others, however, only teams of innovators. Since teams often participate in 24% of the submissions were from teams. The num- the contests as a single unit, this graph is essentially a ber of collaborations is large but counts each collab- dimensionally reduced form of the first graph without oration between participants individually (i.e. non- the edges between team members. Two cliques are unique collaborations). Of the 3185 participants, 408 connected if they have at least one member in com- placed in a contest by either winning or being a final- mon. While community detection techniques often ist for an award. The majority of those winners and require larger overlaps between cliques [24] to form an finalists, 91:2% , participated in teams. edge, a single-node overlap threshold is used in this case to capture relationships involving two-member Table 2 lists the attributes of an unweighted single teams. Node and edge weights are optionally used to edged undirected graph created from the participant reflect importance. Detailed discussions of node and collaborations. 2 Table 2: Participant collaboration graph scores suggest the possibility of structurally impor- attributes. tant nodes. Attribute Value Tables 4 and 5 provide the network attributes for the Nodes 1822 clique collaboration network. These attributes indi- Edges 5590 cate that the clique collaboration network is also a Avg. Degree 6.1361 scale-free, small-world network similar to other col- Diameter 17 laboration networks. Cluster Coef 0.8357 Average Path Length 5.9198 Table 4: Clique collaboration graph at- Components 259 tributes. Giant Component Size 868 Attribute Value Next Largest Component Size 38 Placing Nodes in GC 269 Nodes 637 Degree Distribution α 1.78 Edges 3606 Avg. Degree 11.3218 Diameter 16 The diameter reflects the longest path across all com- Cluster Coef 0.7044 ponents and ignores missing paths between uncon- Average Path Length 5.3102 nected nodes. The average path length also ignores Components 64 missing paths. Giant Component Size 439 Next Largest Component Size 38 The innovation network has attributes similar to Placing Nodes in GC 195 other collaboration networks [1] [2]. It contains a gi- Degree Distribution α 1.63 ant component containing 48% of all nodes and 72% of the placing collaborating participants. The next Table 5: Clique collaboration graph cen- largest component is substantially smaller, approxi- tralities. mately 2%. The average path length, 5:92, is short relative to the diameter, 17. The clustering coeffi- Centrality Value cient is high, 0:84. The network’s degree distribution Degree 0.0910 follows a power-law distribution with α ≈ 1:78. To- Degree (GC only) 0.1230 gether, these attributes indicate that the participant Closeness (GC only) 0.1950 collaboration network is a scale-free, small-world net- Betweenness (GC only) 0.4390 work suitable for analysis in the same manners as other collaboration networks. Table 3 provides the participant collaboration graph’s global centrality scores. 5 Centrality Measures Table 3: Participant collaboration graph centralities. 5.1 Definitions Centrality Value Let G be an undirected single-edged graph comprised Degree 0.0184 of the sets N nodes and E edges. A is an adjacency Degree (GC only) 0.0606 matrix such that aij = 1 if eij 2 E and 0 otherwise. Closeness (GC only) 0.1895 Let W be an edge weight matrix such that wij > 0 Betweenness (GC only) 0.4619 if aij = 1. Ti is the set of reachable nodes from node i. The shortest distance between two nodes fi; jg is In all cases, a value close to 1 indicates that the net- given by d(i; j). The shortest path between two nodes work is tightly organized around a relatively small fi; jg is represented as Sij. The number of shortest number of nodes with high values of the associ- paths between two nodes fi; jg is σij. The number of ated centrality metric. Although none of the values shortest paths between two nodes fi; jg that include are very close to 1, the closeness and betweenness node u is σij(u).
Recommended publications
  • Networkx: Network Analysis with Python
    NetworkX: Network Analysis with Python Salvatore Scellato Full tutorial presented at the XXX SunBelt Conference “NetworkX introduction: Hacking social networks using the Python programming language” by Aric Hagberg & Drew Conway Outline 1. Introduction to NetworkX 2. Getting started with Python and NetworkX 3. Basic network analysis 4. Writing your own code 5. You are ready for your project! 1. Introduction to NetworkX. Introduction to NetworkX - network analysis Vast amounts of network data are being generated and collected • Sociology: web pages, mobile phones, social networks • Technology: Internet routers, vehicular flows, power grids How can we analyze this networks? Introduction to NetworkX - Python awesomeness Introduction to NetworkX “Python package for the creation, manipulation and study of the structure, dynamics and functions of complex networks.” • Data structures for representing many types of networks, or graphs • Nodes can be any (hashable) Python object, edges can contain arbitrary data • Flexibility ideal for representing networks found in many different fields • Easy to install on multiple platforms • Online up-to-date documentation • First public release in April 2005 Introduction to NetworkX - design requirements • Tool to study the structure and dynamics of social, biological, and infrastructure networks • Ease-of-use and rapid development in a collaborative, multidisciplinary environment • Easy to learn, easy to teach • Open-source tool base that can easily grow in a multidisciplinary environment with non-expert users
    [Show full text]
  • Analysis of Social Networks with Missing Data (Draft: Do Not Cite)
    Analysis of social networks with missing data (Draft: do not cite) G. Kossinets∗ Department of Sociology, Columbia University, New York, NY 10027. (Dated: February 4, 2003) We perform sensitivity analyses to assess the impact of missing data on the struc- tural properties of social networks. The social network is conceived of as being generated by a bipartite graph, in which actors are linked together via multiple interaction contexts or affiliations. We discuss three principal missing data mecha- nisms: network boundary specification (non-inclusion of actors or affiliations), survey non-response, and censoring by vertex degree (fixed choice design). Based on the simulation results, we propose remedial techniques for some special cases of network data. I. INTRODUCTION Social network data is often incomplete, which means that some actors or links are missing from the dataset. In a normal social setting, much of the incompleteness arises from the following main sources: the so called boundary specification problem (BSP); respondent inaccuracy; non-response in network surveys; or may be inadvertently introduced via study design (Table I). Although missing data is abundant in empirical studies, little research has been conducted on the possible effect of missing links or nodes on the measurable properties of networks at large.1 In particular, a revision of the original work done primarily in the 1970-80s [4, 17, 21] seems necessary in the light of recent advances that brought new classes of networks to the attention of the interdisciplinary research community [1, 3, 30, 37, 40, 41]. Let us start with a few examples from the literature to illustrate different incarnations of missing data in network research.
    [Show full text]
  • Graph Theory and Social Networks Spring 2014 Notes
    Graph Theory and Social Networks Spring 2014 Notes Kimball Martin April 30, 2014 Introduction Graph theory is a branch of discrete mathematics (more specifically, combinatorics) whose origin is generally attributed to Leonard Euler's solution of the K¨onigsberg bridge problem in 1736. At the time, there were two islands in the river Pregel, and 7 bridges connecting the islands to each other and to each bank of the river. As legend goes, for leisure, people would try to find a path in the city of K¨onigsberg which traversed each of the 7 bridges exactly once (see Figure1). Euler represented this abstractly as a graph∗, and showed by elementary means that no such path exists. Figure 1: The Seven Bridges of K¨onigsberg (Source: Wikimedia Commons) Intuitively, a graph is just a set of objects which are connected in some way. The objects are called vertices or nodes. Pictorially, we usually draw the vertices as circles, and draw a line between two vertices if they are connected or related (in whatever context we have in mind). These lines are called edges or links. Here are a few examples of abstract graphs. This is a graph with 8 vertices connected in a circle. ∗In this course, graph does not mean the graph of a function, as in calculus. It is unfortunate, but these two very basic objects in mathematics have the same name. 1 Graph Theory/Social Networks Introduction Kimball Martin (Spring 2014) 1 2 8 3 7 4 6 5 This is a graph on 5 vertices, where all pairs of vertices are connected.
    [Show full text]
  • Networkx Reference Release 1.9.1
    NetworkX Reference Release 1.9.1 Aric Hagberg, Dan Schult, Pieter Swart September 20, 2014 CONTENTS 1 Overview 1 1.1 Who uses NetworkX?..........................................1 1.2 Goals...................................................1 1.3 The Python programming language...................................1 1.4 Free software...............................................2 1.5 History..................................................2 2 Introduction 3 2.1 NetworkX Basics.............................................3 2.2 Nodes and Edges.............................................4 3 Graph types 9 3.1 Which graph class should I use?.....................................9 3.2 Basic graph types.............................................9 4 Algorithms 127 4.1 Approximation.............................................. 127 4.2 Assortativity............................................... 132 4.3 Bipartite................................................. 141 4.4 Blockmodeling.............................................. 161 4.5 Boundary................................................. 162 4.6 Centrality................................................. 163 4.7 Chordal.................................................. 184 4.8 Clique.................................................. 187 4.9 Clustering................................................ 190 4.10 Communities............................................... 193 4.11 Components............................................... 194 4.12 Connectivity..............................................
    [Show full text]
  • Graph Theory and Social Networks - Part I
    Graph Theory and Social Networks - part I ! EE599: Social Network Systems ! Keith M. Chugg Fall 2014 1 © Keith M. Chugg, 2014 Overview • Summary • Graph definitions and properties • Relationship and interpretation in social networks • Examples © Keith M. Chugg, 2014 2 References • Easley & Kleinberg, Ch 2 • Focus on relationship to social nets with little math • Barabasi, Ch 2 • General networks with some math • Jackson, Ch 2 • Social network focus with more formal math © Keith M. Chugg, 2014 3 Graph Definition 24 CHAPTER 2. GRAPHS A A • G= (V,E) • V=set of vertices B B C D C D • E=set of edges (a) A graph on 4 nodes. (b) A directed graph on 4 nodes. Figure 2.1: Two graphs: (a) an undirected graph, and (b) a directed graph. Modeling of networks Easley & Kleinberg • will be undirected unless noted otherwise. Graphs as Models of Networks. Graphs are useful because they serve as mathematical Vertex is a person (ormodels ofentity) network structures. With this in mind, it is useful before going further to replace • the toy examples in Figure 2.1 with a real example. Figure 2.2 depicts the network structure of the Internet — then called the Arpanet — in December 1970 [214], when it had only 13 sites. Nodes represent computing hosts, and there is an edge joining two nodes in this picture Edge represents a relationshipif there is a direct communication link between them. Ignoring the superimposed map of the • U.S. (and the circles indicating blown-up regions in Massachusetts and Southern California), the rest of the image is simply a depiction of this 13-node graph using the same dots-and-lines style that we saw in Figure 2.1.
    [Show full text]
  • Strongly Connected Components and Biconnected Components
    Strongly Connected Components and Biconnected Components Daniel Wisdom 27 January 2017 1 2 3 4 5 6 7 8 Figure 1: A directed graph. Credit: Crash Course Coding Companion. 1 Strongly Connected Components A strongly connected component (SCC) is a set of vertices where every vertex can reach every other vertex. In an undirected graph the SCCs are just the groups of connected vertices. We can find them using a simple DFS. This works because, in an undirected graph, u can reach v if and only if v can reach u. This is not true in a directed graph, which makes finding the SCCs harder. More on that later. 2 Kernel graph We can travel between any two nodes in the same strongly connected component. So what if we replaced each strongly connected component with a single node? This would give us what we call the kernel graph, which describes the edges between strongly connected components. Note that the kernel graph is a directed acyclic graph because any cycles would constitute an SCC, so the cycle would be compressed into a kernel. 3 1,2,5,6 4,7 8 Figure 2: Kernel graph of the above directed graph. 3 Tarjan's SCC Algorithm In a DFS traversal of the graph every SCC will be a subtree of the DFS tree. This subtree is not necessarily proper, meaning that it may be missing some branches which are their own SCCs. This means that if we can identify every node that is the root of its SCC in the DFS, we can enumerate all the SCCs.
    [Show full text]
  • A Note on the Importance of Collaboration Graphs
    Int. J. of Mathematical Sciences and Applications, Vol. 1, No. 3, September 2011 Copyright Mind Reader Publications www.journalshub.com A Note on the Importance of Collaboration Graphs V.Yegnanarayanan1 and G.K.Umamaheswari2 1Senior Professor, Department of Mathematics, Velammal Engineering College,Ambattur-Red Hills Road, Chennai - 600 066, India. Email id:[email protected] 2Research Scholar, Research and Development Centre, Bharathiar University, Coimbatore-641046, India. Abstract Numerous challenging problems in graph theory has attracted the attention and imagination of researchers from physics, computer science, engineering, biology, social science and mathematics. If we put all these different branches one into basket, what evolves is a new science called “Network Science”. It calls for a solid scientific foundation and vigorous analysis. Graph theory in general and the collaboration graphs, in particular are well suited for this task. In this paper, we give a overview of the importance of collaboration graphs with its interesting background. Also we study one particular type of collaboration graph and list a number of open problems. Keywords :collaboration graph, network science, erdos number AMS subject Classification: 05XX, 68R10 1. Introduction In the past decade, graph theory has gone through a remarkable shift and a profound transformation. The change is in large part due to the humongous amount of information that we are confronted with. A main way to sort through massive data sets is to build and examine the network formed by interrelations. For example, Google’s successful web search algorithms are based on the www graph, which contains all web pages as vertices and hyperlinks as edges.
    [Show full text]
  • Analyzing Social Media Network for Students in Presidential Election 2019 with Nodexl
    ANALYZING SOCIAL MEDIA NETWORK FOR STUDENTS IN PRESIDENTIAL ELECTION 2019 WITH NODEXL Irwan Dwi Arianto Doctoral Candidate of Communication Sciences, Airlangga University Corresponding Authors: [email protected] Abstract. Twitter is widely used in digital political campaigns. Twitter as a social media that is useful for building networks and even connecting political participants with the community. Indonesia will get a demographic bonus starting next year until 2030. The number of productive ages that will become a demographic bonus if not recognized correctly can be a problem. The election organizer must seize this opportunity for the benefit of voter participation. This study aims to describe the network structure of students in the 2019 presidential election. The first debate was held on January 17, 2019 as a starting point for data retrieval on Twitter social media. This study uses data sources derived from Twitter talks from 17 January 2019 to 20 August 2019 with keywords “#pilpres2019 OR #mahasiswa since: 2019-01-17”. The data obtained were analyzed by the communication network analysis method using NodeXL software. Our Analysis found that Top Influencer is @jokowi, as well as Top, Mentioned also @jokowi while Top Tweeters @okezonenews and Top Replied-To @hasmi_bakhtiar. Jokowi is incumbent running for re-election with Ma’ruf Amin (Senior Muslim Cleric) as his running mate against Prabowo Subianto (a former general) and Sandiaga Uno as his running mate (former vice governor). This shows that the more concentrated in the millennial generation in this case students are presidential candidates @jokowi. @okezonenews, the official twitter account of okezone.com (MNC Media Group).
    [Show full text]
  • Assortativity and Mixing
    Assortativity and Assortativity and Mixing General mixing between node categories Mixing Assortativity and Mixing Definition Definition I Assume types of nodes are countable, and are Complex Networks General mixing General mixing Assortativity by assigned numbers 1, 2, 3, . Assortativity by CSYS/MATH 303, Spring, 2011 degree degree I Consider networks with directed edges. Contagion Contagion References an edge connects a node of type µ References e = Pr Prof. Peter Dodds µν to a node of type ν Department of Mathematics & Statistics Center for Complex Systems aµ = Pr(an edge comes from a node of type µ) Vermont Advanced Computing Center University of Vermont bν = Pr(an edge leads to a node of type ν) ~ I Write E = [eµν], ~a = [aµ], and b = [bν]. I Requirements: X X X eµν = 1, eµν = aµ, and eµν = bν. µ ν ν µ Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. 1 of 26 4 of 26 Assortativity and Assortativity and Outline Mixing Notes: Mixing Definition Definition General mixing General mixing Assortativity by I Varying eµν allows us to move between the following: Assortativity by degree degree Definition Contagion 1. Perfectly assortative networks where nodes only Contagion References connect to like nodes, and the network breaks into References subnetworks. General mixing P Requires eµν = 0 if µ 6= ν and µ eµµ = 1. 2. Uncorrelated networks (as we have studied so far) Assortativity by degree For these we must have independence: eµν = aµbν . 3. Disassortative networks where nodes connect to nodes distinct from themselves. Contagion I Disassortative networks can be hard to build and may require constraints on the eµν.
    [Show full text]
  • Graph and Network Analysis
    Graph and Network Analysis Dr. Derek Greene Clique Research Cluster, University College Dublin Web Science Doctoral Summer School 2011 Tutorial Overview • Practical Network Analysis • Basic concepts • Network types and structural properties • Identifying central nodes in a network • Communities in Networks • Clustering and graph partitioning • Finding communities in static networks • Finding communities in dynamic networks • Applications of Network Analysis Web Science Summer School 2011 2 Tutorial Resources • NetworkX: Python software for network analysis (v1.5) http://networkx.lanl.gov • Python 2.6.x / 2.7.x http://www.python.org • Gephi: Java interactive visualisation platform and toolkit. http://gephi.org • Slides, full resource list, sample networks, sample code snippets online here: http://mlg.ucd.ie/summer Web Science Summer School 2011 3 Introduction • Social network analysis - an old field, rediscovered... [Moreno,1934] Web Science Summer School 2011 4 Introduction • We now have the computational resources to perform network analysis on large-scale data... http://www.facebook.com/note.php?note_id=469716398919 Web Science Summer School 2011 5 Basic Concepts • Graph: a way of representing the relationships among a collection of objects. • Consists of a set of objects, called nodes, with certain pairs of these objects connected by links called edges. A B A B C D C D Undirected Graph Directed Graph • Two nodes are neighbours if they are connected by an edge. • Degree of a node is the number of edges ending at that node. • For a directed graph, the in-degree and out-degree of a node refer to numbers of edges incoming to or outgoing from the node.
    [Show full text]
  • Graph Theory and Social Networks Spring 2014 Notes
    Graph Theory and Social Networks Spring 2014 Notes Kimball Martin March 14, 2014 Introduction Graph theory is a branch of discrete mathematics (more specifically, combinatorics) whose origin is generally attributed to Leonard Euler’s solution of the K¨onigsberg bridge problem in 1736. At the time, there were two islands in the river Pregel, and 7 bridges connecting the islands to each other and to each bank of the river. As legend goes, for leisure, people would try to find a path in the city of K¨onigsberg which traversed each of the 7 bridges exactly once (see Figure 1). Euler represented this abstractly as a graph⇤, and showed by elementary means that no such path exists. Figure 1: The Seven Bridges of K¨onigsberg (Source: Wikimedia Commons) Intuitively, a graph is just a set of objects which are connected in some way. The objects are called vertices or nodes. Pictorially, we usually draw the vertices as circles, and draw a line between two vertices if they are connected or related (in whatever context we have in mind). These lines are called edges or links. Here are a few examples of abstract graphs. This is a graph with 8 vertices connected in a circle. ⇤In this course, graph does not mean the graph of a function, as in calculus. It is unfortunate, but these two very basic objects in mathematics have the same name. 1 Graph Theory/Social Networks Introduction Kimball Martin (Spring 2014) 1 2 8 3 7 4 6 5 This is a graph on 5 vertices, where all pairs of vertices are connected.
    [Show full text]
  • The Following Pages Contain Scaled Artwork Proofs and Are Intended Primarily for Your Review of figure/Illustration Sizing and Overall Quality
    P1: SBT cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2 The following pages contain scaled artwork proofs and are intended primarily for your review of figure/illustration sizing and overall quality. The bounding box shows the type area dimensions defined by the design specification for your book. The figures are not necessarily placed as they will appear with the text in page proofs. Design specification and page makeup parameters determine actual figure placement relative to callouts on actual page proofs, which you will review later. If you are viewing these art proofs as hard-copy printouts rather than as a PDF file, please note the pages were printed at 600 dpi on a laser printer. You should be able to adequately judge if there are any substantial quality problems with the artwork, but also note that the overall quality of the artwork in the finished bound book will be better because of the much higher resolution of the book printing process. You will be reviewing copyedited manuscript/typescript for your book, so please refrain from marking editorial changes or corrections to the captions on these pages; defer caption corrections until you review copyedited manuscript. The captions here are intended simply to confirm the correct images are present. Please be as specific as possible in your markup or comments to the artwork proofs. 0 P1: SBT cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2 1 27 23 15 10 20 16 4 31 13 11 30 34 14 6 1 12 17 9 21 33 7 29 3 18 5 22 19 2 28 25 8 24 32 26 Figure 1.1.
    [Show full text]