Generalized Eigenfunction Expansions

Total Page:16

File Type:pdf, Size:1020Kb

Generalized Eigenfunction Expansions Universitat¨ Karlsruhe (TH) Fakult¨atf¨urMathematik Institut f¨urAnalysis Arbeitsgruppe Funktionalanalysis Generalized Eigenfunction Expansions Diploma Thesis of Emin Karayel supervised by Prof. Dr. Lutz Weis August 2009 Erkl¨arung Hiermit erkl¨areich, dass ich diese Diplomarbeit selbst¨andigverfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Emin Karayel, August 2009 Anschrift Emin Karayel Werner-Siemens-Str. 21 75173 Pforzheim Matr.-Nr.: 1061189 E-Mail: [email protected] 2 Contents 1 Introduction 5 2 Eigenfunction expansions on Hilbert spaces 9 2.1 Spectral Measures . 9 2.2 Phillips Theorem . 11 2.3 Rigged Hilbert Spaces . 12 2.4 Basic Eigenfunction Expansion . 13 2.5 Extending the Operator . 15 2.6 Orthogonalizing Generalized Eigenvectors . 16 2.7 Summary . 21 3 Hilbert-Schmidt-Riggings 23 3.1 Unconditional Hilbert-Schmidt Riggings . 23 3.1.1 Hilbert-Schmidt-Integral Operators . 24 3.2 Weighted Spaces and Sobolev Spaces . 25 3.3 Conditional Hilbert-Schmidt Riggings . 26 3.4 Eigenfunction Expansion for the Laplacian . 27 3.4.1 Optimality . 27 3.5 Nuclear Riggings . 28 4 Operator Relations 31 4.1 Vector valued multiplication operators . 31 4.2 Preliminaries . 33 4.3 Interpolation spaces . 37 4.4 Eigenfunction expansion . 38 4.5 Semigroups . 41 4.6 Expansion for Homogeneous Elliptic Selfadjoint Differential Oper- ators . 42 4.7 Conclusions . 44 5 Appendix 47 5.1 Acknowledgements . 47 5.2 Notation . 47 5.3 Conventions . 49 3 1 Introduction Eigenvectors and eigenvalues are indispensable tools to investigate (at least com- pact) normal linear operators. They provide a diagonalization of the operator i.e. X Ax = λkhx; ekiek (1.1) k from there it is possible to form the inverse, build a functional calculus, analyze the stability of the operator in numeric situations, determine whether the operator is positive or negative definite etc. They play a role even in non-linear situations like the classification of quadratic forms. In quantum mechanics they correspond to the stationary states of the system. For normal operators with a continuous spectrum there is a diagonalization using a projection valued spectral measure Eλ but the eigenvectors do not exist in the space the operator is defined in. Hence it is necessary to consider larger spaces and to replace the sum in (1.1) with an integral (since the spectrum of the operator is not discrete). Thus the generalization of the above formula would look like: Z Ax = λhx; ek(λ)iek(λ)dλ (1.2) σ(A) − where the vectors ek(λ) are defined in a generalized space X (implying that the vectors x must be in a smaller space X+ in the above formula). An idea which may already have been anticipated by Dirac in his bra and ket notation and for which a rigorous mathematical foundation has been developed in the 1950's by Y. Berezansky, L. Garding, I. Gelfand, G. Kats, A. Kostyuchenko and K. Maurin.1 The framework in which this is possible is the Rigged Hilbert space (also called Gelfand triplet):2 X+ ⊂ H ⊂ X− where X− is the space of continuous antilinear functionals on X+. Several condi- tions on the rigging have been established that lead to an eigenfunction expansion (1.2), the most basic one beeing that the embedding X+ into H is Hilbert-Schmidt, provided that X+ itself is a Hilbert space. If X+ is only a Banach space, the nu- clearity of the embedding is also a sufficient condition. In [BSU96] and [PSW89] also conditional riggings3 are considered, which require for a given operator A only 1[de 05], [BSU96], [Mau68] 2Usually denoted by Φ ⊂ H ⊂ Φ×. 3In [BSU96] they are called non-nuclear riggings. 5 1 Introduction that f(A): X+ ! H is Hilbert-Schmidt, provided that f is bounded away from zero. There is an explicit eigenfunction expansion for the Laplace operator A := −∆ n n on the euclidean space L2(R ) which implies that for any x 2 L2(R ) there are locally integrable functionsx ^(λ) s.t. Z 1 f(A)x = f(λ)^x(λ) dλ 0 where the generalized eigenfunctionsx ^(λ) are in the weighted spaces n n s n L2;s(R ) := ff 2 L1;loc(R ) j ((1 + k · k ) f(·)) 2 L2(R )g −1 for s > 2 . If the function f itself is in L2(R) then the above is a Bochner integral. At first sight there is no reason to expect that this result4 does not fit into the general framework above. However we discovered that - this is not the case, in fact the only map n f(A): L ( n) ! L ( n) for s < 2;s R 2 R 2 n−1 which is Hilbert-Schmidt is the zero map. To close this gap (of 2 ) we have investigated a different approach, based on an operator relation of the following form BA − AB = h(A) leading to an eigenfunction expansion on riggings:5 + × − X ⊂ [D(B); H]1=2;1 ⊂ H ⊂ [D(B); H]1=2;1 ⊂ X where X+ and (its antidual) X− are reflexive Banach spaces. In the case of homogeneous self-adjoint elliptic differential operators (e.g. the Laplace operator) this leads to an eigenfunction expansion on the rigging L2;s ⊂ H ⊂ L2;−s for all 1 6 s > 2 . The common denominator between the latter result and the classic results for (conditional) Hilbert-Schmidt and nuclear riggings is the existence of a σ− finite measure s.t. the following estimate holds 2 2 kχE(A)xkH ≤ µ(E)kxk+ For example in the case of Hilbert-Schmidt-Riggings the measure can be defined by µ(E) = hχE(A)xk; xki 4It can be derived from the Plancharel formula in [Str89][p. 64]. 5Theorem 4.4.4 6Theorem 4.6.3 6 + where xk is an orthonormal system of X . On the other in the case of the operator relation Z µ(E) = jh−1(λ)jj2 + h0(λ)jdλ. E The latter means that (outside of the zeros of h) the measure µ and hence the generalized eigenfunctions themselves are absolutely continuous with respect to the Lebesgue measure on σ(A). 7 2 Eigenfunction expansions on Hilbert spaces The first two sections introduce some preliminaries, namely spectral measures for normal operators and the Phillips theorem. The main object of our investigation will be rigged Hilbert spaces X+ ⊂ H ⊂ X−, i.e. Hilbert spaces which have a dense linear subset of test vectors X+ and a space X− of generalized functions (defined as antil-linear functionals on X+). The triple of spaces (X+; H; X−) is sometimes also called Gelfand triple. In general the spaces X+ and X− are topological vector spaces. However we will only consider the case where X+ and X− are reflexive Banach spaces. We will introduce and investigate them in section 2.3. Provided there is a spectral measure µ for a self adjoint operator A s.t. the estimate 2 2 + kχE(A)vkH ≤ kvk+µ(E) for all v 2 X (2.1) holds we will see that there is a complete system of generalized eigenvectors. If the operator A is closable on X− then the generalized eigenvectors are in fact real eigenvectors of the closure A−. The last section contains a summary with the results to which we will refer in the next chapters. 2.1 Spectral Measures The spectral theorem for normal operators gives a measure on the spectrum of the operator, which we call spectral measure. But it is not necessarily unique (w.r.t to the operator). As mentioned before we will find spectral measures with the special condition (2.1). Thus it is reasonable to have a precise definition of them, which we will do using the spectral theorem (cf. [Wer05, p. 350, VII.3.1]): Theorem 2.1.1 (Spectral theoerem) For A self-adjoint operator on a separable complex Hilbert space H there is a Borel set Ω ⊂ C, a σ-finite measure ν on the Borel-σ-Algebra of Ω, a continuous function m :Ω ! R and a unitary operator U : L2(Ω; ν) ! H s.t. the operator M on L2(Ω; ν) defined by (Mx)(!) := m(!)x(!) with D(M) := fx 2 L2(Ω; µ) j Mx 2 L2(Ω; ν)g is a representation of A i.e. D(A) = UD(M) and AUx = UMx for all x 2 D(M). 9 2 Eigenfunction expansions on Hilbert spaces Definition 2.1.2 A σ-finite measure µ on the Borel-σ-Algebra of σ(A) is called spectral measure for the operator A if and only if µ(E) = 0 , ν(m−1(E)) = 0 for all Borel sets E ⊂ σ(A). There is allways such a measure. We can define one for example by using a countable disjoint decomposition Ek of Ω s.t. ν(Ek) < 1. The measure µ defined by −1 X ν(m (E) \ Ek) µ(E) := k 2 ν(Ek) k is an (actually finite) spectral measure for A. There is an algebra homomorphism from the bounded µ-measurable functions to the bounded operators commuting with A, which we call the functional calculus of A: Proposition 2.1.3 For a self-adjoint operator A on a separable Hilbert space, and a spectral measure µ, there is a continuous map ΦA : L1(σ(A); µ) !B(H) −1 s.t. for all µ 2 ρ(A) it is true that Φ(rλ) = (λI − A) where −1 rλ(t) := (λ − t) . Using the notation f(A) for ΦA(f); for all f; g; fn 2 L1(σ(A); µ) it is true that • χσ(A)(A) = I, • (fg)(A) = f(A)g(A), ∗ • f(A) = (f(A)) and • kf(A)k = kfk1.
Recommended publications
  • Math 353 Lecture Notes Intro to Pdes Eigenfunction Expansions for Ibvps
    Math 353 Lecture Notes Intro to PDEs Eigenfunction expansions for IBVPs J. Wong (Fall 2020) Topics covered • Eigenfunction expansions for PDEs ◦ The procedure for time-dependent problems ◦ Projection, independent evolution of modes 1 The eigenfunction method to solve PDEs We are now ready to demonstrate how to use the components derived thus far to solve the heat equation. First, two examples to illustrate the proces... 1.1 Example 1: no source; Dirichlet BCs The simplest case. We solve ut =uxx; x 2 (0; 1); t > 0 (1.1a) u(0; t) = 0; u(1; t) = 0; (1.1b) u(x; 0) = f(x): (1.1c) The eigenvalues/eigenfunctions are (as calculated in previous sections) 2 2 λn = n π ; φn = sin nπx; n ≥ 1: (1.2) Assuming the solution exists, it can be written in the eigenfunction basis as 1 X u(x; t) = cn(t)φn(x): n=0 Definition (modes) The n-th term of this series is sometimes called the n-th mode or Fourier mode. I'll use the word frequently to describe it (rather than, say, `basis function'). 1 00 Substitute into the PDE (1.1a) and use the fact that −φn = λnφ to obtain 1 X 0 (cn(t) + λncn(t))φn(x) = 0: n=1 By the fact the fφng is a basis, it follows that the coefficient for each mode satisfies the ODE 0 cn(t) + λncn(t) = 0: Solving the ODE gives us a `general' solution to the PDE with its BCs, 1 X −λnt u(x; t) = ane φn(x): n=1 The remaining coefficients are determined by the IC, u(x; 0) = f(x): To match to the solution, we need to also write f(x) in the basis: 1 Z 1 X hf; φni f(x) = f φ (x); f = = 2 f(x) sin nπx dx: (1.3) n n n hφ ; φ i n=1 n n 0 Then from the initial condition, we get u(x; 0) = f(x) 1 1 X X =) cn(0)φn(x) = fnφn(x) n=1 n=1 =) cn(0) = fn for all n ≥ 1: Now everything has been solved - we are done! The solution to the IBVP (1.1) is 1 X −n2π2t u(x; t) = ane sin nπx with an given by (1.5): (1.4) n=1 Alternatively, we could state the solution as follows: The solution is 1 X −λnt u(x; t) = fne φn(x) n=1 with eigenfunctions/values φn; λn given by (1.2) and fn by (1.3).
    [Show full text]
  • Math 356 Lecture Notes Intro to Pdes Eigenfunction Expansions for Ibvps
    MATH 356 LECTURE NOTES INTRO TO PDES EIGENFUNCTION EXPANSIONS FOR IBVPS J. WONG (FALL 2019) Topics covered • Eigenfunction expansions for PDEs ◦ The procedure for time-dependent problems ◦ Projection, independent evolution of modes ◦ Separation of variables • The wave equation ◦ Standard solution, standing waves ◦ Example: tuning the vibrating string (resonance) • Interpreting solutions (what does the series mean?) ◦ Relevance of Fourier convergence theorem ◦ Smoothing for the heat equation ◦ Non-smoothing for the wave equation 3 1. The eigenfunction method to solve PDEs We are now ready to demonstrate how to use the components derived thus far to solve the heat equation. The procedure here for the heat equation will extend nicely to a variety of other problems. For now, consider an initial boundary value problem of the form ut = −Lu + h(x; t); x 2 (a; b); t > 0 hom. BCs at a and b (1.1) u(x; 0) = f(x) We seek a solution in terms of the eigenfunction basis X u(x; t) = cn(t)φn(x) n by finding simple ODEs to solve for the coefficients cn(t): This form of the solution is called an eigenfunction expansion for u (or `eigenfunction series') and each term cnφn(x) is a mode (or `Fourier mode' or `eigenmode'). Part 1: find the eigenfunction basis. The first step is to compute the basis. The eigenfunctions we need are the solutions to the eigenvalue problem Lφ = λφ, φ(x) satisfies the BCs for u: (1.2) By the theorem in ??, there is a sequence of eigenfunctions fφng with eigenvalues fλng that form an orthogonal basis for L2[a; b] (i.e.
    [Show full text]
  • Quantum Errors and Disturbances: Response to Busch, Lahti and Werner
    entropy Article Quantum Errors and Disturbances: Response to Busch, Lahti and Werner David Marcus Appleby Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia; [email protected]; Tel.: +44-734-210-5857 Academic Editors: Gregg Jaeger and Andrei Khrennikov Received: 27 February 2016; Accepted: 28 April 2016; Published: 6 May 2016 Abstract: Busch, Lahti and Werner (BLW) have recently criticized the operator approach to the description of quantum errors and disturbances. Their criticisms are justified to the extent that the physical meaning of the operator definitions has not hitherto been adequately explained. We rectify that omission. We then examine BLW’s criticisms in the light of our analysis. We argue that, although the BLW approach favour (based on the Wasserstein two-deviation) has its uses, there are important physical situations where an operator approach is preferable. We also discuss the reason why the error-disturbance relation is still giving rise to controversies almost a century after Heisenberg first stated his microscope argument. We argue that the source of the difficulties is the problem of interpretation, which is not so wholly disconnected from experimental practicalities as is sometimes supposed. Keywords: error disturbance principle; uncertainty principle; quantum measurement; Heisenberg PACS: 03.65.Ta 1. Introduction The error-disturbance principle remains highly controversial almost a century after Heisenberg wrote the paper [1], which originally suggested it. It is remarkable that this should be so, since the disagreements concern what is arguably the most fundamental concept of all, not only in physics, but in empirical science generally: namely, the concept of measurement accuracy.
    [Show full text]
  • Sturm-Liouville Expansions of the Delta
    Gauge Institute Journal H. Vic Dannon Sturm-Liouville Expansions of the Delta Function H. Vic Dannon [email protected] May, 2014 Abstract We expand the Delta Function in Series, and Integrals of Sturm-Liouville Eigen-functions. Keywords: Sturm-Liouville Expansions, Infinitesimal, Infinite- Hyper-Real, Hyper-Real, infinite Hyper-real, Infinitesimal Calculus, Delta Function, Fourier Series, Laguerre Polynomials, Legendre Functions, Bessel Functions, Delta Function, 2000 Mathematics Subject Classification 26E35; 26E30; 26E15; 26E20; 26A06; 26A12; 03E10; 03E55; 03E17; 03H15; 46S20; 97I40; 97I30. 1 Gauge Institute Journal H. Vic Dannon Contents 0. Eigen-functions Expansion of the Delta Function 1. Hyper-real line. 2. Hyper-real Function 3. Integral of a Hyper-real Function 4. Delta Function 5. Convergent Series 6. Hyper-real Sturm-Liouville Problem 7. Delta Expansion in Non-Normalized Eigen-Functions 8. Fourier-Sine Expansion of Delta Associated with yx"( )+=l yx ( ) 0 & ab==0 9. Fourier-Cosine Expansion of Delta Associated with 1 yx"( )+=l yx ( ) 0 & ab==2 p 10. Fourier-Sine Expansion of Delta Associated with yx"( )+=l yx ( ) 0 & a = 0 11. Fourier-Bessel Expansion of Delta Associated with n2 -1 ux"( )+- (l 4 ) ux ( ) = 0 & ab==0 x 2 12. Delta Expansion in Orthonormal Eigen-functions 13. Fourier-Hermit Expansion of Delta Associated with ux"( )+- (l xux2 ) ( ) = 0 for any real x 14. Fourier-Legendre Expansion of Delta Associated with 2 Gauge Institute Journal H. Vic Dannon 11 11 uu"(ql )++ [ ] ( q ) = 0 -<<pq p 4 cos2 q , 22 15. Fourier-Legendre Expansion of Delta Associated with 112 11 ymy"(ql )++- [ ( ) ] (q ) = 0 -<<pq p 4 cos2 q , 22 16.
    [Show full text]
  • Lecture 15.Pdf
    Lecture #15 Eigenfunctions of hermitian operators If the spectrum is discrete , then the eigenfunctions are in Hilbert space and correspond to physically realizable states. It the spectrum is continuous , the eigenfunctions are not normalizable, and they do not correspond to physically realizable states (but their linear combinations may be normalizable). Discrete spectra Normalizable eigenfunctions of a hermitian operator have the following properties: (1) Their eigenvalues are real. (2) Eigenfunctions that belong to different eigenvalues are orthogonal. Finite-dimension vector space: The eigenfunctions of an observable operator are complete , i.e. any function in Hilbert space can be expressed as their linear combination. Continuous spectra Example: Find the eigenvalues and eigenfunctions of the momentum operator . This solution is not square -inferable and operator p has no eigenfunctions in Hilbert space. However, if we only consider real eigenvalues, we can define sort of orthonormality: Lecture 15 Page 1 L15.P2 since the Fourier transform of Dirac delta function is Proof: Plancherel's theorem Now, Then, which looks very similar to orthonormality. We can call such equation Dirac orthonormality. These functions are complete in a sense that any square integrable function can be written in a form and c(p) is obtained by Fourier's trick. Summary for continuous spectra: eigenfunctions with real eigenvalues are Dirac orthonormalizable and complete. Lecture 15 Page 2 L15.P3 Generalized statistical interpretation: If your measure observable Q on a particle in a state you will get one of the eigenvalues of the hermitian operator Q. If the spectrum of Q is discrete, the probability of getting the eigenvalue associated with orthonormalized eigenfunction is It the spectrum is continuous, with real eigenvalues q(z) and associated Dirac-orthonormalized eigenfunctions , the probability of getting a result in the range dz is The wave function "collapses" to the corresponding eigenstate upon measurement.
    [Show full text]
  • Positive Eigenfunctions of Markovian Pricing Operators
    Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery and Long-Term Pricing Likuan Qin† and Vadim Linetsky‡ Department of Industrial Engineering and Management Sciences McCormick School of Engineering and Applied Sciences Northwestern University Abstract This paper develops a spectral theory of Markovian asset pricing models where the under- lying economic uncertainty follows a continuous-time Markov process X with a general state space (Borel right process (BRP)) and the stochastic discount factor (SDF) is a positive semi- martingale multiplicative functional of X. A key result is the uniqueness theorem for a positive eigenfunction of the pricing operator such that X is recurrent under a new probability mea- sure associated with this eigenfunction (recurrent eigenfunction). As economic applications, we prove uniqueness of the Hansen and Scheinkman (2009) factorization of the Markovian SDF corresponding to the recurrent eigenfunction, extend the Recovery Theorem of Ross (2015) from discrete time, finite state irreducible Markov chains to recurrent BRPs, and obtain the long- maturity asymptotics of the pricing operator. When an asset pricing model is specified by given risk-neutral probabilities together with a short rate function of the Markovian state, we give sufficient conditions for existence of a recurrent eigenfunction and provide explicit examples in a number of important financial models, including affine and quadratic diffusion models and an affine model with jumps. These examples show that the recurrence assumption, in addition to fixing uniqueness, rules out unstable economic dynamics, such as the short rate asymptotically arXiv:1411.3075v3 [q-fin.MF] 9 Sep 2015 going to infinity or to a zero lower bound trap without possibility of escaping.
    [Show full text]
  • A Stepwise Planned Approach to the Solution of Hilbert's Sixth Problem. II: Supmech and Quantum Systems
    A Stepwise Planned Approach to the Solution of Hilbert’s Sixth Problem. II : Supmech and Quantum Systems Tulsi Dass Indian Statistical Institute, Delhi Centre, 7, SJS Sansanwal Marg, New Delhi, 110016, India. E-mail: [email protected]; [email protected] Abstract: Supmech, which is noncommutative Hamiltonian mechanics (NHM) (developed in paper I) with two extra ingredients : positive ob- servable valued measures (PObVMs) [which serve to connect state-induced expectation values and classical probabilities] and the ‘CC condition’ [which stipulates that the sets of observables and pure states be mutually separating] is proposed as a universal mechanics potentially covering all physical phe- nomena. It facilitates development of an autonomous formalism for quantum mechanics. Quantum systems, defined algebraically as supmech Hamiltonian systems with non-supercommutative system algebras, are shown to inevitably have Hilbert space based realizations (so as to accommodate rigged Hilbert space based Dirac bra-ket formalism), generally admitting commutative su- perselection rules. Traditional features of quantum mechanics of finite parti- cle systems appear naturally. A treatment of localizability much simpler and more general than the traditional one is given. Treating massive particles as localizable elementary quantum systems, the Schr¨odinger wave functions with traditional Born interpretation appear as natural objects for the descrip- tion of their pure states and the Schr¨odinger equation for them is obtained without ever using a classical Hamiltonian or Lagrangian. A provisional set of axioms for the supmech program is given. arXiv:1002.2061v4 [math-ph] 18 Dec 2010 1 I. Introduction This is the second of a series of papers aimed at obtaining a solution of Hilbert’s sixth problem in the framework of a noncommutative geome- try (NCG) based ‘all-embracing’ scheme of mechanics.
    [Show full text]
  • Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
    Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces Stefan Klus1, Ingmar Schuster2, and Krikamol Muandet3 1Department of Mathematics and Computer Science, Freie Universit¨atBerlin, Germany 2Zalando Research, Zalando SE, Berlin, Germany 3Max Planck Institute for Intelligent Systems, T¨ubingen,Germany Abstract Transfer operators such as the Perron{Frobenius or Koopman operator play an im- portant role in the global analysis of complex dynamical systems. The eigenfunctions of these operators can be used to detect metastable sets, to project the dynamics onto the dominant slow processes, or to separate superimposed signals. We propose kernel transfer operators, which extend transfer operator theory to reproducing kernel Hilbert spaces and show that these operators are related to Hilbert space representations of con- ditional distributions, known as conditional mean embeddings. The proposed numerical methods to compute empirical estimates of these kernel transfer operators subsume ex- isting data-driven methods for the approximation of transfer operators such as extended dynamic mode decomposition and its variants. One main benefit of the presented kernel- based approaches is that they can be applied to any domain where a similarity measure given by a kernel is available. Furthermore, we provide elementary results on eigende- compositions of finite-rank RKHS operators. We illustrate the results with the aid of guiding examples and highlight potential applications in molecular dynamics as well as video and text data analysis. 1 Introduction Transfer operators such as the Perron{Frobenius or Koopman operator are ubiquitous in molecular dynamics, fluid dynamics, atmospheric sciences, and control theory (Schmid, 2010, Brunton et al., 2016, Klus et al., 2018a).
    [Show full text]
  • Riesz-Like Bases in Rigged Hilbert Spaces, in Preparation [14] Bonet, J., Fern´Andez, C., Galbis, A
    RIESZ-LIKE BASES IN RIGGED HILBERT SPACES GIORGIA BELLOMONTE AND CAMILLO TRAPANI Abstract. The notions of Bessel sequence, Riesz-Fischer sequence and Riesz basis are generalized to a rigged Hilbert space D[t] ⊂H⊂D×[t×]. A Riesz- like basis, in particular, is obtained by considering a sequence {ξn}⊂D which is mapped by a one-to-one continuous operator T : D[t] → H[k · k] into an orthonormal basis of the central Hilbert space H of the triplet. The operator T is, in general, an unbounded operator in H. If T has a bounded inverse then the rigged Hilbert space is shown to be equivalent to a triplet of Hilbert spaces. 1. Introduction Riesz bases (i.e., sequences of elements ξn of a Hilbert space which are trans- formed into orthonormal bases by some bounded{ } operator withH bounded inverse) often appear as eigenvectors of nonself-adjoint operators. The simplest situation is the following one. Let H be a self-adjoint operator with discrete spectrum defined on a subset D(H) of the Hilbert space . Assume, to be more definite, that each H eigenvalue λn is simple. Then the corresponding eigenvectors en constitute an orthonormal basis of . If X is another operator similar to H,{ i.e.,} there exists a bounded operator T withH bounded inverse T −1 which intertwines X and H, in the sense that T : D(H) D(X) and XT ξ = T Hξ, for every ξ D(H), then, as it is → ∈ easily seen, the vectors ϕn with ϕn = Ten are eigenvectors of X and constitute a Riesz basis for .
    [Show full text]
  • Spectral Theory
    SPECTRAL THEORY EVAN JENKINS Abstract. These are notes from two lectures given in MATH 27200, Basic Functional Analysis, at the University of Chicago in March 2010. The proof of the spectral theorem for compact operators comes from [Zim90, Chapter 3]. 1. The Spectral Theorem for Compact Operators The idea of the proof of the spectral theorem for compact self-adjoint operators on a Hilbert space is very similar to the finite-dimensional case. Namely, we first show that an eigenvector exists, and then we show that there is an orthonormal basis of eigenvectors by an inductive argument (in the form of an application of Zorn's lemma). We first recall a few facts about self-adjoint operators. Proposition 1.1. Let V be a Hilbert space, and T : V ! V a bounded, self-adjoint operator. (1) If W ⊂ V is a T -invariant subspace, then W ? is T -invariant. (2) For all v 2 V , hT v; vi 2 R. (3) Let Vλ = fv 2 V j T v = λvg. Then Vλ ? Vµ whenever λ 6= µ. We will need one further technical fact that characterizes the norm of a self-adjoint operator. Lemma 1.2. Let V be a Hilbert space, and T : V ! V a bounded, self-adjoint operator. Then kT k = supfjhT v; vij j kvk = 1g. Proof. Let α = supfjhT v; vij j kvk = 1g. Evidently, α ≤ kT k. We need to show the other direction. Given v 2 V with T v 6= 0, setting w0 = T v=kT vk gives jhT v; w0ij = kT vk.
    [Show full text]
  • Quantum Mechanical Observables Under a Symplectic Transformation
    Quantum Mechanical Observables under a Symplectic Transformation of Coordinates Jakub K´aninsk´y1 1Charles University, Faculty of Mathematics and Physics, Institute of Theoretical Physics. E-mail address: [email protected] March 17, 2021 We consider a general symplectic transformation (also known as linear canonical transformation) of quantum-mechanical observables in a quan- tized version of a finite-dimensional system with configuration space iso- morphic to Rq. Using the formalism of rigged Hilbert spaces, we define eigenstates for all the observables. Then we work out the explicit form of the corresponding transformation of these eigenstates. A few examples are included at the end of the paper. 1 Introduction From a mathematical perspective we can view quantum mechanics as a science of finite- dimensional quantum systems, i.e. systems whose classical pre-image has configuration space of finite dimension. The single most important representative from this family is a quantized version of the classical system whose configuration space is isomorphic to Rq with some q N, which corresponds e.g. to the system of finitely many coupled ∈ harmonic oscillators. Classically, the state of such system is given by a point in the arXiv:2007.10858v2 [quant-ph] 16 Mar 2021 phase space, which is a vector space of dimension 2q equipped with the symplectic form. One would typically prefer to work in the abstract setting, without the need to choose any particular set of coordinates: in principle this is possible. In practice though, one will often end up choosing a symplectic basis in the phase space aligned with the given symplectic form and resort to the coordinate description.
    [Show full text]
  • Operators in Rigged Hilbert Spaces: Some Spectral Properties
    OPERATORS IN RIGGED HILBERT SPACES: SOME SPECTRAL PROPERTIES GIORGIA BELLOMONTE, SALVATORE DI BELLA, AND CAMILLO TRAPANI Abstract. A notion of resolvent set for an operator acting in a rigged Hilbert space D⊂H⊂D× is proposed. This set depends on a family of intermediate locally convex spaces living between D and D×, called interspaces. Some properties of the resolvent set and of the correspond- ing multivalued resolvent function are derived and some examples are discussed. 1. Introduction Spaces of linear maps acting on a rigged Hilbert space (RHS, for short) × D⊂H⊂D have often been considered in the literature both from a pure mathematical point of view [22, 23, 28, 31] and for their applications to quantum theo- ries (generalized eigenvalues, resonances of Schr¨odinger operators, quantum fields...) [8, 13, 12, 15, 14, 16, 25]. The spaces of test functions and the dis- tributions over them constitute relevant examples of rigged Hilbert spaces and operators acting on them are a fundamental tool in several problems in Analysis (differential operators with singular coefficients, Fourier trans- arXiv:1309.4038v1 [math.FA] 16 Sep 2013 forms) and also provide the basic background for the study of the problem of the multiplication of distributions by the duality method [24, 27, 34]. Before going forth, we fix some notations and basic definitions. Let be a dense linear subspace of Hilbert space and t a locally convex D H topology on , finer than the topology induced by the Hilbert norm. Then D the space of all continuous conjugate linear functionals on [t], i.e., D× D the conjugate dual of [t], is a linear vector space and contains , in the D H sense that can be identified with a subspace of .
    [Show full text]