Eigenfunction Expansions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Math 353 Lecture Notes Intro to Pdes Eigenfunction Expansions for Ibvps
Math 353 Lecture Notes Intro to PDEs Eigenfunction expansions for IBVPs J. Wong (Fall 2020) Topics covered • Eigenfunction expansions for PDEs ◦ The procedure for time-dependent problems ◦ Projection, independent evolution of modes 1 The eigenfunction method to solve PDEs We are now ready to demonstrate how to use the components derived thus far to solve the heat equation. First, two examples to illustrate the proces... 1.1 Example 1: no source; Dirichlet BCs The simplest case. We solve ut =uxx; x 2 (0; 1); t > 0 (1.1a) u(0; t) = 0; u(1; t) = 0; (1.1b) u(x; 0) = f(x): (1.1c) The eigenvalues/eigenfunctions are (as calculated in previous sections) 2 2 λn = n π ; φn = sin nπx; n ≥ 1: (1.2) Assuming the solution exists, it can be written in the eigenfunction basis as 1 X u(x; t) = cn(t)φn(x): n=0 Definition (modes) The n-th term of this series is sometimes called the n-th mode or Fourier mode. I'll use the word frequently to describe it (rather than, say, `basis function'). 1 00 Substitute into the PDE (1.1a) and use the fact that −φn = λnφ to obtain 1 X 0 (cn(t) + λncn(t))φn(x) = 0: n=1 By the fact the fφng is a basis, it follows that the coefficient for each mode satisfies the ODE 0 cn(t) + λncn(t) = 0: Solving the ODE gives us a `general' solution to the PDE with its BCs, 1 X −λnt u(x; t) = ane φn(x): n=1 The remaining coefficients are determined by the IC, u(x; 0) = f(x): To match to the solution, we need to also write f(x) in the basis: 1 Z 1 X hf; φni f(x) = f φ (x); f = = 2 f(x) sin nπx dx: (1.3) n n n hφ ; φ i n=1 n n 0 Then from the initial condition, we get u(x; 0) = f(x) 1 1 X X =) cn(0)φn(x) = fnφn(x) n=1 n=1 =) cn(0) = fn for all n ≥ 1: Now everything has been solved - we are done! The solution to the IBVP (1.1) is 1 X −n2π2t u(x; t) = ane sin nπx with an given by (1.5): (1.4) n=1 Alternatively, we could state the solution as follows: The solution is 1 X −λnt u(x; t) = fne φn(x) n=1 with eigenfunctions/values φn; λn given by (1.2) and fn by (1.3). -
Math 356 Lecture Notes Intro to Pdes Eigenfunction Expansions for Ibvps
MATH 356 LECTURE NOTES INTRO TO PDES EIGENFUNCTION EXPANSIONS FOR IBVPS J. WONG (FALL 2019) Topics covered • Eigenfunction expansions for PDEs ◦ The procedure for time-dependent problems ◦ Projection, independent evolution of modes ◦ Separation of variables • The wave equation ◦ Standard solution, standing waves ◦ Example: tuning the vibrating string (resonance) • Interpreting solutions (what does the series mean?) ◦ Relevance of Fourier convergence theorem ◦ Smoothing for the heat equation ◦ Non-smoothing for the wave equation 3 1. The eigenfunction method to solve PDEs We are now ready to demonstrate how to use the components derived thus far to solve the heat equation. The procedure here for the heat equation will extend nicely to a variety of other problems. For now, consider an initial boundary value problem of the form ut = −Lu + h(x; t); x 2 (a; b); t > 0 hom. BCs at a and b (1.1) u(x; 0) = f(x) We seek a solution in terms of the eigenfunction basis X u(x; t) = cn(t)φn(x) n by finding simple ODEs to solve for the coefficients cn(t): This form of the solution is called an eigenfunction expansion for u (or `eigenfunction series') and each term cnφn(x) is a mode (or `Fourier mode' or `eigenmode'). Part 1: find the eigenfunction basis. The first step is to compute the basis. The eigenfunctions we need are the solutions to the eigenvalue problem Lφ = λφ, φ(x) satisfies the BCs for u: (1.2) By the theorem in ??, there is a sequence of eigenfunctions fφng with eigenvalues fλng that form an orthogonal basis for L2[a; b] (i.e. -
EOF/PC Analysis
ATM 552 Notes: Matrix Methods: EOF, SVD, ETC. D.L.Hartmann Page 68 4. Matrix Methods for Analysis of Structure in Data Sets: Empirical Orthogonal Functions, Principal Component Analysis, Singular Value Decomposition, Maximum Covariance Analysis, Canonical Correlation Analysis, Etc. In this chapter we discuss the use of matrix methods from linear algebra, primarily as a means of searching for structure in data sets. Empirical Orthogonal Function (EOF) analysis seeks structures that explain the maximum amount of variance in a two-dimensional data set. One dimension in the data set represents the dimension in which we are seeking to find structure, and the other dimension represents the dimension in which realizations of this structure are sampled. In seeking characteristic spatial structures that vary with time, for example, we would use space as the structure dimension and time as the sampling dimension. The analysis produces a set of structures in the first dimension, which we call the EOF’s, and which we can think of as being the structures in the spatial dimension. The complementary set of structures in the sampling dimension (e.g. time) we can call the Principal Components (PC’s), and they are related one-to-one to the EOF’s. Both sets of structures are orthogonal in their own dimension. Sometimes it is helpful to sacrifice one or both of these orthogonalities to produce more compact or physically appealing structures, a process called rotation of EOF’s. Singular Value Decomposition (SVD) is a general decomposition of a matrix. It can be used on data matrices to find both the EOF’s and PC’s simultaneously. -
Complete Set of Orthogonal Basis Mathematical Physics
R. I. Badran Complete set of orthogonal basis Mathematical Physics Complete set of orthogonal functions Discrete set of vectors: ˆ ˆ ˆ ˆ ˆ ˆ The two vectors A AX i A y j Az k and B BX i B y j Bz k are 3 orthogonal if A B 0 or Ai Bi 0 . i1 Continuous set of functions on an interval (a, b): a) The two continuous functions A(x) and B (x) are orthogonal b on the interval (a, b) if A(x)B(x)dx 0. a b) The two complex functions A (x) and B (x) are orthogonal on b the interval (a, b) if A (x)B(x)dx 0 , where A*(x) is the a complex conjugate of A (x). c) For a whole set of functions An (x) (where n= 1, 2, 3,) and on the interval (a, b) b 0 if m n An (x)Am (x)dx a , const.t 0 if m n An (x) is called a set of orthogonal functions. Examples: 0 m n sin nx sin mxdx i) , m n 0 where sin nx is a set of orthogonal functions on the interval (-, ). Similarly 0 m n cos nx cos mxdx if if m n 0 R. I. Badran Complete set of orthogonal basis Mathematical Physics ii) sin nx cos mxdx 0 for any n and m 0 (einx ) eimxdx iii) 2 1 vi) P (x)Pm (x)dx 0 unless. m 1 [Try to prove this; also solve problems (2, 5) of section 6]. -
Sturm-Liouville Expansions of the Delta
Gauge Institute Journal H. Vic Dannon Sturm-Liouville Expansions of the Delta Function H. Vic Dannon [email protected] May, 2014 Abstract We expand the Delta Function in Series, and Integrals of Sturm-Liouville Eigen-functions. Keywords: Sturm-Liouville Expansions, Infinitesimal, Infinite- Hyper-Real, Hyper-Real, infinite Hyper-real, Infinitesimal Calculus, Delta Function, Fourier Series, Laguerre Polynomials, Legendre Functions, Bessel Functions, Delta Function, 2000 Mathematics Subject Classification 26E35; 26E30; 26E15; 26E20; 26A06; 26A12; 03E10; 03E55; 03E17; 03H15; 46S20; 97I40; 97I30. 1 Gauge Institute Journal H. Vic Dannon Contents 0. Eigen-functions Expansion of the Delta Function 1. Hyper-real line. 2. Hyper-real Function 3. Integral of a Hyper-real Function 4. Delta Function 5. Convergent Series 6. Hyper-real Sturm-Liouville Problem 7. Delta Expansion in Non-Normalized Eigen-Functions 8. Fourier-Sine Expansion of Delta Associated with yx"( )+=l yx ( ) 0 & ab==0 9. Fourier-Cosine Expansion of Delta Associated with 1 yx"( )+=l yx ( ) 0 & ab==2 p 10. Fourier-Sine Expansion of Delta Associated with yx"( )+=l yx ( ) 0 & a = 0 11. Fourier-Bessel Expansion of Delta Associated with n2 -1 ux"( )+- (l 4 ) ux ( ) = 0 & ab==0 x 2 12. Delta Expansion in Orthonormal Eigen-functions 13. Fourier-Hermit Expansion of Delta Associated with ux"( )+- (l xux2 ) ( ) = 0 for any real x 14. Fourier-Legendre Expansion of Delta Associated with 2 Gauge Institute Journal H. Vic Dannon 11 11 uu"(ql )++ [ ] ( q ) = 0 -<<pq p 4 cos2 q , 22 15. Fourier-Legendre Expansion of Delta Associated with 112 11 ymy"(ql )++- [ ( ) ] (q ) = 0 -<<pq p 4 cos2 q , 22 16. -
Lecture 15.Pdf
Lecture #15 Eigenfunctions of hermitian operators If the spectrum is discrete , then the eigenfunctions are in Hilbert space and correspond to physically realizable states. It the spectrum is continuous , the eigenfunctions are not normalizable, and they do not correspond to physically realizable states (but their linear combinations may be normalizable). Discrete spectra Normalizable eigenfunctions of a hermitian operator have the following properties: (1) Their eigenvalues are real. (2) Eigenfunctions that belong to different eigenvalues are orthogonal. Finite-dimension vector space: The eigenfunctions of an observable operator are complete , i.e. any function in Hilbert space can be expressed as their linear combination. Continuous spectra Example: Find the eigenvalues and eigenfunctions of the momentum operator . This solution is not square -inferable and operator p has no eigenfunctions in Hilbert space. However, if we only consider real eigenvalues, we can define sort of orthonormality: Lecture 15 Page 1 L15.P2 since the Fourier transform of Dirac delta function is Proof: Plancherel's theorem Now, Then, which looks very similar to orthonormality. We can call such equation Dirac orthonormality. These functions are complete in a sense that any square integrable function can be written in a form and c(p) is obtained by Fourier's trick. Summary for continuous spectra: eigenfunctions with real eigenvalues are Dirac orthonormalizable and complete. Lecture 15 Page 2 L15.P3 Generalized statistical interpretation: If your measure observable Q on a particle in a state you will get one of the eigenvalues of the hermitian operator Q. If the spectrum of Q is discrete, the probability of getting the eigenvalue associated with orthonormalized eigenfunction is It the spectrum is continuous, with real eigenvalues q(z) and associated Dirac-orthonormalized eigenfunctions , the probability of getting a result in the range dz is The wave function "collapses" to the corresponding eigenstate upon measurement. -
Positive Eigenfunctions of Markovian Pricing Operators
Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery and Long-Term Pricing Likuan Qin† and Vadim Linetsky‡ Department of Industrial Engineering and Management Sciences McCormick School of Engineering and Applied Sciences Northwestern University Abstract This paper develops a spectral theory of Markovian asset pricing models where the under- lying economic uncertainty follows a continuous-time Markov process X with a general state space (Borel right process (BRP)) and the stochastic discount factor (SDF) is a positive semi- martingale multiplicative functional of X. A key result is the uniqueness theorem for a positive eigenfunction of the pricing operator such that X is recurrent under a new probability mea- sure associated with this eigenfunction (recurrent eigenfunction). As economic applications, we prove uniqueness of the Hansen and Scheinkman (2009) factorization of the Markovian SDF corresponding to the recurrent eigenfunction, extend the Recovery Theorem of Ross (2015) from discrete time, finite state irreducible Markov chains to recurrent BRPs, and obtain the long- maturity asymptotics of the pricing operator. When an asset pricing model is specified by given risk-neutral probabilities together with a short rate function of the Markovian state, we give sufficient conditions for existence of a recurrent eigenfunction and provide explicit examples in a number of important financial models, including affine and quadratic diffusion models and an affine model with jumps. These examples show that the recurrence assumption, in addition to fixing uniqueness, rules out unstable economic dynamics, such as the short rate asymptotically arXiv:1411.3075v3 [q-fin.MF] 9 Sep 2015 going to infinity or to a zero lower bound trap without possibility of escaping. -
A Complete System of Orthogonal Step Functions
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 12, Pages 3491{3502 S 0002-9939(04)07511-2 Article electronically published on July 22, 2004 A COMPLETE SYSTEM OF ORTHOGONAL STEP FUNCTIONS HUAIEN LI AND DAVID C. TORNEY (Communicated by David Sharp) Abstract. We educe an orthonormal system of step functions for the interval [0; 1]. This system contains the Rademacher functions, and it is distinct from the Paley-Walsh system: its step functions use the M¨obius function in their definition. Functions have almost-everywhere convergent Fourier-series expan- sions if and only if they have almost-everywhere convergent step-function-series expansions (in terms of the members of the new orthonormal system). Thus, for instance, the new system and the Fourier system are both complete for Lp(0; 1); 1 <p2 R: 1. Introduction Analytical desiderata and applications, ever and anon, motivate the elaboration of systems of orthogonal step functions|as exemplified by the Haar system, the Paley-Walsh system and the Rademacher system. Our motivation is the example- based classification of digitized images, represented by rational points of the real interval [0,1], the domain of interest in the sequel. It is imperative to establish the \completeness" of any orthogonal system. Much is known, in this regard, for the classical systems, as this has been the subject of numerous investigations, and we use the latter results to establish analogous properties for the orthogonal system developed herein. h i RDefinition 1. Let the inner product f(x);g(x) denote the Lebesgue integral 1 0 f(x)g(x)dx: Definition 2. -
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces Stefan Klus1, Ingmar Schuster2, and Krikamol Muandet3 1Department of Mathematics and Computer Science, Freie Universit¨atBerlin, Germany 2Zalando Research, Zalando SE, Berlin, Germany 3Max Planck Institute for Intelligent Systems, T¨ubingen,Germany Abstract Transfer operators such as the Perron{Frobenius or Koopman operator play an im- portant role in the global analysis of complex dynamical systems. The eigenfunctions of these operators can be used to detect metastable sets, to project the dynamics onto the dominant slow processes, or to separate superimposed signals. We propose kernel transfer operators, which extend transfer operator theory to reproducing kernel Hilbert spaces and show that these operators are related to Hilbert space representations of con- ditional distributions, known as conditional mean embeddings. The proposed numerical methods to compute empirical estimates of these kernel transfer operators subsume ex- isting data-driven methods for the approximation of transfer operators such as extended dynamic mode decomposition and its variants. One main benefit of the presented kernel- based approaches is that they can be applied to any domain where a similarity measure given by a kernel is available. Furthermore, we provide elementary results on eigende- compositions of finite-rank RKHS operators. We illustrate the results with the aid of guiding examples and highlight potential applications in molecular dynamics as well as video and text data analysis. 1 Introduction Transfer operators such as the Perron{Frobenius or Koopman operator are ubiquitous in molecular dynamics, fluid dynamics, atmospheric sciences, and control theory (Schmid, 2010, Brunton et al., 2016, Klus et al., 2018a). -
Generalized Eigenfunction Expansions
Universitat¨ Karlsruhe (TH) Fakult¨atf¨urMathematik Institut f¨urAnalysis Arbeitsgruppe Funktionalanalysis Generalized Eigenfunction Expansions Diploma Thesis of Emin Karayel supervised by Prof. Dr. Lutz Weis August 2009 Erkl¨arung Hiermit erkl¨areich, dass ich diese Diplomarbeit selbst¨andigverfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Emin Karayel, August 2009 Anschrift Emin Karayel Werner-Siemens-Str. 21 75173 Pforzheim Matr.-Nr.: 1061189 E-Mail: [email protected] 2 Contents 1 Introduction 5 2 Eigenfunction expansions on Hilbert spaces 9 2.1 Spectral Measures . 9 2.2 Phillips Theorem . 11 2.3 Rigged Hilbert Spaces . 12 2.4 Basic Eigenfunction Expansion . 13 2.5 Extending the Operator . 15 2.6 Orthogonalizing Generalized Eigenvectors . 16 2.7 Summary . 21 3 Hilbert-Schmidt-Riggings 23 3.1 Unconditional Hilbert-Schmidt Riggings . 23 3.1.1 Hilbert-Schmidt-Integral Operators . 24 3.2 Weighted Spaces and Sobolev Spaces . 25 3.3 Conditional Hilbert-Schmidt Riggings . 26 3.4 Eigenfunction Expansion for the Laplacian . 27 3.4.1 Optimality . 27 3.5 Nuclear Riggings . 28 4 Operator Relations 31 4.1 Vector valued multiplication operators . 31 4.2 Preliminaries . 33 4.3 Interpolation spaces . 37 4.4 Eigenfunction expansion . 38 4.5 Semigroups . 41 4.6 Expansion for Homogeneous Elliptic Selfadjoint Differential Oper- ators . 42 4.7 Conclusions . 44 5 Appendix 47 5.1 Acknowledgements . 47 5.2 Notation . 47 5.3 Conventions . 49 3 1 Introduction Eigenvectors and eigenvalues are indispensable tools to investigate (at least com- pact) normal linear operators. They provide a diagonalization of the operator i.e. -
FOURIER ANALYSIS 1. the Best Approximation Onto Trigonometric
FOURIER ANALYSIS ERIK LØW AND RAGNAR WINTHER 1. The best approximation onto trigonometric polynomials Before we start the discussion of Fourier series we will review some basic results on inner–product spaces and orthogonal projections mostly presented in Section 4.6 of [1]. 1.1. Inner–product spaces. Let V be an inner–product space. As usual we let u, v denote the inner–product of u and v. The corre- sponding normh isi given by v = v, v . k k h i A basic relation between the inner–productp and the norm in an inner– product space is the Cauchy–Scwarz inequality. It simply states that the absolute value of the inner–product of u and v is bounded by the product of the corresponding norms, i.e. (1.1) u, v u v . |h i|≤k kk k An outline of a proof of this fundamental inequality, when V = Rn and is the standard Eucledian norm, is given in Exercise 24 of Section 2.7k·k of [1]. We will give a proof in the general case at the end of this section. Let W be an n dimensional subspace of V and let P : V W be the corresponding projection operator, i.e. if v V then w∗ =7→P v W is the element in W which is closest to v. In other∈ words, ∈ v w∗ v w for all w W. k − k≤k − k ∈ It follows from Theorem 12 of Chapter 4 of [1] that w∗ is characterized by the conditions (1.2) v P v, w = v w∗, w =0 forall w W. -
On the Eigenvalues of Integral Operators with Difference Kernels
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 53, 554-566 (1976) On the Eigenvalues of Integral Operators with Difference Kernels R. VITTAL RAO Department of Applied Mathematics, Indian Institute of Science, Bangalore 560012, India Submitted by G. Milton Wing 1. INTRODUCTION Integral equations with difference kernels on finite intervals occur in the study of a wide class of transport phenomena such as neutron transport [l], radiative transfer [2], linearized gas dynamics [3, 41, and electromagnetic wave refraction [5], as well as in the study of fields such as stochastic processes, elasticity, etc. By such an equation, we mean an integral equation of the form fW =g@) + J1’K(~ - Y)f(Y) dy. (1.1) The spectral analysis of these integral operators plays an important role in the determination of the critical dimensions of nuclear reactors in which the energy of the neutrons is considered constant (that is, monoenergetic neutron transport). The spectral analysis has also received attention from a different context, namely, these integral operators can be regarded as continual analogs of Toeplitz matrices [6-91. In this paper we will be studying some properties of the spectrum of these integral operators. We prove three theorems. Of these the first one is valid even without the assumption that the kernel is a difference kernel. We denote by where we make the following assumptions on the kernel: q, Y) = qy, 4, (1.3) K(X, y) is locally square integrable. (1.4) 554 Copyright Q 1976 by Academic Press, Inc.